首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ephemeral fluvial systems are commonly associated with arid to semi-arid climates. Although their complex sedimentology and depositional settings have been described in much detail, depositional models depicting detailed lateral and vertical relationships, and interactions with coeval depositional environments, are lacking compared to well-recognized meandering and braided fluvial systems. This study critically evaluates the applicability of current models for ephemeral fluvial systems to an ancient arid fluvial example of the Lower Jurassic Kayenta Formation of the Colorado Plateau, USA. The study employs detailed sedimentary logging, palaeocurrent analysis and photogrammetric panels across the regional extent of the Kayenta. A generic model that accounts for the detailed sedimentology of a sandy arid ephemeral fluvial system (drawing upon both ancient and geomorphological studies) is developed, along with analysis of the spatial and temporal interactions with the aeolian setting. Results show that the ephemeral system is dominated by laterally and vertically amalgamated, poorly channelized to sheet-like elements, with abundant upper flow regime flat beds and high sediment load structures formed between periods of lower flow regime conditions. Through interaction with a coeval aeolian system, most of the fluvial deposits are dominated by sand-grade sediment, unlike many modern ephemeral fluvial systems that contain a high proportion of conglomeratic and/or finer grained mudstone and siltstone deposits. During dominantly fluvial deposition, high width to thickness ratios are observed for channelized and sheet-like elements. However, with increasing aridity, the aeolian environment becomes dominant and fluvial deposition is restricted to interdune corridors, resulting in lower width to thickness ratio channels dominated by flash-flood and debris-flow facies. The data presented here, coupled with modern examples of ephemeral systems and flood regimes, suggest that ephemeral flow produces and preserves distinctive sedimentological traits that can not only be recognized in outcrops, but also within core.  相似文献   

2.
The Willyama Supergroup of the Broken Hill region in southern Australia consists of supracrustal sedimentary and magmatic rocks, formed between 1810 and 1600 Ma. A statistical analysis of nearly 2000 SHRIMP U–Pb zircon spot ages, compiled from published and unpublished sources, provides evidence for three distinct tectonostratigraphic successions and four magmatic events during this interval. Succession 1 includes Redan Geophysical Zone gneisses and the lower part of the Thackaringa Group (Cues Formation). These rocks were deposited after 1810 Ma and host granite sills of the first magmatic event (1710–1700 Ma). Succession 2 includes the upper Thackaringa Group (Himalaya Formation), the Broken Hill Group and the Sundown Group and was deposited between 1710 and 1660 Ma. These rocks all contain detrital zircons from the first magmatic event (1710–1700 Ma) and in some cases from the second magmatic event (1690–1680 Ma). The second magmatic event (1690–1680 Ma) was bimodal, resulted from crustal extension, and was coeval with deposition of the Broken Hill Group and deepening of the basin. With this event a mafic sill swarm focused in the Broken Hill Domain. Mafic sills lack any trace of inheritance, unlike the granitoids that commonly contain inherited zircons typical of the supracrustal sediments. Succession 3, the Paragon Group and equivalents were deposited after 1660 Ma, but before a regional metamorphic event at 1600 Ma. Metamorphism was closely followed by inversion of the succession into a fold‐and‐thrust belt, accompanied by a fourth late to post‐orogenic magmatic event (ca 1580 Ma) characterised by granite intrusion and regional acid volcanism (the local equivalents of the Gawler Range Volcanics in South Australia).  相似文献   

3.
The shallowly buried marginal part of the Cambrian–Vendian confined aquifer system of the Baltic Basin is characterised by fresh and low δ18O composition water, whereas the deeply settled parts of the aquifer are characterized by typical Na–Ca–Cl basinal brines. Spatial variation in water geochemistry and stable isotope composition suggests mixing origin of the diluted water of three end-members—glacial melt water of the Weichselian Ice Age (115 000–10 000 BP), Na–Ca–Cl composition basin brine and modern meteoric water. The mixing has occurred in two stages. First, the intrusion and mixing of isotopically depleted glacial waters with basinal brines occurred during the Pleistocene glacial periods when the subglacial melt-water with high hydraulic gradient penetrated into the aquifer. The second stage of mixing takes place nowadays by intrusion of meteoric waters. The freshened water at the northern margin of the basin has acquired a partial equilibrium with the weakly cemented rock matrix of the aquifer.  相似文献   

