首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We explore the role of active galactic nuclei (AGN) in establishing and/or maintaining the bimodal colour distribution of galaxies by quenching their star formation and hence, causing their transition from the blue to the red cloud. Important tests for this scenario include (i) the X-ray properties of galaxies in the transition zone between the two clouds and (ii) the incidence of AGN in post-starbursts, i.e. systems observed shortly after (<1 Gyr) the termination of their star formation. We perform these tests by combining deep Chandra observations with multiwavelength data from the All-wavelength Extended Groth strip International Survey (AEGIS). Stacking the X-ray photons at the positions of galaxies  (0.4 < z < 0.9)  not individually detected at X-ray wavelengths suggests a population of obscured AGN among sources in the transition zone and in the red cloud. Their mean X-ray and mid-infrared (IR) properties are consistent with moderately obscured low-luminosity AGN, Compton thick sources or a mix of both. Morphologies show that major mergers are unlikely to drive the evolution of this population but minor interactions may play a role. The incidence of obscured AGN in the red cloud (both direct detections and stacking results) suggests that black hole (BH) accretion outlives the termination of the star formation. This is also supported by our finding that post-starburst galaxies at z ≈ 0.8 and AGN are associated, in agreement with recent results at low z . A large fraction of post-starbursts and red cloud galaxies show evidence for at least moderate levels of AGN obscuration. This implies that if AGN outflows cause the colour transformation of galaxies, then some nuclear gas and dust clouds either remain unaffected or relax to the central galaxy regions after quenching their star formation.  相似文献   

3.
4.
We present a Chandra study of 38 X-ray-luminous clusters of galaxies in the ROSAT Brightest Cluster Sample (BCS) that lie at moderate redshifts  ( z ≈ 0.15–0.4)  . Based primarily on power ratios and temperature maps, we find that the majority of clusters at moderate redshift generally have smooth, relaxed morphologies with some evidence for mild substructure perhaps indicative of recent minor merger activity. Using spatially resolved spectral analyses, we find that cool cores appear still to be common at moderate redshift. At a radius of 50 kpc, we find that at least 55 per cent of the clusters in our sample exhibit signs of mild cooling  ( t cool < 10 Gyr)  , while in the central bin at least 34 per cent demonstrate signs of strong cooling  ( t cool < 2 Gyr)  . These percentages are nearly identical to those found for luminous, low-redshift clusters of galaxies, indicating that there appears to be little evolution in cluster cores since   z ≈ 0.4  and suggesting that heating and cooling mechanisms may already have stabilized by this epoch. Comparing the central cooling times to catalogues of central Hα emission in BCS clusters, we find a strong correspondence between the detection of Hα and central cooling time. We also confirm a strong correlation between the central cooling time and cluster power ratios, indicating that crude morphological measures can be used as a proxy for more rigorous analysis in the face of limited signal-to-noise ratio data. Finally, we find that the central temperatures for our sample typically drop by no more than a factor of ∼3–4 from the peak cluster temperatures, similar to those of many nearby clusters.  相似文献   

5.
We present a survey of bright optical dropout sources in two deep, multiwavelength surveys comprising 11 widely separated fields, aimed at constraining the galaxy luminosity function at   z ≈ 7  for sources at  5–10  L * ( z = 6)  . Our combined survey area is 225 arcmin2 to a depth of   J AB= 24.2  (3σ) and 135 arcmin2 to   J = 25.3  (4σ). We find that infrared data longwards of 2 μm are essential for classifying optical dropout sources, and in particular for identifying cool Galactic star contaminants. Our limits on the number density of high-redshift sources are consistent with current estimates of the Lyman break galaxy luminosity function at   z = 6  .  相似文献   

6.
7.
8.
9.
10.
An ensemble cluster has been formed from a data set comprising a complete magnitude-limited sample of 680 giant galaxies  ( M 0 B ≲−19)  in eight low-redshift clusters, normalized by the velocity dispersions and virial radii for the early-type cluster populations. Distinct galaxy populations have been identified, including an infall population. A majority (50–70 per cent or greater) of the infall population are found to be in interacting or merging systems characterized by slow gravitational encounters. The observed enhancement of galaxy–galaxy encounters in the infall population compared to the field can be explained by gravitational shocking. It is shown that disc galaxy mergers in the infall population integrated over the estimated lifetime of the cluster (∼10 Gyr) can readily account for the present cluster S0 population.  相似文献   

11.
12.
We show that the luminosity functions of the distant rich clusters Abell 665 ( z =0.182) and Abell 963 ( z =0.206) are flat or gradually rising down to MR =−14, with α≈−1.2±0.4 [here α is the logarithmic slope of the luminosity function: φ( L )∝ L α at the faint end]. We do not confirm the steep luminosity functions (α≤−1.8) that have been recently proposed for these two clusters.
Several technical points are discussed in detail. In particular, we compute the corrections to the background contamination caused by gravitational lensing from the cluster dark matter, and show that the corrections are small unless we wish to determine variations in the luminosity function on small scales.
Recent observations have also shown that the field galaxy luminosity function at z ≈0.2 is also shallow between MB =−19 and MB =−13. Abell 665 and 963 are two of the richest clusters known at that redshift. We therefore propose that the galaxy luminosity function might be universal in this magnitude range at z =0.2.
The dwarf galaxies that we see in Abell 665 have a colour distribution that is strongly peaked at B − R =1.9. We compute K -corrections based on the spectral energy distributions of local galaxies, and show that these are probably dwarf spheroidal galaxies. This might suggest that the dwarf spheroidal population observed in Virgo already existed at z =0.2.  相似文献   

13.
14.
15.
16.
17.
18.
The results of deep radio, sub-mm and X-ray observations of samples of high redshift (z∼1) clusters are presented. These reveal significant excesses of active galaxies associated with the clusters at all three wavelengths. The cluster radio source population shows evolution consistent with the (1+z)3 evolution typical of many AGN classes. A large fraction of the AGN are hosted by apparently passive early-type galaxies, often with a close companion. These results essentially constitute the detection of a counterpart of the Butcher-Oemler effect for both strongly star bursting galaxies and AGN. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号