首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Environmental data are often utilized to guide interpretation of spectral information based on context, however, these are also important in deriving vegetation maps themselves, especially where ecological information can be mapped spatially. A vegetation classification procedure is presented which combines a classification of spectral data from Landsat‐5 Thematic Mapper (TM) and environmental data based on topography and fire history. These data were combined utilizing fuzzy logic where assignment of each pixel to a single vegetation category was derived comparing the partial membership of each vegetation category within spectral and environmental classes. Partial membership was assigned from canopy cover for forest types measured from field sampling. Initial classification of spectral and ecological data produced map accuracies of less than 50% due to overlap between spectrally similar vegetation and limited spatial precision for predicting local vegetation types solely from the ecological information. Combination of environmental data through fuzzy logic increased overall mapping accuracy (70%) in coniferous forest communities of northwestern Montana, USA.  相似文献   

2.
Large and growing archives of orbital imagery of the earth’s surface collected over the past 40 years provide an important resource for documenting past and current land cover and environmental changes. However uses of these data are limited by the lack of coincident ground information with which either to establish discrete land cover classes or to assess the accuracy of their identification. Herein is proposed an easy-to-use model, the Tempo-Spatial Feature Evolution (T-SFE) model, designed to improve land cover classification using historical remotely sensed data and ground cover maps obtained at later times. This model intersects (1) a map of spectral classes (S-classes) of an initial time derived from the standard unsupervised ISODATA classifier with (2) a reference map of ground cover types (G-types) of a subsequent time to generate (3) a target map of overlaid patches of S-classes and G-types. This model employs the rules of Count Majority Evaluation, and Subtotal Area Evaluation that are formulated on the basis of spatial feature evolution over time to quantify spatial evolutions between the S-classes and G-types on the target map. This model then applies these quantities to assign G-types to S-classes to classify the historical images. The model is illustrated with the classification of grassland vegetation types for a basin in Inner Mongolia using 1985 Landsat TM data and 2004 vegetation map. The classification accuracy was assessed through two tests: a small set of ground sampling data in 1985, and an extracted vegetation map from the national vegetation cover data (NVCD) over the study area in 1988. Our results show that a 1985 image classification was achieved using this method with an overall accuracy of 80.6%. However, the classification accuracy depends on a proper calibration of several parameters used in the model.  相似文献   

3.
Abstract

An important methodological and analytical requirement for analyzing spatial relationships between regional habitats and species distributions in Mexico is the development of standard methods for mapping the country's land cover/land use formations. This necessarily involves the use of global data such as that produced by the Advanced Very High Resolution Radiometer (AVHRR). We created a nine‐band time‐series composite image from AVHRR Normalized Difference Vegetation Index (NDVI) bi‐weekly data. Each band represented the maximum NDVI for a particular month of either 1992 or 1993. We carried out a supervised classification approach, using the latest comprehensive land cover/vegetation map created by the Mexican National Institute of Geography (INEGI) as reference data. Training areas for 26 land cover/vegetation types were selected and digitized on the computer's screen by overlaying the INEGI vector coverage on the NDVI image. To obtain specific spectral responses for each vegetation type, as determined by its characteristic phenology and geographic location, the statistics of the spectral signatures were subjected to a cluster analysis. A total of 104 classes distributed among the 26 land cover types were used to perform the classification. Elevation data were used to direct classification output for pine‐oak and coastal vegetation types. The overall correspondence value of the classification proposed in this paper was 54%; however, for main vegetation formations correspondence values were higher (60‐80%). In order to obtain refinements in the proposed classification we recommend further analysis of the signature statistics and adding topographic data into the classification algorithm.  相似文献   

4.
Many remote sensing applications are predicated on the fact that there is a known relationship between climate and vegetation dynamics as monitored from space. However, few studies investigate vegetation index variation on individual homogeneous land cover units as they relate to specific climate and environmental influences at the local scale. This study focuses on the relationship between the Palmer Drought Severity Index (PDSI) and different vegetation types through the derivation of vegetation indices from Landsat 7 ETM+ data (NDVI, Tasseled Cap, and SAVI). A series of closely spaced through time images from 1999 to 2002 were selected, classified, and analyzed for an area in northeastern Ohio. Supervised classification of the images allowed us to monitor the response in individual land cover classes to changing climate conditions, and compare these individual changes to those over the entire larger areas. Specifically, the images were compared using linear regression techniques at various time lags to PDSI values for these areas collected by NOAA. Although NDVI is a robust indicator of vegetation greenness and vigor, it may not be the best index to use, depending on the type of vegetation studied and the scale of analysis used. A combination of NDVI and other prominent vegetation indices can be used to detect subtle drought conditions by specifically identifying various time lags between climate condition and vegetation response.  相似文献   

