首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Tomohiro  Toki  Toshitaka  Gamo  Urumu  Tsunogai 《Island Arc》2006,15(3):285-291
Abstract   We collected free-gas and in situ fluid samples up to a depth of 200.6 m from the Sagara oil field, central Japan (34°44'N, 138°15'E), during the Sagara Drilling Program (SDP) and measured the concentrations and stable carbon isotopic compositions of CH4 and C2H6 in the samples. A combination of the CH4/C2H6 ratios with the carbon isotope ratios of methane indicates that the hydrocarbon gases are predominantly of thermogenic origin at all depths. The isotope signature of hydrocarbon gases of δ13      < δ13     suggests that these gases in the Sagara oil field are not generated by polymerization, but by the decomposition of organic materials.  相似文献   

2.
Geographical distribution of helium isotope ratios in northeastern Japan   总被引:1,自引:0,他引:1  
Keika  Horiguchi  Sadato  Ueki  Yuji  Sano  Naoto  Takahata  Akira  Hasegawa  George  Igarashi 《Island Arc》2010,19(1):60-70
In order to study the precise geographical distribution of helium isotope ratios in northeastern Japan and compare it with geophysical data, we collected 43 gas and water samples from hot and mineral springs in the region where the ratio had never been reported, and measured the 3He/4He and 4He/20Ne ratios of these samples. It was found that the 3He/4He ratios show clear contrasts between the forearc and the back-arc regions in the Tohoku district in northeastern Japan. In the forearc region, the ratios are smaller than 1 RA (1 RA = 1.4 × 10−6; RA means the 3He/4He ratio of the atmosphere). On the other hand, those along the volcanic front and in the back-arc region are apparently higher. Moreover, we found a variation in the 3He/4He ratios along the volcanic front. In Miyagi Prefecture (38–39°N), the ratios range from 2 to 5 RA. On the other hand, the ratios are less than 1 RA in and around the southern border between Iwate and Akita Prefectures (39–39.5°N). Comparing the distribution of helium isotope ratios to results of recent geophysical studies, we found that the features in geographical distribution of helium isotope ratios are similar to those of seismic low-velocity zone distributions and high Qp−1 distributions in the uppermost mantle. These observations strongly suggest that the helium isotope ratios reflect the distribution of melts in the uppermost mantle and are a useful tool for investigating the origin, behavior, and distribution of deep fluids and melts.  相似文献   

3.
Abstract Isotopic compositions of He, Ne and Ar were measured on Plio–Quaternary alkaline basalts of Marib–Sirwah and Shuqra volcanic fields in Yemen, south-western Arabian Peninsula. Very high 3He/4He isotope ratios were found in olivine phenocrysts of some Quaternary alkaline basalts in both volcanic fields, located on the margin of the dispersed Afar mantle plume, compared with the Afar–Ethiopian province in the center of the mantle plume. This suggests that the Afar mantle plume source may consist of common component (C or focal zone (FOZO)) with variable primordial 3He/4He ratio rather than high μ mantle (HIMU) component. The three component mixing C as the Afar mantle plume, depleted mantle (DM) as upper mantle and lithospheric mantle with a hybrid enriched mantle I–II (EM I–EM II) characteristics may be adequate to explain He–Sr–Nd–Pb isotope variation for the Afar–Arabian Cenozoic volcanics. The occurrence of high 3He/4He ratios in the Marib–Sirwah volcanic field appears to show that the primitive basaltic magma, derived from the margin of the dispersed trous-like Afar mantle plume during 15–0 Ma, was not by contamination of lithospheric and upper mantle materials in comparison with that from the center of the Afar mantle plume as a result of relatively low thermal anomaly.  相似文献   

