首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent sediments of eight small lakes in the northern winter range of Yellowstone National Park were cored to examine stratigraphic records of past changes in limnology and local environment that might be attributed to grazing and other activities of elk, bison, and other large ungulates. Cores of undisturbed sediment were analyzed at close intervals to depths covering the last 100–150 years according to chronologies established by lead-210 dating. Pollen analyses were made to show change in regional vegetation, and diatom and geochemical analyses were made to reveal possible limnological changes resulting from soil erosion and nutrient input from the lake catchments.Variations in sedimentary components prior to establishment of the Park in 1872 indicate some natural variability in environmental factors e.g., erosional inputs in landslide areas west of Gardiner. All lakes had abundant nutrient inputs.After the Park was founded, fire suppression may have been responsible for small increases in pollen percentages of various conifers and Artemisia tridentata (big sagebrush) at different times in different lakes. Perceptible decreases in pollen of willow, aspen, alder, and birch at different times may reflect local ungulate browsing, although drier climatic conditions may have been a factor as well.The most striking manifestation of accelerated erosion in a catchment was found at a lake located beside a road constructed in the 1930s. In contrast to changes at this site, the record of erosion at other lakes is hardly perceptible. Changes in sediment-accumulation rates seen at most sites result from redistribution of sediment within the lake after initial deposition.In the century following Park establishment, the abundance of planktonic diatoms relative to benthic taxa varies among lakes and may reflect differential nutrient inputs or changes in lake level. Four of the five lakes analyzed for diatoms show in the last few decades an increase in planktonic relative to benthic species, implying elevated nutrient inputs. The recent flora, however, is similar to that in pre-Park levels which suggests that these lakes have not been perturbed outside their normal range. Increased nutrient supply in recent decades for at least two of the lakes is supported by the geochemical data, which show an increase in biogenic silica and in organic matter.As a whole, our investigation of the sedimentary record does not support the hypothesis that ungulate grazing has had a strong direct or indirect effect on the vegetation and soil stability in the lake catchments or on the water quality of the lakes.  相似文献   

2.
Sediment trap studies and high frequency monitoring are of great importance to develop a deeper understanding of how seasonal environmental processes are imprinted in sediment signal formation. We collected whole year diatom assemblages from 2002 to 2014 with a sequential sediment trap from a varved boreal lake (Nylandssjön, Sweden) together with environmental and limnological parameters, and compared them with the corresponding diatom record of the annual laminated sediment. Our data set indicates a large year-to-year variability of diatom succession and abundance patterns, which is well reflected in the varved sediments. Specifically, Cyclotella glomerata dominated the annual sediment trap record (as well as in the corresponding sediment varves) in years with warmer air temperatures in March/April, and Asterionella formosa dominated the annual sediment assemblages as a consequence of years characterized by higher runoff before lake over-turn. Years succeeding forest clearance in the lake catchment showed marked increase in diatom and sediment flux. The DCA scores of the yearly diatom trap assemblages clearly resemble the lake’s thermal structure, which indicates that the relative abundance of major taxa seems primarily controlled by the timing of seasonal environmental events, such as above-average winter air temperature and/or autumn runoff and the current thermal structure of the lake. The high seasonal variability between environmental drivers in combination with the physical limnology leaves us with several possible scenarios leading to either an A. formosa versus C. glomerata dominated annual diatom sediment signal. With this study we highlight that short-term environmental events and seasonal limnological conditions are of major importance for interpreting annual sediment signals.  相似文献   

