首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Kangan aquifer (KA) is located beneath the Kangan gas reservoir (KGR), 2,885 m below the ground surface. The gas reservoir formations are classified into nine non-gas reservoir units and eight gas reservoir units based on the porosity, water and gas saturation, lithology, and gas production potential using the logs of 36 production wells. The gas reservoir units are composed of limestone and dolomite, whereas the non-gas reservoir units consist of compacted limestone and dolomite, gypsum and shale. The lithology of KA is the same as KGR with a total dissolved solid of 333,000 mg/l. The source of aquifer water is evaporated seawater. The static pressure on the Gas–Water Contact (GWC) was 244 atm before gas production, but it has continuously decreased during 15 years of gas production, resulting in a 50 m uprising of the GWC and the expansion of KA water and intergranular water inside the gas reservoir. The general flow direction of the KA is toward the northern coast of the Persian Gulf due to the migration of water to the overlying formations via a trust fault. The KA is a gas-capped deep confined aquifer (GCDCA) with special characteristics differing from a shallow confined aquifer. The main characteristics of a GCDCA are unsaturated intergranular water below the confining layers, no direct contact of the water table (GWC) with the confining layers, no vertical flow via the cap rock, permanent uprising of the GWC during gas production, and permanent descend of GWC during water exploitation.  相似文献   

2.
The present study investigates the hydrogeochemistry and contamination of Varamin deep aquifer located in the southeast of Tehran province, Iran. The study also evaluates groundwater suitability for irrigation uses. The hydrogeochemical study was conducted by collecting and analyzing 154 groundwater samples seasonally during 2014. Based on evolutionary sequence of Chebotarev, the aquifer is in the stage of SO4 + HCO3 in the north half of the plain and it has evolved into SO4 + Cl in the south half. The unusual increase in TDS and Cl? toward the western boundaries of the aquifer indicates some anomalies. These anomalies have originated from discharge of untreated wastewater of Tehran city in these areas. The studied aquifer contains four dominant groundwater types including Na–Ca–SO4 (55%), Na–Ca–HCO3 (22%), Na–Cl (13%) and Ca–Cl (10%). The spatial distributions of Na–Cl and Ca–Cl water types coincide with observed anomalies. Ionic relationships of SO4 2? versus Cl? and Na+ versus Cl? confirm that water–rock interaction and anthropogenic contribution are main sources of these ions in the groundwater. The main processes governing the chemistry of the groundwater are the dissolution of calcite, dolomite and gypsum along the flow path, and direct ion exchange. Reverse ion exchange controls the groundwater chemistry in the areas contaminated with untreated wastewater. Based on Na% and SAR, 10.3 and 27% of water samples are unsuitable for irrigation purposes, respectively. Regarding residual sodium carbonate, there is no treat for crop yields. Only 6% of water samples represent magnesium adsorption ratios more than 50% which are harmful and unsuitable for irrigation.  相似文献   

3.
Chemical data on groundwater composition in rhyolitic hard rock aquifers with limited global occurrence are rarely found. In this research geochemistry of Mahabad Rhyolite Aquifer, NW Iran, was studied considering major ions, silica and trace elements measured in wet and dry seasons. Based on the results, the mean silica content was 18 mg l?1, less than the average of the rhyolitic waters. However, the relatively higher electrical conductivity (EC) of 418 µS cm?1 was measured. Based on a PHREEQCI model, the weathering of the silicate minerals and dissolution of carbonated intercalations turns groundwater dominantly into Ca–HCO3 type, enhancing EC, pH and silica concentration along the flow path. Trace elements of Sr, Ba and Pb were measured at highest concentrations, the later with an average value of 83 ppb exceeds the drinking guidelines. Cluster analysis confirms biotite weathering and barite dissolution as the main sources of the trace elements in the groundwater. The results signify geochemical features of rhyolitic groundwater which can be a useful tracer of mixing in flow systems containing variety of aquifers including rhyolites.  相似文献   