4.
Svetlana  Yessalina  Noriyuki  Suzuki  Hiroyuki  Saito 《Island Arc》2006,15(3):292-303
Abstract   The Sagara oil field is located in the Neogene Kakegawa Basin, close to the Izu collision zone at the junction between the main Japanese Islands and the Izu–Bonin Arc. The Sagara oil field is one of the few oil fields situated in a forearc basin on the Pacific side of Japan and is present in a sedimentary basin with poor oil-generating potential. Several crude oils from Sagara oil field were investigated to infer their origin. Organic geochemical characteristics of Sagara oils showed the influences of light biodegradation, migration-contamination, and migration-fractionation. The maturity levels of Sagara oils evaluated based on abundant alkylnaphthalenes corresponded to 0.9–1.2% vitrinite reflectance. Sagara oils were characterized by significant amounts of higher plant biomarkers, a high pristane/phytane ratio and an absence of organic sulphur compounds, suggesting a siliciclastic source rock deposited under nearshore to fluvial–deltaic environments. Numerous faults and fractures in the active forearc basin provided excellent conduits and facilitated upward migration of light hydrocarbons generated at greater depth in the Kakegawa Basin.  相似文献   

5.
Masaaki  Okuda  Hiroomi  Nakazato  Norio  Miyoshi  Takeshi  Nakagawa  Hiroko  Okazaki  Saneatsu  Saito  Asahiko  Taira 《Island Arc》2006,15(3):338-354
Abstract   The 250-m Choshi core (CHOSHI-1), drilled from hemipelagic muds of the Inubo Group, has been physically, geochemically and tephrochronologically analyzed back to 1 Ma. We provide pollen results for the 19–169 m section of the core (400–780 ka) bracketed by the marker tephra Ty1 (equivalent to J4) and the Brunhes–Matuyama paleomagnetic boundary. The results show good agreement with the corresponding oxygen isotope (δ18O) profile, with high δ18O intervals dominated by boreal conifers Picea , Abies , Pinus (subgen. Haploxylon ) and Tsuga ( diversifolia ), whereas low δ18O intervals are dominated by temperate conifers Cryptomeria , Taxaceae-Cephalotaxaceae-Cupressaceae and Sciadopitys . In order to confirm pollen-climate relations for the relevant taxa, a modern surface pollen dataset for the Japanese archipelago was consulted. In this analysis, the ratios of Cryptomeria / Picea and temperate/boreal conifers serve as proxies for the 100-kyr glacial/interglacial cycle during the Middle Pleistocene. Distinct signals for marine isotope stages (MIS) 11, 12, 13–15, 16, 17 and 18–19 are recognized in accordance with the tephrochronology and δ18O of the same core. Application of the criteria to an independent pollen record from Lake Biwa provides an integrated pollen stratigraphy for mid-latitude Japan during the past 800 ky. Some degree of uncertainty remains in the chronology of the MIS13–15 interval, relating to the uncertainty in the eruption age of widespread tephra Ks11.  相似文献   

6.
A suite of crude oil samples,that had not been previously characterized geochemically,was collected from two oil fields in the southwest Niger Delta Nigeria.The saturate biomarkers were used to evaluate geochemical characteristics such as depositional environments,sources of organic matter and extent of biodegradation using gas chromatography-flame ionization detector and gas chromatography-mass spectrometry.Distribution of n-alkanes(Pr/Ph,and isoprenoide/n-alkanes ratios),the abundance of hopanes,oleanane skeleton and C27-C29 steranes in the oils indicate that they were formed from mixed sources(marine and terrestrial kerogen) deposited in an oxic paleoenvironment with no particular maturity trend.These parameters also permit the source grouping of the oils into two families.  相似文献   

7.
Abstract Elemental and isotopic compositions of noble gases extracted from the bore hole water in Osaka plain, central Japan were examined. The water samples were collected from four shallow bore holes (180-450 m) and seven deep bore holes (600-1370 m) which have been used for an urban resort hot spring zone. The water temperatures of the deep bore holes were 22-50°C and that of the shallow bore holes, 13-23°C. The elemental abundance patterns show the progressive enrichment of the heavier noble gases compared with the atmospheric noble gas composition except for He, which is heavily enriched in deep bore hole water samples. 3He/4He ratios from the bore holes reaching the Ryoke granitic basement were higher than the atmospheric value (1.4 × 10−6), indicating a release of mantle He through the basement. The highest value of 8.2 × 10−6 is in the range of arc volcanism. On the other hand, the bore holes in sedimentary rocks overlying the basement release He enriched in radiogenic 4He, resulted in a low 3He/4He ratio of 0.5 × 10−6. 4He/20Ne and 40Ar/36Ar ratios indicate that the air contamination is generally larger in shallow bore holes than in deep ones from each site. The helium enriched in mantle He is compatible with the previous work which suggested up-rising magma in 'Kinki Spot', the area of Osaka and western Wakayama, in spite of no volcanic activity in the area. A model to explain an initiation of magma generation beneath this area is presented.  相似文献   