3.
This paper raises fundamental questions about the sole use of paleolimnological techniques to identify sediment sources and develop catchment management plans. The concept of an integrated lake: catchment framework was established 30 years ago, yet paleolimnologists occasionally fail to appreciate the dynamics of the contributing catchment. This is especially critical when the predominant source of sediment accumulating in a lake is allochthonous. In this paper we argue that a detailed appraisal of catchment sources and investigation of historical documentary evidence is needed to identify and evaluate the relative significance of sediment sources. We used such an approach at Aqualate Mere, Shropshire, UK. Mineral magnetic and radionculide signatures of potential catchment sources and accumulating lake sediments were compared in an attempt to match the sources to sediments deposited in the Mere. Dated lake sediments indicate there has been an increase in sedimentation rate and the relative amount of minerogenic material delivered to the Mere over the last 200 years. In contrast to a previous study at the same site, there is no evidence to attribute this increase to an overspill from a nearby canal. Other catchment disturbances include landscaping in parkland surrounding the Mere in the early nineteenth century and drainage systems installed to improve catchment agriculture over the last ca. 150 years. Both activities may explain the change in sedimentation rates and types, independent of the hypothesized canal origin. Although our results exclude the canal as a major sediment source, identifying the contribution of other potential catchment sources remains problematic. 137Cs inventories for the lake are similar to those recorded at a local reference site, suggesting little influx of 137Cs-bearing topsoil, yet 137Cs activities remain high in the upper 20–30 cm of the lake sediment profile, indicating a topsoil origin. Combined radionuclide and mineral magnetic signatures proved to be relatively poor discriminators of potential sources, and the high atmospheric pollution load from the West Midland conurbation has probably altered recent lake sediment signatures. Although further research is required to identify the origins of recent (last ca. 200 years) minerogenic sediment inputs to the Mere, we suggest that the combined lake: catchment approach offers a more rigorous method for understanding the impact of catchment disturbance than analysis of the paleolimnological record alone.  相似文献   

4.
As part of a study using lake sediments to determine the extent and causes of human impacts to lakes along an east–west transect following the Yangtse River, sediment cores were taken from Taihu in eastern China. Previous studies have focussed on the impacts of direct inputs of pollutants from municipal and industrial wastewater but little work has been undertaken on trends in atmospheric deposition from the many industrial sources surrounding the lake. Analysis of the Taihu sediment cores for atmospheric pollutant indicators such as trace metals, magnetic parameters and spheroidal carbonaceous particles (SCPs) show the lake has become increasingly contaminated over the last 40–50 years. Sediment levels of atmospherically deposited pollutants are currently similar to some of the more contaminated lakes in Europe. Further, sediment nitrogen, phosphorus and geochemical analyses confirm the dramatic increase in eutrophication at the site and periods of recent soil erosion in the catchment.  相似文献   

5.
Changes in the diatom assemblages preserved in a sediment core taken from a small lake located north of arctic treeline on the western Taimyr Peninsula, Russia, were examined in order to investigate late Holocene (i.e., ca 5000 cal yr BP to present) climatic and environmental changes within the region. Early diatom assemblages were dominated by benthic Fragilaria taxa and indicate a transitional phase in the lake history, most likely reflecting lake development and environmental change associated with treeline retreat to the south of the study site. Concurrent with pollen and macrofossil evidence of a vegetation shift to shrub tundra in the catchment basin at ca 4200 cal yr BP, an increase in cold-water taxa, followed by little change in diatom assemblages until ca 2800 cal yr BP, suggests that conditions were relatively cool and stable at this time. The last 2000 years of the Middendorf Lake record have been marked by fluctuating limnological conditions, characterized by striking successional shifts between Fragilaria pinnata and Aulacoseira distans var. humilis. Recent conditions in Middendorf Lake indicate an increase in diatom taxa previously rare in the record, possibly associated with twentieth-century climatic warming. The Middendorf Lake record indicates that significant limnological change may occur in the absence of catchment vegetation shifts, suggesting late-Holocene decoupling of aquatic and terrestrial responses to climatic and hydrological change. Our study results represent one of the few paleoecological records currently available from northern Russia, and highlight the need for further development of calibration data sets from this region.  相似文献   