5.
A land stratification of the French territory had been previously performed based on time series of vegetation and texture indices. This stratification led to 300 radiometrically homogenous regions that were considered as land units (LUs). In this paper, we present a quantitative analysis of the LUs, with the aim of testing if these LUs are linked to landscape. In this sense, an evaluation of their thematic meaning in terms of environmental variables and land cover was performed. In order to achieve this, we first conducted a statistical analysis at national scale using a set of environmental variables and land cover by means of Moran’s autocorrelation index and Spearman rank correlation index. Second, to analyze the quality of the boundaries between neighboring LUs, we developed a method based on the Spearman rank correlation index calculated on test areas across the boundaries. The first analyses showed that the most explanatory variables of the LUs were land cover, topography and parent material. The boundaries analysis was applied at a regional scale (Pyrenean region), and showed that 89% of the boundaries were well explained by the land cover compositions. The results obtained support the hypothesis that time series of broad resolution remote-sensing images can capture landscape identities and produce LUs maps that have an environmental and land occupation sense.  相似文献   

6.
利用近18年贵州茂兰自然保护区的Landsat TM/ETM+/OLI数据,针对云覆盖对影像质量的影响,提出并使用了一种基于NDVI时间变换一致性的方法,构建出较为完整的研究区植被指数时间序列,实现了小区域尺度下长时间序列的植被覆盖变化研究,并采用一元线性回归模型和相关分析法探讨研究区植被覆盖变化趋势及其对气象因子的响应关系。得出结论:NDVI时间变换一致性处理方法可以有效地消除云覆盖的影响;研究区近18年植被覆盖状况良好且正呈缓慢上升趋势,气候因子与植被覆盖变化呈显著正相关关系,其中平均温度的影响在当月最强,而降水量和平均相对湿度的影响则存在滞后性。  相似文献   

7.
Land-use changes as a result of residential development often lead to degradation and alter vegetation cover (VC). Although these are worldwide phenomena, sufficient knowledge about anthropogenic effects caused by various populated areas in dryland ecosystems is lacking. This study explored anthropogenic development in rural areas and its effects on the conservation of protected areas in drylands, focusing on the change in VC, the reasons, extent, and the drivers of change. We propose a novel framework for exploring VC change (VCC) as a function of environmental and human-driven factors including different types of populated areas in drylands. As a case study, we used a 30-year time series of Landsat satellite images over the arid region of Israel to analyze spatiotemporal VCC. The temporal analysis involved the Contextual Mann-Kendall significance test and spatial analysis to model clustering of VCC. A Gradient Boosted Regression machine learning algorithm was applied to study the relative influence of environmental and human-driven factors on VCC. In addition, we used ANOVA to examine differences between the effects of three types of populated areas on the spatiotemporal trends of VC. The results show that the most influential environmental variable on VCC was elevation (relative contribution of 17%), followed by slope (14.8%) and distance from populated areas (14.6%). Moreover, different types of populated areas affected VC differently with varying distances from residential centroids. The nature reserves increased VC positively and significantly, while livestock settlements had a negative effect. Change in vegetation was mostly confined to the stream network and occurred in lower elevations. The study demonstrates how different land-use practices alter the landscape in terms of VC and differ in their extents, patterns, and effects. With the expected growth in population and residential development worldwide, the proposed framework may assist conservation managements and policy makers in minimizing environmental degradation in drylands.  相似文献   

8.
系统评估了中国地区航天飞机雷达地形测绘任务(Shuttle Radar Topography Mision,SRTM)3″高程误差的分布及其与地形和地表覆盖因素的关系。通过单因子分析法,使用从50多万个样本点中提取的地表特征属性确定误差的变化规律。结果显示:SRTM高程误差与不同地形和地表覆盖类型关系密切;坡度增大误差由正变负,误差绝对值增大;正误差集中在偏北坡向,负误差集中在西南坡向;误差随植被覆盖增加而增大;冰川、沙漠、湿地区域误差整体为负,城镇建筑区的误差整体为正;坡度作为主导因素,同时影响其他因素对高程误差的作用。数据在某些区域存在明显高程异常,在平坦地区存在条带现象。整体上SRTM高程误差在中国地区呈现复杂的变化规律。  相似文献   