8.
New Hf isotope and trace element data on mid-ocean ridge basalts (MORB) from the Pacific Ocean basin are remarkably uniform (176Hf/177Hf≈0.28313–0.28326) and comparable to previously published data [Salters, Earth Planet. Sci. Lett. 141 (1996) 109–123; Patchett, Lithos 16 (1983) 47–51]. Atlantic MORB have 176Hf/177Hf ranging from 0.28302 to 0.28335 confirming the wide range originally identified by Patchett and Tatsumoto [Geophys. Res. Lett. 7 (1980) 1077–1080]. Indian MORB define an even wider range, from 0.28277 to 0.28337, but three exotic samples have very unradiogenic Hf isotope compositions. Their very low 176Hf/177Hf ratios, together with their trace element characteristics, require the presence of unusual plume-type material beneath the Indian ridge. All other Indian MORB have uniform Hf isotope compositions at about 0.2832, and define a small field displaced to the right of other MORB in Hf–Nd isotope space. The distinct nature of Indian MORB is best explained by the presence in Indian depleted mantle of old recycled oceanic crust and pelagic sediments. Sm/Hf ratios calculated from new high-precision rare earth element and Hf trace element data do not vary in MORB in the same way as in ocean island basalts (OIB): ratios are constant in OIB, but decrease with increasing Sm contents in MORB. The constancy of Sm/Hf in OIB is probably due to an overwhelming influence of residual garnet during melting. By contrast, the decrease of Sm/Hf in MORB is due to the effect of clinopyroxene in the residue of melting beneath ridges, an interpretation confirmed by quantitative modeling of melting. The relationship between Sm/Nd and Lu/Hf ratios in MORB does not require the presence of garnet in the residual mineralogy. The decoupling of Lu/Hf ratios and Hf isotope compositions – the so-called Hf paradox [Salters and Hart, EOS Trans. Am. Geophys. Union 70 (1989) 510] – can be explained by melting dominantly in the spinel field at shallow depths beneath mid-ocean ridges.  相似文献   

9.
Abstract Dolomite marble from the Kumdy–Kol area of the Kokchetav Massif contains abundant microdiamond, mainly in garnet and a few in diopside. The mineral assemblage at peak metamorphic condition consists of dolomite + diopside + garnet (+ aragonite) ± diamond. Inclusions of very low MgCO3 calcite and almost pure calcite occur in diopside and are interpreted as aragonite and/or aragonite + dolomite. Single-phase Mg–calcite in diopside with a very high MgCO3 component (up to 21.7 mol%) was also found in diamond-free dolomitic marble, and is interpreted as a retrograde product from aragonite + dolomite to Mg–calcite. The dolomite stability constrains the maximum pressure (P) at < 7 GPa using previous experimental data, whereas the occurrence of diamond yields the minimum peak pressure–temperature (P–T) condition at 4.2 GPa and 980 °C at X co 2 = 0.1. The highest MgCO3 in Mg–calcite constrains the minimum P–T condition higher than 2.5 GPa and 800 °C for the exhumation stage. As these marbles were subjected to nearly identical P–T metamorphic conditions, the appearance of diamond in some carbonate rocks was explained by high X co 2. A low X co 2 condition refers to high oxidized conditions and diamond (and/or graphite) becomes unstable. Difference in X co 2 for marble from the same area suggests local heterogeneity of fluid compositions during ultrahigh-pressure metamorphism.  相似文献   