6.
A paleolimnological investigation of post-European sediments in a Lake Michigan coastal lake was used to examine the response of Lower Herring Lake to anthropogenic impacts and its role as a processor of watershed inputs. We also compare the timing of this response with that of Lake Michigan to examine the role of marginal lakes as early warning indicators of potential changes in the larger connected system and their role in buffering Lake Michigan against anthropogenic changes through biotic interactions and material trapping. Sediment geochemistry, siliceous microfossils and nutrient-related morphological changes in diatoms, identified three major trophic periods in the recent history of the lake. During deforestation and early settlement (pre-1845–1920), lake response to catchment disturbances results in localized increases in diatom abundances with minor changes in existing communities. In this early phase of disturbance, Lower Herring Lake acts as a sediment sink and a biological processor of nutrient inputs. During low-lake levels of the 1930s, the lake goes through a transitional period characterized by increased primary productivity and a major shift in diatom communities. Post-World War II (late 1940s–1989) anthropogenic disturbances push Lower Herring Lake to a new state and a permanent change in diatom community structure dominated by Cyclotella comensis. The dominance of planktonic summer diatom species associated with the deep chlorophyll maximum (DCM) is attributed to epilimnetic nutrient depletion. Declining Si:P ratios are inferred from increased sediment storage of biogenic silica and morphological changes in the silica content of Aulacoseira ambigua and Stephanodiscus niagarae. Beginning in the late 1940s, Lower Herring Lake functions as a biogeochemical processor of catchment inputs and a carbon, nutrient and silica sink. Microfossil response to increased nutrients and increased storage of biogenic silica in Lower Herring Lake and other regional embayments occur approximately 20–25 years earlier than in a nearby Lake Michigan site. Results from this study provide evidence for the role of marginal lakes and bays as nutrient buffering systems, delaying the impact of anthropogenic activities on the larger Lake Michigan system.  相似文献   

7.
Documenting the history of catchment deforestation using paleolimnological data involves understanding both the timing and magnitude of change in the input of erosional products to the downstream lake. These products include both physically-eroded soil and the byproducts of burning, primarily charcoal, which arise from both intentional and climatically-induced changes in fire frequency. As a part of the Lake Tanganyika Biodiversity Projects special study on sedimentation, we have investigated the sedimentological composition of seven dated cores from six deltas or delta complexes along the east coast of Lake Tanganyika: the Lubulungu River delta, the Kabesi River delta, the Nyasanga/Kahama River delta, and the Mwamgongo River delta in Tanzania, and the Nyamusenyi River delta and Karonge/Kirasa River delta in Burundi. Changes in sediment mass accumulation rates, composition, and charcoal flux in the littoral and sublittoral zones of the lake that can be linked to watershed disturbance factors in the deltas were examined. Total organic carbon accumulation rates, in particular, are strongly linked to higher sediment mass accumulation from terrestrial sources, and show striking mid-20th century increases at disturbed watershed deltas that may indicate a connection between increased watershed erosion and increased nearshore productivity. However, changes in sedimentation patterns are not solely correlated with the 20th century period of increasing human population in the basin. Fire activity, as recorded by charcoal accumulation rates, was also elevated during arid intervals of the 13th–early 19th centuries. Some differences between northern and southern sedimentation histories appear to be correlated with different histories of human population in central Tanzania in contrast with northern Tanzania and Burundi.  相似文献   