9.
Forest cover plays a key role in climate change by influencing the carbon stocks, the hydrological cycle and the energy balance. Forest cover information can be determined from fine-resolution data, such as Landsat Enhanced Thematic Mapper Plus (ETM+). However, forest cover classification with fine-resolution data usually uses only one temporal data because successive data acquirement is difficult. It may achieve mis-classification result without involving vegetation growth information, because different vegetation types may have the similar spectral features in the fine-resolution data. To overcome these issues, a forest cover classification method using Landsat ETM+ data appending with time series Moderate-resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data was proposed. The objective was to investigate the potential of temporal features extracted from coarse-resolution time series vegetation index data on improving the forest cover classification accuracy using fine-resolution remote sensing data. This method firstly fused Landsat ETM+ NDVI and MODIS NDVI data to obtain time series fine-resolution NDVI data, and then the temporal features were extracted from the fused NDVI data. Finally, temporal features combined with Landsat ETM+ spectral data was used to improve forest cover classification accuracy using supervised classifier. The study in North China region confirmed that time series NDVI features had significant effects on improving forest cover classification accuracy of fine resolution remote sensing data. The NDVI features extracted from time series fused NDVI data could improve the overall classification accuracy approximately 5% from 88.99% to 93.88% compared to only using single Landsat ETM+ data.  相似文献   

10.
The knowledge of the surface temperature is important to a range of issues and themes in earth sciences central to urban climatology, global environmental change and human-environment interactions. The study analyses land surface temperature (LST) estimation using temporal ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) datasets (day time and night time) over National Capital Territory Delhi using the surface emissivity information at pixel level. The spatial variations of LST over different land use/land cover (LU/LC) at day time and night time were analysed and relationship between the spatial distribution of LU/LC and vegetation density with LST was developed. Minimum noise fraction (MNF) was used for LU/LC classification which gave better accuracy than classification with original bands. The satellite derived emissivity values were found to be in good agreement with literature and field measured values. It was observed that fallow land, waste land/bare soil, commercial/industrial and high dense built-up area have high surface temperature values during day time, compared to those over water bodies, agricultural cropland, and dense vegetation. During night time high surface temperature values are found over high dense built-up, water bodies, commercial/industrial and low dense built-up than over fallow land, dense vegetation and agricultural cropland. It was found that there is a strong negative correlation between surface temperature and NDVI over dense vegetation, sparse vegetation and low dense built-up area while with fraction vegetation cover, it indicates a moderate negative correlation. The results suggest that the methodology is feasible to estimate NDVI, surface emissivity and surface temperature with reasonable accuracy over heterogeneous urban area. The analysis also indicates that the relationship between the spatial distribution of LU/LC and vegetation density is closely related to the development of urban heat islands (UHI).  相似文献   

11.
Human-induced land use/cover change has been considered to be one of the most important parts of global environmental changes. In loess hilly and gully regions, to prevent soil loss and achieve better ecological environments, soil conservation measures have been taken during the past decades. The main objective of this study is to quantify the spatio-temporal variability of land use/cover change spatial patterns and make preliminary estimation of the role of human activity in the environmental change in Xihe watershed, Gansu Province, China. To achieve this objective, the methodology was developed in two different aspects, that is, (1) analysis of change patterns by binary image of change trajectories overlaid with different natural geographic factors, in which Relative Change Intensity (RCI) metric was established and used to make comparisons, and (2) analysis based on pattern metrics of main trajectories in the study area. Multi-source and multi-temporal Remote Sensing (RS) images (including Landsat ETM+ (30 June 2001), SPOT imagery (21 November 2003 and 5 May 2008) and CBERS02 CCD (5 June 2006)) were used due to the constraints of the availability of remotely sensed data. First, they were used to extract land use/cover types of each time node by object-oriented classification method. Classification results were then utilized in the trajectory analysis of land use/cover changes through the given four time nodes. Trajectories at every pixel were acquired to trace the history of land use/cover change for every location in the study area. Landscape metrics of trajectories were then analyzed to detect the change characteristics in time and space through the given time series. Analysis showed that most land use/cover changes were caused by human activities, most of which, under the direction of local government, had mainly led to virtuous change on the ecological environments. While, on the contrary, about one quarter of human-induced changes were vicious ones. Analysis through overlaying binary image of change trajectories with natural factors can efficiently show the spatio-temporal distribution characteristics of land use/cover change patterns. It is found that in the study area RCI of land use/cover changes is related to the distance to the river line. And there is a certain correlation between RCI and slope grades. However, no obvious correlation exists between RCI and aspect grades.  相似文献   