10.
We present Re–Os, Sm–Nd and Pb–Pb isotope and trace element data for the Konchozero sill, a layered mafic–ultramafic intrusion in the Early Proterozoic Onega plateau, one of the oldest continental flood basalt provinces on Earth. The Sm–Nd and Pb–Pb combined mineral and whole-rock isochron ages of 1988±34 and 1985±57 Ma for the sill coincide with the age of ferropicrites from Pechenga (the Kola Peninsula). The lithostratigraphic, chemical and isotope evidence suggest the derivation of Pechenga lavas and the Onega plateau volcanics from a single mantle plume. Peridotite and gabbro whole-rock samples, and primary ulvospinel and ilmenite mineral separates from the sill yield a Re–Os isochron with a slope corresponding to an age of 1969±18 Ma, γOs(T) =−0.61±5.9. This age is consistent with the other isotope data, and indicates the closed-system behavior of Re and Os in the rocks. The peridotites and ulvospinel have high Os concentrations (2.5–14 ppb) and low 187Re/188Os ratios (0.35–1.1), thus allowing a more accurate determination of the weighted average initial 187Os/188Os of 0.1144±0.0019 (2σpop), γOs(T) =+0.77±1.7. This value is lower than that determined by Walker et al. (Geochim. Cosmochim. Acta 61 (1997) 3145–3160) for the Pechenga lavas (γOs(T) =+6.1±0.7), and implies a substantial Os-isotope heterogeneity in this ancient plume. Compared to the Onega plateau primary basalt magma, Pechenga ferropicrites are relatively enriched in iron and Ni, have lower (Nb/Th)N ratios (2.1 vs 1.1) and less radiogenic Nd-isotope compositions (Nd(T) = +3.1 and +1.4, respectively), but share similar low-radiogenic Pb-isotope characteristics (μ1=8.57 and 8.60). Incorporation of small amounts (1.5%) of outer core material into the hotter central part of the plume and subsequent contamination of the Pechenga ferropicritic magmas with the 2.9 Ga Belomorian gneisses can explain the observed chemical and isotope variations in the two provinces provided that the core had <0.25 ppm of Pb.  相似文献   

11.
Hidehisa  Mashima 《Island Arc》2005,14(2):165-177
Abstract   The major element and compatible trace element compositions of the northwest Kyushu basalts (NWKBs) collected from Saga-Futagoyama were analyzed to examine the petrogenesis of these basalts. Although nepheline-normative alkaline basalts are not found in the basalts from Saga-Futagoyama, the Saga-Futagoyama basalts almost cover the major element variations of NWKBs. The basalts can be chemically divided into two groups: an Fe-poor group (IPG) and an Fe-rich group (IRG). The compositional variation of IPG basalts is essentially controlled by the partial melting of the source as suggested by the following: (i) bulk rock MgO, FeO and NiO compositions indicate that some IPG samples were equilibrated with mantle olivine; and (ii) correlations between Al2O3, CaO and MgO are consistent with those of experimental partial melts of peridotites. The inconsistent behaviors of the elements compatible with clinopyroxene (Cpx), such as V (Sc and Cu), preclude the significant role of the fractional crystallization of Cpx and spinel in IPG variation. IPG basalts have low Al and high Fe concentrations compared to the products of melting experiments involving peridotites and pyroxenites, suggesting that the IPG source would have a lithology and bulk rock composition different from those of typical peridotites and pyroxenites. IRG basalts have negative correlations between Fe2O3* and MgO, and between V and Fe2O3*/MgO, indicating that IRG basalts would have fractionated Cpx. However, the anomalously Fe-rich feature of IRG basalts compared with NWKBs collected from other areas suggests that the role of Cpx fractionation in NWKBs is minor. Relatively low melting temperatures would have principally caused the large chemical variation of NWKBs.  相似文献   