8.
Several waterbodies occupied the tectonic depressions along the Dead Sea transform during the NeogeneQuaternary. The earliest of these water bodies was the marine Sedom lagoon, which produced the SedomDead Sea brine. After the disconnection of the Sedom lagoon from the open sea several lakes were developed in the Dead Sea basinJordan Valley. Lake Amora (Samra) that existed from early to late Pleistocene, Lake Lisan (~ 70–15 kyr B.P.), and the Holocene Dead Sea. The lacustrine water bodies in the Dead Sea basin behave as amplifier lakes whose size and depth reflect the changing climatic conditions in the region. Lake level and limnological conditions of Lake Amora are not yet known, nevertheless, the lake probably extended over a large part of the Dead Sea basin-Jordan Valley. Lake Lisan level changed between ~ 330 and ~ 150 meters below sea level (m b.s.l.). Its maximum elevation was reached at ~ 27–23 kyr B.P. during marine isotope stage 2. Its minimum elevation was reached at ~ 47–43 kyr during marine isotope stage 3. Lake Lisan began to recede at ~ 17–15 kyr B.P. and at 12–11 kyr B.P. the postLisan water body declined to its minimum level. During most of the Holocene the lake (paleoDead Sea) stabilized at ~ 400 m b.s.l.The limnological evolution of water bodies in the Dead Sea basin reflects the climatic conditions in the region during the late Pleistocene, which fluctuated between wetter and drier periods. During Lisan time these fluctuations appear to be modulated by the cold and warm cycles, respectively in the northern Hemisphere. This relation is less obvious in the postLisan water body, where the strongest lake drop appears to occur during the Younger Dryas cold event.  相似文献   

9.
The roles of both landscape alteration and in-lake processes need to be considered in conservation strategies for shallow lakes in the prairie regions of North America. Here we focus on shallow lakes in west-central Minnesota, USA, highlighting the long-term ecological history and response to known landscape changes of a clear-water, macrophyte-dominated, shallow lake. Contemporary limnological data suggest the aquatic ecosystem has been very stable and fishless for the last ~15 years. Sediment proxies for primary production and ecological change confirm that a stable ecosystem likely prevailed for the last ~200 years. However, sedimentary indicators of catchment erosion detail a distinct response to land-use change during the conversion of native grassland to agricultural land, and following establishment of a protected waterfowl production area (WPA) around the lake. Post-WPA, the rate of sediment accrual decreased dramatically within 5–10 years and sources of organic matter were similar to those of the pre-settlement period. The aquatic ecosystem has been able to withstand nutrient enrichment and allochthonous inputs because stable trophic interactions have likely been in place for more than 200 years. We conclude that lack of hydrologic connectivity and isolated, small catchments are important factors in the promotion of clear-water shallow lake ecosystems, mainly because they prevent colonization by fish and associated ecological consequences. This study highlights the importance of managing both the landscape and in-lake processes to maintain stable, clear-water, shallow lakes.  相似文献   

10.
The sediments of Lake Kilpisjärvi were described and analysed for element chemistry and pollen to study the effects of treeline fluctuations in the catchment. Lake Kilpisjärvi is one of the largest lakes in Finnish Lapland, with its catchment partly above the treeline and partly covered with mountain birch woodland. Although the presence of subfossil pine shows that the catchment was previously covered with mountain birch woodland during the Holocene, the present pine treeline has receded 70 km from the lake. Pollen analysis results show that pine immigrated to the area during the Atlantic chrone and that 7000 BP pine forests occupied much of the catchment. Pine started to decline around 3500 BP and vegetation in the catchment became more open. Alkaline and alkaline earth metals and some transition metals document the change from glaciolacustrine clay to more organic sediment. However, these geochemical trends give no indication of changes in erosion rate resulting from changes in catchment vegetation. These changes were detected by plotting suitable element ratios. In addition to the conventional Si/Al and Na/K ratios, the Ca labile /Si ratio and especially the ratio of labile Ca to K were found to be useful. Of all the elements analysed, potassium showed the strongest reaction to changes in the balance between weathering and erosion. During the phase of denser forests, chemical weathering was dominant, whereas during phases of open catchment, physical erosion prevailed. The effects of changing climate and catchment vegetation were distinguished from other signals. For instance, iron and manganese were enriched at the top of the core due to diffusion and, at the same time, old precipitate layers persisted after burial to deeper levels in the sediment. These iron and manganese rich layers had an effect on the distributions of cobalt, zinc, and vanadium, showing increased concentrations of these elements. Other effects that made the interpretation of chemical records difficult were the effect of ongoing mineralization of organic matter in the top layers of sediment and the effect of biogenic silicon. Owing to the stable conditions of the lake, the desired chemical signals were detected, despite the masking trends.  相似文献   