4.
The hydrogeochemical characteristics of the Cabo de Gata coastal aquifer (southeastern Spain) were studied in an attempt to explain the anomalous salinity of its groundwater. This detritic aquifer is characterised by the presence of waters with highly contrasting salinities; in some cases the salinity exceeds that of seawater. Multivariate analysis of water samples indicates two groups of water (G1 and G2). Group G1 is represented in the upper part of the aquifer, where the proportion of seawater varies between 10 and 60%, whilst G2 waters, taken from the lower part of the aquifer, contain 60−70% seawater. In addition, hydrogeochemical modelling was applied, which reveals that the waters have been subject to evaporation between 25 and 35%. There was a good agreement between the modelled results and the observed water chemistry. This evaporation would have occurred during the Holocene, in a coastal lagoon environment; the resulting brines would have infiltrated into the aquifer and, due to their greater density, sunk towards the impermeable base. The characteristics of this water enabled us to reconstruct the interactions that must have occurred between the coastal aquifer and the lagoon, and to identify the environmental conditions that prevailed in the study area during the Middle Holocene.  相似文献   

5.
The stratigraphic section of the Upper Triassic–Lower Jurassic Whitmore Point Member of the Moenave Formation at Potter Canyon, Arizona, comprises c. 26 m of gray to black shales and red mudstones interbedded with mainly sheet-like siltstones and sandstones. These strata represent deposition from suspension and sheetflow processes in shallow, perennial meromictic to ephemeral lakes, and on dry mudflats of the terminal floodout of the northward-flowing Moenave stream system. The lakes were small, as indicated by the lack of shoreline features and limited evidence for deltas. Changes in base level, likely forced by climate change, drove the variations between mudflat and perennial lacustrine conditions. Lenticular sandstones that occur across the outcrop face in the same stratigraphic interval in the lower part of the sequence represent the bedload fill of channels incised into a coarsening-upward lacustrine sequence following a fall in base level. These sandstones are distinctive for the common presence of over-steepened bedding, dewatering structures, and less commonly, folding. Deformation of these sandstones is interpreted as aseismic due to the lack of features typically associated with seismicity, such as fault-graded bedding, diapirs, brecciated fabrics and clastic dikes. Rapid deposition of the sands on a fluid-rich substrate produced a reverse density gradient that destabilized, and potentially fluidized the underlying, finer-grained sediments. This destabilization allowed synsedimentary subsidence of most of the channel sands, accompanied by longitudinal rotation and/or ductile deformation of the sand bodies.  相似文献   

6.
A 1D numerical model is constructed to investigate the impact of sedimentation and sea level changes on transport of Cl? in the aquifer–aquitard system in the Pearl River Delta (PRD), China. The model simulates the evolution of the vertical Cl? concentration profiles during the Holocene. Sedimentation is modeled as a moving boundary problem. Chloride concentration profiles are reconstructed for nine boreholes, covering a wide area of the PRD, from northwest to southeast. Satisfactory agreement is obtained between simulated and measured Cl? concentration profiles. Diffusion solely is adequate to reproduce the vertical Cl? concentration profiles, which indicates that diffusion is the regionally dominant vertical transport mechanism across the aquitards in the PRD. The estimated effective diffusion coefficients of the aquitards range from 2.0?×?10–11 to 2.0?×?10–10 m2/s. The effective diffusion coefficients of the aquifers range from 3.0?×?10–11 to 4.0?×?10–10 m2/s. Advective transport tends to underestimate Cl? concentrations in the aquitard and overestimate Cl? concentrations in the basal aquifer. The results of this study will help understand the mechanisms of solute transport in the PRD and other deltas with similar geological and hydrogeological characteristics.  相似文献   