12.
Focusing on the central Kalahari, this study utilized fractional cover of photosynthetic vegetation (fPV), non-photosynthetic vegetation (fNPV) and bare soil (fBS), derived in situ and estimated from GeoEye-1 imagery using Multiple Endmember Spectral Mixture Analysis (MESMA) and object-based image analysis (OBIA) to determine superior method for fractional cover estimation and the impact of vegetation morphology on the estimation accuracy. MESMA mapped fractional cover by testing endmember models of varying complexity. Based on OBIA, image was segmented at five segmentation scales followed by classification. MESMA provided more accurate fractional cover estimates than OBIA. The increasing segmentation scale in OBIA resulted in a consistent increase in error. Different vegetation morphology types showed varied responses to the changing segmentation scale, reflecting their unique ecology and physiognomy. While areas under woody cover produced lower error even at coarse segmentation scales, those with herbaceous cover provided low error only at the fine segmentation scale.  相似文献   

13.
Land cover classification of finer resolution remote sensing data is always difficult to acquire high-frequency time series data which contains temporal features for improving classification accuracy. This paper proposed a method of land cover classification with finer resolution remote sensing data integrating temporal features extracted from time series coarser resolution data. The coarser resolution vegetation index data is first fused with finer resolution data to obtain time series finer resolution data. Temporal features are extracted from the fused data and added to improve classification accuracy. The result indicates that temporal features extracted from coarser resolution data have significant effect on improving classification accuracy of finer resolution data, especially for vegetation types. The overall classification accuracy is significantly improved approximately 4% from 90.4% to 94.6% and 89.0% to 93.7% for using Landsat 8 and Landsat 5 data, respectively. The user and producer accuracies for all land cover types have been improved.  相似文献   

14.
为探究地表覆盖与气候状态间的关联性,本文选取2019年的Landsat影像数据,结合温度、降水量、PM2.5浓度3种气候指标,利用GEE平台,结合NDVI、MNDWI、NDBI,采用SVM、RF、CART方法进行地表覆盖分类,探究气候指标与地表覆盖类型分布的关联性;提出了使用3种气候指标构建分类特征进行地表覆盖分类的方法,并通过消融试验分析了气候指标对地表覆盖分类精度的影响。结果表明:①RF有较好的分类结果,总体精度为96.0%;②3种气候指标均能提高地表覆盖分类精度,其中PM2.5浓度效果最好;③温度与植被、水体关联性较大,PM2.5浓度与城区、植被关联性较大,降水量与耕地关联性较大。  相似文献   

15.
In the present study, relationship between Land surface temperature and selected indices, vegetation index (VARI), built-up index (BUI) and elevation (DEM) is investigated. Ordinary least square method and geographically weighted regression are used to analyse the spatial correlation between the indices with surface temperature. Subsequently, temporal trends (2001–2015) in surface temperature and vegetation are explored after every two years of interval. LANDSAT image and ASTER DEM are used to extract LST and additional indices. The selected variables (Built-up, vegetation and topography) explain 69% of the variation in surface temperature. The OLS and GWR revealed that topography and vegetation are the significant factor of LST in Manipur State. Topography being a constant parameter, its effect is constant over time. The changing scenario of vegetation is significantly contributing to LST. The surface temperature over a period of 15 years show increasing trend and is negatively and strongly correlated to vegetation cover.  相似文献   

16.
Abstract

Wildfire is a major disturbance agent in Mediterranean Type Ecosystems (MTEs). Providing reliable, quantitative information on the area of burns and the level of damage caused is therefore important both for guiding resource management and global change monitoring. Previous studies have successfully mapped burn severity using remote sensing, but reliable accuracy has yet to be gained using standard methods over different vegetation types. The objective of this research was to classify burn severity across several vegetation types using Landsat ETM imagery in two areas affected by wildfire in southern California in June 1999. Spectral mixture analysis (SMA) using four reference endmembers (vegetation, soil, shade, non‐photosynthetic vegetation) and a single (charcoal‐ash) image endmember were used to enhance imagery prior to burn severity classification using decision trees. SMA provided a robust technique for enhancing fire‐affected areas due to its ability to extract sub‐pixel information and minimize the effects of topography on single date satellite data. Overall kappa classification accuracy results were high (0.71 and 0.85, respectively) for the burned areas, using five canopy consumption classes. Individual severity class accuracies ranged from 0.5 to 0.94.  相似文献   