11.
Although the Laguna de Mar Chiquita is among the largest saline lakes of the world (2,000–6,000 km2 area), knowledge about it is scarce. Like other large salt lakes, Mar Chiquita undergoes strong inter-annual changes in water level that are primarily linked to the variable expression of three different types of climate throughout its extensive catchment area. Water-level fluctuations and their overall environmental influence, especially on salinity (25–360 g L–1) and biota, have significant results. Comparison of Mar Chiquita with other fluctuating large salt lakes shows an independent long-term pattern of water-level (and salinity) changes. Primary determinants of its limnology are (1) its extensive catchment, (2) the occurrence of three different types of climate on the catchment, (3) the shallowness of the basin and (4) the effects of strong wind, water circulation within the lake, and sediment inputs from rivers. The effects of fluctuation on the lake biota are more evident at the level of dominant organisms at every fluctuation stage and their functions than in overall biodiversity and food-web complexity.  相似文献   

12.
The Tonle Sap is an invaluable resource for the people of Cambodia, and is a globally significant ecological site. Much of the literature published on the environmental health and management of the lake suggests that its sustainability is threatened by accelerated rates of infilling related to unfettered land-use in the catchment. However, the evidence for supposedly increased sedimentation rates is confused and contradictory, and there have been very few studies that have attempted to actually measure the rate at which sediment is accumulating on the bed of the lake. This research measures long-term sedimentation rates in the Tonle Sap in an attempt to provide an empirically derived baseline against which more recent and allegedly accelerated sedimentation rates can be compared. Radiometric dating techniques (14C, 210Pb, 137Cs) reveal that sediment has been accumulating in the lake at an average long-term rate of less than 1 mm per year. There is a clear and consistent decline in the rate of sediment accumulation in the lake basin over time, with the highest rates recorded in the middle to early Holocene epoch. It is recommended that research be directed toward measuring changes in the morphology of the lake margin over time, rather than focus on changes in the bathymetry of the lake basins themselves, which are here shown to be effectively stable in terms of sediment accumulation.  相似文献   

13.
Hypoxia in freshwater systems is currently spreading globally and putting water quality, biodiversity and other ecosystem services at risk. Such adverse effects are of particular concern in permanently stratified meromictic lakes. Yet little is known about when and how meromixis and hypoxia became established (or vanished) prior to anthropogenic impacts, or how human activities such as deforestation, erosion and nutrient cycling affected the mixing regimes of lakes. We used calibrated hyperspectral imaging (HSI) data in the visible and near infrared range from a fresh, varved sediment core taken in Lake Jaczno, NE Poland, to map sedimentary pigments at very high resolution (sub-varve scale) over the past 1700 years. HSI-inferred bacteriopheophytin a (bphe a, produced by anoxygenic phototrophic bacteria) serves as a proxy for meromixis, whereas HSI-inferred green pigments (chlorophyll a and diagenetic products) can be used as estimators of aquatic productivity. Meromixis was established and vanished long before significant human disturbance in the catchment was observed in the late eleventh century AD. Under pre-anthropogenic conditions, however, meromixis was interrupted frequently, and the lake mixing regime flickered between dimixis and meromixis. During two periods with intense deforestation and soil erosion in the catchment, characterised by sedimentary facies rich in clay and charcoal (AD 1070–1255 and AD 1670–1710), the lake was mostly dimictic and better oxygenated than in periods with relative stability and a presumably closed forest around the lake, i.e. without human disturbances. After ca. AD 1960, meromixis became established quasi-permanently as a result of eutrophication. The persistent meromixis of the last ~60 years is unusual with respect to the record of the last 1700 years.  相似文献   