7.
 The giant Mercosul aquifer system consists of Triassic-Jurassic eolian-fluvio-lacustrine sandstones confined by Cretaceous basalt flows, and it covers about 1,195,500 km2 (461,583 miles2) in South America. The aquifer system encompasses all of the Paraná Basin and part of the Chaco-Paraná Basin and is one of the world's largest. The eolian Botucatu Sandstone and its equivalents form an important part of this system. Maps of structure, thickness of overlying rocks, and water temperature, and a potentiometric map, all based on 322 wells, define hydrogeologic characteristics and provide the basis for establishing guidelines for the long-term equilibrium use of this important multinational aquifer system. The Mercosul aquifer system is divided into two domains – the larger and better understood Paraná Basin and the smaller and less well understood Chaco-Paraná Basin. Most of the northern part of the Paraná Basin has axially-directed groundwater flow, whereas the southern part of the aquifer discharges mostly to the southwest into the Corrientes Province of Argentina, with negligible discharge into the Atlantic Ocean. The Mercosul aquifer system is conservatively estimated to have been flushed at least 180 times since deposition. Various factors are responsible for this flushing, including appreciable rainfall since the end of the Cretaceous Period, probable uplift of the basins' borders in Late Cretaceous time, simple basin geometry, long-term riverine and groundwater flow to the southwest (ancestral and present Paraná River Systems), and stable cratonic setting. Key hydraulic properties of the Mercosul aquifer system are compared to those of the eolian Jurassic Navajo-Nugget System of the western United States. The results demonstrate the importance of tectonics and climate on the evolution of sub-continental aquifer systems. Received, September 1997 / Revised, December 1998 / Accepted, January 1999  相似文献   

8.
《Quaternary Research》2014,81(3):488-499
Paleoclimatic reconstruction based on aeolian sediments in the eastern Qaidam Basin (QB) has been hindered by the limited chronological data. Here we present 61 Optically Stimulated Luminescence (OSL) ages. On the basis of these OSL ages and the lithologic stratigraphy, we propose the ‘effective moisture index (EMI)’ for aeolian sediments to reconstruct the effective moisture change. Based on the EMI from twelve sections, the effective moisture change, moisture sources and relevant mechanisms for paleoclimatic change in the eastern QB are discussed. The results indicate that (1) aeolian deposition started at least before 12.4 ± 0.7 ka during the deglaciation, the paleosols developed at the early and mid-Holocene, and aeolian sand and loess accumulated at mid- and late Holocene; (2) effective moisture history was: hyper-arid at 12.8–11.6 ka, humid and variable at 11.6–8.3 ka, moderately humid and stable at 8.3–3.5 ka, and increasingly arid at 3.5–0 ka; (3) the effective moisture change was mainly controlled by the Asian summer monsoon (ASM), which mainly followed the change of Northern Hemispheric summer insolation, and the westerlies strengthened and increased the aridity in the QB when the ASM shrank.  相似文献   

9.
Shortage of water resources in arid and semi-arid areas causes water supply to be one of the most important subjects and major concerns within NGO and governments’ policies in recent years. The Shahrekord Plain aquifer system is located in a semi-arid area and acts as a key source of water supply. Groundwater management in this area is thus very important. Although change in the climatological factors is not possible, long-term fluctuation studies can help in managing the available water resources to overcome from drought or decrease its negative impact. The hydrodynamic study of the aquifer system coupled with the drought indices in each region can be useful in making decisions related to the hydro-ecosystem management of that region. In this article, hydrodynamics of the aquifer system of the Shahrekord Plain coupled with the ratio of P/PET as a drought index, are assessed on the long term. In Shahrekord Plain aquifer, there is a short-term seasonal fluctuation, which is increased by overexploitation during the dry season, when water is needed for irrigation. The hydrodynamic behavior of the plain aquifer on the long term is changing. This fluctuation at first is a function of time. Secondly, it is spatially dependent. Groundwater behavior is directly sensitive to the variation of drought index, both seasonally and on the long term.  相似文献   

10.
Groundwater in the Cambrian–Vendian aquifer system has a strongly depleted stable isotope composition (δ18O values of about −22‰) and a low radiocarbon concentration, which suggests that the water is of glacial origin from the last Ice Age. The aim of this paper was to elucidate the timing of infiltration of glacial waters and to understand the geochemical evolution of this groundwater. The composition of the dissolved inorganic C (DIC) in Cambrian–Vendian groundwater is influenced by complex reactions and isotope exchange processes between water, organic materials and rock matrix. The δ13C composition of dissolved inorganic C in Cambrian–Vendian water also indicates a bacterial modification of the isotope system. The corrected radiocarbon ages of groundwater are between 14,000 and 27,000 radiocarbon years, which is coeval with the advance of the Weichselian Glacier in the area.  相似文献   