12.
We have investigated the hypothesis that mantle Pb isotope ratios reflect continued extraction of Pb into the Earth's core over geologic time. The Pb, Sr and Nd isotopic compositions, and the abundance of siderophile and chalcophile elements (W, Mo and Pb) and incompatible lithophile elements have been determined for a suite of ocean island and mid-ocean ridge basalt samples. Over the observed range in Pb isotopic compositions for oceanic rocks, we found no systematic variation of siderophile or chalcophile element abundances relative to abundances of similarly incompatible, but lithophile, elements. The high sensitivity of theMo/Pr ratio to segregation of Fe-metal or S-rich metallic liquid (sulfide) and the observed constantMo/Pr ratio rules out the core formation model as an explanation for the Pb paradox. The mantle and crust have the sameMo/Pr and the sameW/Ba ratios, suggesting that these ratios reflect the ratio in the Earth's primitive mantle.

Our data also indicate that thePb/Ce ratio of the mantle is essentially constant, but the presentPb/Ce ratio in the mantle ( 0.036) is too low to represent the primitive value ( 0.1) derived from Pb isotope systematics. HigherPb/Ce ratios in the crust balance the lowPb/Ce of the mantle, and crust and mantle appear to sum to a reasonable terrestrialPb/Ce ratio. The constancy of thePb/Ce ratio in a wide variety of oceanic magma types from diverse mantle reservoirs indicates this ratio is not fractionated by magmatic processes. This suggests crust formation must have involved non-magmatic as well as magmatic processes. Hydrothermal activity at mid-ocean ridges may result in significant non-magmatic transport of Pb from mantle to crust and of U from crust to mantle, producing a higherU/Pb ratio in the mantle than in the total crust. We suggest that the lower crust is highly depleted in U and has unradiogenic Pb isotope ratios which balance the radiogenic Pb of upper crust and upper mantle. The differences between thePb/Ce ratio in sediments, this ratio in primitive mantle, and the observed ratio in oceanic basalts preclude both sediment recycling and mixing of primitive and depleted reservoirs from being important sources of chemical heterogeneities in the mantle.  相似文献   


13.
High abundant sulfur-containing steroids were identified and detected in saturate hydrocarbon fractions of heavy oil with a high sulfur content in the Jinxian Sag,Bohai Bay Basin,North China.These sulfur-containing steroids were structurally merged into the D-ring of steroid nucleus with thiophene ring and/or combined into the C-22 in the side-chain.Based on the previous reports of sulfur-containing steroids with methylthio-steroids and intra-molecular form,four formation mechanisms of sulfur-containing steroids and diagenetic pathway of steroids under S-rich conditions were proposed in this paper according to the double bond positions in the sterene compounds.Hydrogenation and sulfurization both occurred in the diagenetic processes of olefinic bond in the side-chain of steroids:abiogenic chemical hydrogenation of H2S and HS-leads to the formation of regular steranes;a successful sulfurization process leads to the formation of the side-chain sulfur-containing steroids whereas unsuccessful cyclization and/or sulfurization result in the generation of short-chain steranes.This kind of mechanism of hydrogenation/sulfurization of side-chain olefinic bond provides a potential genesis clue for the occurrence of high abundance of short-chain steranes(higher than the common regular steroids,phytane and n-alkanes)in S-rich heavy oils and source rocks in the Jinxian Sag,Bohai Bay Basin,North China.  相似文献   

14.
A biological community was discovered in the Northern Okushiri Ridge, northeastern Japan Sea. The community was closely associated with sea-floor fissures, and presumed to be supported by methanotrophic and/or thiotrophic bacterial production. Sediments inside of and in the vicinity of the fissures were collected, and the short-chain (C9–20) sediment fatty acids were analyzed for amounts and compositions. The fatty acid compositions were compared with those from a known methane seep and a submarine volcano in the Sagami Bay, central Japan, and from a whale skeleton at the Torishima Seamount, northwestern Pacific Ocean. As a result, a close relationship between the sediments from the Northern Okushiri Ridge, the known methane-seep, and the whale skeleton was found. This finding represents the first discovery of methane seepage and associated biological communities in the Japan Sea. This also supports the hypothesis that the eastern margin of the northern Japan Sea is at the early stage of new subduction.  相似文献   