14.
Analysis of fly-ash particles in lake sediments has become increasingly important in studies of environmental pollution and lake acidification history. Most fly-ash studies have concerned black spheroidal carbonaceous particles (SCP)(>5 m) produced from oil and coal combustion. This review paper provides a summary of this technique and its application, and focusses on our investigations in Sweden between 1979 and 1993. It consists of five parts: i) preparation and analysis methods, ii) historical trends in atmospheric deposition, iii) geographical surveys of atmospheric deposition, iv) sediment dating, and v) studies of sedimentation processes in lakes. Methods for preparation and analyses of SCP have been developed and applied to investigations using sediment, soil and snow samples. Stratigraphic trends of SCP concentrations in lake-sediment cores reflect the consumption history of fossil fuels. A characteristic temporal SCP pattern, with a marked concentration increase beginning after the 1940's and a peak in the early 1970's, has been recognized in most Swedish lakes and elsewhere in Europe. A survey of SCP concentrations in surface sediments of >100 lakes covering Sweden demonstrated that polluted areas in southern Sweden had >100 times higher SCP concentrations than clean areas in the north. The spatial distribution of SCP over Sweden is similar to the deposition pattern of long-range transported airborne pollutants, such as excess sulphate monitored by network stations. SCP also accumulate in soils, and soil analyses can be used for determining the integrated historical deposition of SCP at the local or regional scale. Finally, SCP have been used for indirect dating of sediment cores and as a marker to assess sediment distribution patterns within lake basins.  相似文献   

15.
This paper reports a first estimate of the Holocene lake sediment carbon pool in Alberta, Canada. The organic matter content of lake sediment does not appear to depend strongly on lake size or other limnological parameters, allowing a simple first estimate in which we assume all Alberta lake sediment to have the same organic matter content. Alberta lake sediments sequester about 15 g C m-2 yr-1, for a provincial total of 0.23 Tg C yr-1, or 2.3 Pg C over the Holocene. Alberta lakes may represent as much as 1/1700 of total global, annual permanent carbon sequestration.  相似文献   

16.
Several limnological and paleolimnological investigations have linked enhanced atmospheric nitrogen (N) deposition to nutrient enrichment and increased primary production. The Athabasca Oil Sands Region (AOSR) in northeast Alberta, Canada is a significant source of N emissions, particularly since development intensified during the 1990s, and recent paleolimnological investigations provide evidence of increased lake production in adjacent areas subject to enhanced N deposition. The AOSR, however, has also experienced atmospheric warming since ca. AD 1900, and therefore the relative effects of nutrient deposition and climate changes on lake production remain unclear. We undertook a factorial-design paleolimnological assessment of 16 lakes in northwest Saskatchewan to quantify changes in abundance and species composition of scaled chrysophytes over the past 100 years. Study sites included both N-limited and P-limited lakes within control regions, as well as lakes that receive enhanced N deposition from the AOSR. We hypothesized that a change in algal communities within N-limited AOSR-impacted lakes, without concurrent changes in the other lake groups, would suggest AOSR-derived N as a driver of enhanced primary production. Instead, marked increases in concentrations of scaled chrysophytes, mainly Mallomonas crassisquama, occurred in the recent sediments in cores from all four lake groups (N-limited vs. P-limited, impacted vs. control), suggesting that regional climate change rather than N deposition was the paramount process enhancing chrysophyte production. Because chrysophyte abundances tended to be higher in deep, lower-pH lakes, and chrysophyte time series were fit best by lake-specific generalized additive models, we infer that climate effects may have been mediated by additional catchment and/or lake-specific processes.  相似文献   