11.
The cities of Rivera and Santana do Livramento are located on the outcropping area of the sandstone Guarani Aquifer on the Brazil–Uruguay border, where the aquifer is being increasingly exploited. Therefore, recharge estimates are needed to address sustainability. First, a conceptual model of the area was developed. A multilayer, heterogeneous and anisotropic groundwater-flow model was built to validate the conceptual model and to estimate recharge. A field campaign was conducted to collect water samples and monitor water levels used for model calibration. Field data revealed that there exists vertical gradients between confining basalts and underlying sandstones, suggesting basalts could indirectly recharge sandstone in fractured areas. Simulated downward flow between them was a small amount within the global water budget. Calibrated recharge rates over basalts and over outcropping sandstones were 1.3 and 8.1% of mean annual precipitation, respectively. A big portion of sandstone recharge would be drained by streams. The application of a water balance yielded a recharge of 8.5% of average annual precipitation. The numerical model and the water balance yielded similar recharge values consistent with determinations from previous authors in the area and other regions of the aquifer, providing an upper bound for recharge in this transboundary aquifer.  相似文献   

12.
The source region of the Yellow River, located in the northeastern portion of the Qinghai–Tibet Plateau, plays a critical role in water conservation, biodiversity protection, and wetland conservation. Aeolian desertification of this area is an important concern. Remote sensing and GIS technology were employed to assess the trends in aeolian desertification from 1975 to 2005. The monitoring results showed that, aeolian desert land increased from 15,112 to 17,214 km2 during 1975–2005. In addition, it was found that the area of aeolian desertification increased rapidly from 1975 to 1990, was stable from 1990 to 2000, and slightly decreased from 2000 to 2005. Increasing temperature, overgrazing, and drainage of wetlands have been key driving factors of aeolian desertification. Thus, to control the expansion of aeolian desert lands in the source region of the Yellow River and to rehabilitate existing desert areas, the priority should be given to altering human behavior in these areas.  相似文献   

13.
Evaluating aquifer–river interactions is naturally complex, particularly within urban settings. This is largely due to the difficulties involved in quantifying most elements of the water balance. The ability of numerical models to deal with several dynamic variables simultaneously makes them valuable tools to address this kind of problem. An applied, modeling-based approach to investigate the spatial and temporal variations of aquifer–river connectivity within a shallow urban aquifer is presented. Model development is based on comprehensive field campaigns in Langreo, Spain. Two calibration runs (for summer and winter conditions) were carried out in order to evaluate the spatial distribution of recharge rates. The model suggests that baseflows are largely negligible in comparison with total streamflows. This is mostly attributed to the abrupt nature of the catchment, which prevents the existence of sufficiently large alluvial systems to a great extent. Modelling results also show that aquifer–river connectivity at the study site is constrained by urban pumping as well as by seasonal fluctuations.  相似文献   

14.
15.
The objective of this study was to examine the possible natural sources of fluorides and boron in Silurian–Ordovician (S–O) aquifer system, as the anomaly of these elements has been distinguished in groundwater of western Estonia. Water–rock interactions, such as dissolution and leaching of the host rock, are considered to be the main source of high fluoride and boron concentrations in groundwater. Altogether 91 rock samples were analysed to determine if high F and B levels in groundwater could be attributed to certain aquifer forming rock types. Fluorine and boron contents in limestones and dolomites vary from 100 to 500 mg/kg and 5 to 20 mg/kg, reaching up to 1,000 and 150 mg/kg in marlstones, respectively. K-bentonites, altered volcanic ash beds, are rich in fluorine (400–4,500 mg/kg) and boron (50–1,000 mg/kg). Thus, clay-rich sediments, providing ion-exchange and adsorption sites for F and B, are the probable sources of both elements in S–O aquifer system in western Estonia.  相似文献   

16.
On the basis of their stratigraphic, lithological, and genetic features, the Upper Miocene–Eopleistocene terrestrial sediments of the northwestern Ciscaucasia region are subdivided into the following local stratigraphic units (formations): Azov–Kuban, Srednyaya Kuban, Novoaleksandrovsk, Temizhbekskaya. The paleontological and paleomagnetic data are used for determining or specifying their age and correlating the formations between each other and with the regional stratigraphic scale. The obtained data make it possible to improve the Upper Miocene–Eopleistocene stratigraphic scale of the northwestern Ciscaucasia region.  相似文献   