15.
Liu M  Hou LJ  Xu SY  Ou DN  Yang Y  Yu J  Wang Q 《Marine pollution bulletin》2006,52(12):1625-1633
The natural isotopic compositions and C/N elemental ratios of sedimentary organic matter were determined in the intertidal flat of the Yangtze Estuary. The results showed that the ratios of carbon and nitrogen stable isotopes were respectively −29.8‰ to − 26.0‰ and 1.6‰–5.5‰ in the flood season (July), while they were −27.3‰ to − 25.6‰ and 1.7‰–7.8‰ in the dry season (February), respectively. The δ13C signatures were remarkably higher in July than in February, and gradually increased from the freshwater areas to the brackish areas. In contrast, there were relatively complex seasonal and spatial changes in stable nitrogen isotopes. It was also reflected that δ15N and C/N compositions had been obviously modified by organic matter diagenesis and biological processing, and could not be used to trace the sources of organic matter at the study area. In addition, it was considered that the mixing inputs of terrigenous and marine materials generally dominated sedimentary organic matter in the intertidal flat. The contribution of terrigenous inputs to sedimentary organic matter was roughly estimated according to the mixing balance model of stable carbon isotopes.  相似文献   

16.
Pumice samples from Fukutoku-oka-no-ba in the Izu–Bonin – Mariana (IBM) arc were analysed for 40 trace elements and Sr, Nd, and Pb isotopic compositions. These samples are shoshonites (59.4–61.8 wt% SiO2), characterized by high contents of K2O (3.74–4.64 wt%), Ba (1274–1540 p.p.m.), Rb (91–105 p.p.m.), and light rare earth elements. The characteristics of alkali-element enrichment are similar to those of other parts of the Alkalic Volcano Province (AVP) in the northern Mariana and southernmost Volcano arcs. Sr (87Sr/86Sr = 0.7036–0.7038) and Pb isotopic compositions (206Pb/204Pb = 19.08–19.11, 207Pb/204Pb = 15.62–15.63, 208Pb/204Pb = 38.85–38.91) of Fukutoku-oka-no-ba pumice are relatively radiogenic, whereas Nd is unradiogenic (143Nd/144Nd = 0.51283–0.51286). Fukutoku-oka-no-ba is isotopically distinct from Iwo Jima and is similar to the Hiyoshi Volcanic Complex, suggesting that Fukutoku-oka-no-ba might have a magma source similar to that of the Hiyoshi volcanic complex. Plots of Pb and Nd isotopes for AVP lavas trend toward the fields of ocean island basalt (OIB) source and pelagic sediments, which are possible sources of AVP enrichments.  相似文献   

17.
Negative carbon-isotope excursions have been comprehensively studied in the stratigraphic record but the discussion of causal mechanisms has largely overlooked the potential role of biomass burning. The carbon-isotopic ratios (δ13C) of vegetation, soil organic matter and peat are significantly lower than atmospheric carbon dioxide (CO2), and thereby provide a source of low 13C CO2 when combusted. In this study, the potential role of biomass burning to generate negative carbon isotope excursions associated with greenhouse climates is modeled. Results indicate that major peat combustion sustained for 1000 yr increases atmospheric CO2 from 2.5× present atmospheric levels (PAL) to 4.6× PAL, and yields a pronounced negative δ13C excursion in the atmosphere ( 2.4‰), vegetation ( 2.4‰) and the surface ocean ( 1.2‰), but not for the deep ocean ( 0.9‰). Release of CO2 initiates a short-term warming of the atmosphere (up to 14.4 °C, with a duration of 1628 yr), which is consistent with the magnitude and length of an observed Toarcian excursion event. These results indicate that peat combustion is a plausible mechanism for driving negative δ13C excursions in the rock record, even during times of elevated pCO2.  相似文献   