17.
重建黄旗海水位、水化学和湖泊生物学变化历史可为研究我国夏季风边缘区冰后期气候变化提供重要环境记录。对该湖中央HQH4岩芯研究结果显示,末次冰期晚期沉积物中湖泊自生有机质烧失量和自生碳酸盐烧失量的平均值分别仅为全新世沉积物的1/13和1/5,造成这种结果的主导因素是夏季气温在全新世初显著升高和黄旗海从此进入稳定的湖泊环境。晚全新世自生碳酸盐烧失量平均值比早、中全新世低14%,其最大值也明显低于早、中全新世,这种情况很可能是因为晚全新世夏季温度略低于早、中全新世所致。自生有机质和碳酸盐烧失量是快速、经济地获取闭流型半咸水湖泊冰后期环境变化的有效代用指标。  相似文献   

18.
Paleolimnological techniques for assessing recent drainage basin disturbance are evaluated in three Moroccan lakes with catchments contrasted in terms of land-use and vegetation. Rates of sediment accumulation in the two lakes with agricultural catchments were relatively high (>1.6 cm yr-1) in the most recent past. Dilution effects prevented core dating by the 210Pb method alone and post-1953 chronologies were constructed by combining 210Pb and 137Cs data. The recent sediment accumulation rate at the currently least disturbed site, where natural Cedrus forest is still abundant, was relatively low (<0.4 cm yr-1) but has increased since the mid-19th century.Magnetic, geochemical, pollen, and diatom studies of all three lake sediment cores linked with modern field survey data show that soil erosion in the most vegetationally disturbed catchment (Dayat-er-Roumi) has been high throughout the recent past and that intensity peaks are probably associated with wetland drainage operations beginning in the 1940's. At the partially forested site (Dayat Affougah), pre-1950's woodland clearance and other land-use changes are the likely cause of past major soil erosion episodes. The site currently dominated by natural Cedrus forest (Lac Azigza) shows only minor disturbance during the past c. 150 years although a major soil erosion episode occrred in the 17th century.Paleolimnological analysis has clearly demonstrated that major landscape change has occurred at all three sites. However, only at the two sites with catchment cultivation do previously accelerated soil erosion and lake sediment accumulation rates persist to the present. Information essential for formulation of appropriate management plans is presented and the importance of paleolimnology in assessing man-induced lake-catchment disturbance is stressed.  相似文献   

19.
Semiarid regions are vulnerable environments with a series of important and often discussed problems such as land degradation, water scarcity and desertification. These regions are dynamic and respond quickly to climatic and environmental changes. Unlike lakes in temperate zones, lakes in semiarid regions are yet poorly utilized as climatic and environmental indicators. In this study aquatic deposits are used to uncover the environmental history of a severely degraded area in central Tanzania. The 210Pb and 137Cs chronologies date a 360 cm long sediment sequence to 155 years. The sediments show that lake Haubi basin changed from a seasonally waterlogged depression to a lake at the turn of the century. Calculated sedimentation rates show that the catchment of the lake has been subject to varied and enhanced soil erosion during the last 155 years.  相似文献   

20.
We reconstructed 150 years of ecological change in a shallow boreal lake located on the east shore of the Baltic Sea by integrating different types of environmental evidence: paleolimnological records (XRF-measured elements, fossil pigments and Cladocera assemblages), information from historical limnological surveys and archival maps. We assessed the role of biomanipulation by liming and fish-removal in the disappearance of submerged macrophytes, such as Lobelia dortmanna L., and their replacement by persistent cyanobacterial blooms. The combination of different strands of evidence revealed that the shift from macrophyte to cyanobacterial dominance was part of a long-term ecological response to eutrophication and increased sediment load from catchment disturbances. The findings demonstrate that a gradual loss of wetlands and increase of ditches in a catchment had a more significant effect on the lake ecosystem, compared to the direct, but short-term impact of biomanipulation. The study highlights the importance of catchment land-use and disturbance by ditches in changing the ecology of boreal water bodies. Also, it illustrates that a thorough understanding of the long-term ecosystem dynamics and differentiation among responses to multiple anthropogenic impacts are essential preconditions for addressing the deterioration of habitats and change in aquatic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号