17.
18.
Changes in water chemistry along the High Arctic fluvial–lacustrine system located in Wedel Jarlsberg Land in the SW Spitsbergen (Svalbard) were investigated during the summer season of 2010 and 2011. The newly formed river–lake system consists of three lakes connected with the Brattegg River. The first bathymetric measurements of these lakes were made by the authors in 2010. The Brattegg River catchment represents a partly glaciered Arctic water system. The studied lakes are characterized by low mineralization and temperature of water. The value of the electrolytic conductivity (EC) ranges from 30.2 to 50.5 μS cm?1 and the temperature of surface water from 1.5 to 7.8 °C. The temperature increase takes place downstream starting from Upper Lake to the outflow from Myrktjørna Lake. The waters of lakes have higher temperatures than the stream. The predominant ions are HCO3 ? (up to 16.5 mg L?1), Cl? (6.66–8.53 mg L?1), Ca2+ (2.40–4.45 mg L?1) and Na+ (2.65–3.36 mg L?1). The highest values of ammonium and DOC found in the lowest Myrktjørna Lake seem to be related to the presence of aquatic organisms and also birds. From the group of 10 analyzed microelements, increased concentrations of aluminum, up to almost 500 μg L?1, are present in the lakes’ water. Water isotopic composition ranges for δ18O and δ2H, from ?10.6 to ?10.9‰ and from ?70.8 to ?72.3‰, respectively. The vertical zonality of lake waters is manifested in a decrease in the temperature and increase in EC and chemical elements concentrations.  相似文献   

19.
 The reflectance of sediments (gray level) were measured on 11 sediment cores from the Norwegian–Greenland–Iceland Sea (Nordic seas). The analyzed time interval covers the past five glacial–interglacial cycles. Although the results demonstrate that the gray-level method has a potential for stratigraphic purposes, it is indicated that gray-level changes in the Nordic seas are not necessarily driven by variations in the content of biogenic calcite. A detailed comparison of gray-level values with contents of total CaCO3 (carbonate) and total organic carbon (TOC) reveals no overall causal link between these proxies. However, specific glacial core sections with layers containing organic-rich sediment clasts as a consequence of iceberg-rafting seem to correlate well with law gray-level values. Of those cores which show relatively high and comparable carbonate values in the last three main interglacial intervals (stages 11, 5.5, and 1), stage 11 is always marked by the highest gray-level values. A close inspection of the surface structure of the foraminiferal tests as well as the conduction of reflectance measurements on these tests leads to the conclusion that enhanced carbonate corrosion occurred during stage 11. The test corrosion not only affected the reflectance of the tests by making them appear whiter, it also seems responsible for the comparatively high gray-level values of the total sediment in stage 11. In contrast, the relatively low gray-level values found in stages 5.5, and 1 are not associated with enhanced test corrosion. This observation implies that variable degrees of carbonate corrosion can have a profound effect on total sediment reflectance. Received: 6 September 1998 / Accepted: 4 April 1999  相似文献   

20.
The Yamé river, in the Bandiagara Plateau, Dogon Country, Mali, is characterised by extensive alluvial sedimentary records, particularly in the 1 km long Ounjougou reach where Holocene floodplain pockets are inset in the Pleistocene formations. These alluvial records have been investigated via geomorphologic fieldwork and sedimentologic and micromorphologic analyses and are supported by 79 radiocarbon dates. The alluvial deposits of the valley floor correspond to a vertical accretion of 3–10 m. The reconstruction of fluvial style changes provides evidence of four main aggradation periods. From 11,500 to 8760 cal. BP, the alluvial architecture and grain-size parameters indicate a wandering river. This period included phases of pulsed high-energy floods and avulsion related to a northward shift of the summer monsoon to around 14°N after 11,500 cal. BP. From 7800 to 5300 cal. BP, a swampy floodplain environment with standing water pools within a Sudanian savanna/woodland mosaic corresponds to the culmination of the Holocene humid period. From 3800 cal. BP onwards, rhythmic sedimentation attests to an increase in the duration and/or intensity of the dry season, giving a precise date for the local termination of the Holocene Optimum period. During the last two millennia and for the first time during the Holocene, the alluvial formations are progressively restricted whereas the colluvial deposits increase, indicating strong soil erosion and redeposition within the watershed related to an increase in human impact. Four major periods are characterised by incision (I1: ante 11,500, I2: 8760–7800; I3: 6790–6500 cal. BP; I4; 2400–1700 cal. BP) pointing to dramatic changes in fluvial style. They result from high-energy flood flows during dry spells and confirm the capacity of the floodplain pocket in the upstream reach of the Sahelian belt to record rapid Holocene climatic change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号