17.
In this paper, we apply lagged correlation analysis to study the effects of vegetation cover on the summer climate in different zones of China, using NOAA/AVHRR normalized difference vegetation index (NDVI) data during the time period from 1982 to 2001 and climate data of 365 meteorological stations across China (precipitation from 1982 to 2001 and temperature from 1982 to 1998). The results show that there are positive correlations between spring NDVI and summer climate (temperature and precipitation) in most zones of China; these suggest that, when the vegetation cover increases, the summer precipitation will increase, and the lagged correlations show a significant difference between zones. The stronger correlations between NDVI in previous season and summer climate occur in three zones (Mid-temperate zone, Warm-temperate zone and Plateau climate zone), and this implies that vegetation changes have more sensitive feedback effects on climate in the three zones in China.  相似文献   

18.
干旱区生态系统极易受到气候及土地利用变化的影响,其生物多样性格局及其形成机制是重要的生态学问题。基于新疆地区鸟类及哺乳动物物种多样性数据,结合气候、地形和长时间序列的植被遥感参数产品FAPAR数据等,主要在不同的土地利用类型及海拔带上采用单因子相关分析方法探讨了物种丰富度格局的形成机制。总体来说,不同生境类型中,植被遥感参数因子(DHI、NDVI等)与两种类群物种丰富度分布的相关性强于与气候因子(温度、降水)的相关性。具体而言,植被遥感参数因子中,基于FAPAR的生境指数因子与丰富度的相关性大于基于植被指数的因子(DHI_cumNDVI_cumEVI_cum);气候因子中,在草地生境或者较低的海拔上,年均降水因子对于丰富度分布的解释力强于年均温度因子。这表明在新疆地区,影响鸟类与哺乳类动物物种丰富度分布的主导理论是生境异质性假说与环境稳定性假说,其解释力在多种生境内均强于生产力与环境热量。  相似文献   

19.
Land is the basic resource that is needed by man in order to survive: It provides humans with living space, nutrition and energy resources. The rapid growth of the human population, climate change and pollution on a catastrophic scale has caused the quality of land resources to be compromised. Remote sensing is a useful tool in land cover change detection providing information to decision makers. The aim of this study was to evaluate land cover changes in the Mtunzini area in South Africa over the past 18 years; determine why changes have occurred and predict land cover patterns for future years. In this study a supervised classification was used to detect land cover classes of the Mtunzini area from 1992 to 2009 using four Landsat images in the time series analysis. The supervised classification had an accuracy of 80.80 % which was used to model land cover changes. Commercial sugar cane and forest plantation classes increased throughout the time series. It was estimated in the modelling procedure that bushland (42.11 %) and bare soil (35 %) would be changed to commercial sugar cane. This is indicative of the expanding agriculture sector in Mtunzini. Natural vegetation is predicted to be disturbed: 18 % of bushland and 15.07 % of dense bush are expected to be replaced by rural dwellings. This is owing to a potential increase in the rural population and a reduced local economic growth. This study highlights the need for increased vigilance of the forestry industry and commercial sugar cane farms which may be encroaching on natural vegetation and livelihoods of local residents. Strategic planning and proper management of natural vegetation types is needed as these land cover types are decreasing rapidly.  相似文献   

20.
Controlling data uncertainty via aggregation in remotely sensed data   总被引:1,自引:0,他引:1  
Aggregation may be used as a means of enhancing remotely sensed data accuracy, but there is a tradeoff between loss of information and gain in accuracy. Thus, the choice of the proper cell size for aggregation is important. This letter explores the change in data accuracy that accompanies aggregation and finds an increase in image thematic accuracy with increasing cell size, resulting from 1) reduction in the impact of misregistration on thematic error and 2) mutual cancelation of inverse classification errors occurring within the same cell. A model is developed to quantify these phenomena. The model is exemplified using a vegetation map derived from an aerial photo. The model revealed a major reduction in effective location error for cell sizes in the range of 3-10 times the size of mean location error; reduction in effective classification error was minor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号