18.
Abstract The abundance of magnetic microspherules in a Triassic-Jurassic continuous sequence of alternating chert and shale beds in the Mino accretionary complex, central Japan, was measured systematically. Depending on time, the magnetic microspherules extracted from shale beds change in abundance considerably from the minimum 0.9ppm/cm3 at latest Triassic ( ca 208Ma) and the maximum 75ppm/cm3 at late Early Jurassic ( ca 187Ma); however, the abundance is always higher approximately 10–100 (average 70) times than those from adjacent chert bed at any stratigraphic horizon. Such systematic difference reveals the origin of radiolarian bedded chert as cyclic-rapid accumulation of biogenic SiO2 under extremely slow accumulative environments of shale with probable aeolian dust in origin. The accumulation data for individual shale and chert beds were obtained based on the microspherule abundance and radiolarian biostratigraphy, i.e., ca 0.018g/cm2Ka for lower Jurassic shale beds and ca 1.9g/cm2Ka for adjacent chert beds.
Duration time to make a chert-shale couplet corresponds to a dominantly 15–20Ka interval (average 23 Ka) in Upper Triassic bedded cherts with a low paleolatitude, whereas a 40–45 Ka interval (average 42 Ka) in Lower Jurassic ones which may been formed in higher latitude than Triassics before the final accretion to the Asian continental margin. Depending on paleolatitude, the cyclicity of 23 and 42 Ka may correspond to Milankovitch cycles which have been well documented in deep-sea sediments.  相似文献   

19.
Helium isotope geochemistry of some volcanic rocks from Saint Helena   总被引:6,自引:0,他引:6  
3He/4He ratios have been measured for olivine and clinopyroxene phenocrysts in 7–15 m.y. old basaltic lavas from the island of St. Helena. Magmatic helium was effectively resolved from post-eruptive radiogenic helium by employing various extraction techniques, includingin vacuo crushing, and stepwise heating or fusion of the powders following crushing. The inherited3He/4He ratio at St. Helena is 4.3–5.9 RA. Helium isotope disequilibrium is present within the phenocrysts, with lower3He/4He upon heating and fusion of the powders following crushing, due to radiogenic ingrowth or to -particle implantation from the surrounding(U + Th)-rich lavas.

A single crushing analysis for clinopyroxene in a basalt from Tubuaii gave3He/4He= 7.1 RA.3He/4He ratios at St. Helena and Tubuaii (HIMU hotspots characterized by radiogenic Pb isotope signatures) are similar to3He/4He ratios previously measured at Tristan da Cunha and Gough Island (EM hotspots characterized by low206Pb/204Pb). Overall, the HeSrPb isotope systematics at these islands are consistent with a mantle origin as contiguous, heterogeneous materials, such as recycled crust and/or lithosphere.3He/4He ratios at HIMU hotspots are similar to mantle xenoliths which display nearly the entire range of Pb isotope compositions found at ocean islands, and are only slightly less than values found in mid-ocean ridge basalts (7–9 RA). This suggests that the recycled materials were injected into the mantle within the last 109 yrs.  相似文献   


20.
Il-Soo  Kim  Myong-Ho  Park  Byong-Jae  Ryu Kang-Min  Yu 《Island Arc》2006,15(1):178-186
Abstract   Data on the late Quaternary tephra layers, tephrostratigraphy, geochemistry and environment were determined in two sediment cores from the southwestern part of Ulleung Basin (East Sea/Sea of Japan), representing marine-oxygen isotope stages 1–3. The cores consist mainly of muddy sediments that are partly interbedded with silty sands, lapilli tephra and ash layers. The lapilli tephra layers (Ulleung-Oki tephra, 9.3 ka) originating from Ulleung Island consist mainly of massive-type glass shards, whereas the ash layers (Aira-Tanzawa ash, 22.0–24.7 ka) derived from southern Kyushu Island are mainly composed of typical plane-type and bubble-wall glasses that are higher in SiO2 and lower in Na2O + K2O than the lapilli tephra layers. Except for the tephra layers, fine-grained sediments throughout the core sections are mostly of marine origin based on geochemical data (C/N ratios, hydrogen index, S2 peak) and Tmax. In particular, organic carbon contents increased during Termination I, probably as a result of an influx of the deglacial Tsushima Current through the Korea Strait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号