4.
5.
 This paper was mainly initiated to estimate some parameters of the quality and hydraulics of water in the vicinity of a proposed dam site in Jordan. The assessment of the chemical character was carried out to examine the suitability of the groundwater for domestic, municipal, industrial or irrigation use. Also, the anticipated problems associated with the quality of the reservoir water were delineated. Pumping tests were conducted at some wells that were drilled within the dam site zone and drawdown-time curves were constructed, by means of which the transmissivity and storage coefficients were assessed using two different methods. Total dissolved solids and electrical conductance were also measured and the relationship between them established. In addition, sodium ion concentrations at different piezometric tip elevations were measured in a number of wells that were previously drilled inside the dam site zone. This data indicates that the water quality as expressed in terms of total dissolved solids, electrical conductance, and sodium ion concentration limits do not comply with internationally recommended standards. The usage of this water for usual domestic purposes is therefore not viable, while the utilization of this water for irrigation purposes is very restricted. Received: 1 September 1995 · Accepted: 2 April 1995  相似文献   

6.
The geochemical processes controlling chemical composition of groundwater are studied using hydrochemical and isotopic data in Abdan-Dayer coastal plain, south of Iran. The salinity of groundwater in the coastal plain ranges from 1,000, a fresh end-member, to more than 50,000 μS cm?1, a saline end-member. Groundwater salinity increases from the recharge area toward areas with a shallow water table close to the Persian Gulf coast due to direct evaporation and sea water intrusion as confirmed by mixing binary diagrams, stable isotope content, and Br?/Cl? ratio. Groundwater flow pattern in the study area has been modified due to over-pumping of groundwater in recent years which resulted in further saline water migration toward fresh water and their mixing. The maximum mixing ratio is estimated about 15% in different parts of the study area according to chloride concentration.  相似文献   

7.
The Wilcox aquifer is a major groundwater resource in the northern Gulf Coastal Plain (lower Mississippi Valley) of the USA, yet the processes controlling water chemistry in this clastic aquifer have received relatively little attention. The current study combines analyses of solutes and stable isotopes in groundwater, petrography of core samples, and geochemical modeling to identify plausible reactions along a regional flow path ~300 km long. The hydrochemical facies evolves from Ca-HCO3 upgradient to Na-HCO3 downgradient, with a sequential zonation of terminal electron-accepting processes from Fe(III) reduction through SO4 2? reduction to methanogenesis. In particular, decreasing SO4 2? and increasing δ34S of SO4 2? along the flow path, as well as observations of authigenic pyrite in core samples, provide evidence of SO4 2? reduction. Values of δ13C in groundwater suggest that dissolved inorganic carbon is contributed both by oxidation of sedimentary organic matter and calcite dissolution. Inverse modeling identified multiple plausible sets of reactions between sampled wells, which typically involved cation exchange, pyrite precipitation, CH2O oxidation, and dissolution of amorphous Fe(OH)3, calcite, or siderite. These reactions are consistent with processes identified in previous studies of Atlantic Coastal Plain aquifers. Contrasts in groundwater chemistry between the Wilcox and the underlying McNairy and overlying Claiborne aquifers indicate that confining units are relatively effective in limiting cross-formational flow, but localized cross-formational mixing could occur via fault zones. Consequently, increased pumping in the vicinity of fault zones could facilitate upward movement of saline water into the Wilcox.  相似文献   

8.
《International Geology Review》2012,54(13):1497-1531
The NW–SE-trendingLate Cretaceous–Cenozoic Urumieh-Dokhtar Magmatic Arc (UDMA) in southwest Iran hosts numerous Plio-Quaternary subvolcanic porphyritic andesitic to rhyodacitic domes intruded into a variety of rock sequences. Bulk-rock geochemical data show that the calc-alkaline dacitic to rhyodacitic subvolcanic rocks share compositional affinities with high-silica adakites, including high ratios of Na2O/K2O >1, Sr/Y (most >70), and La/Yb (>35), high Al2O3 (>15 wt.%), low Yb (<1.8 ppm) and Y (<18 ppm) contents, no significant Eu anomalies, and flat to gently upward-sloping chondrite-normalized heavy rare-earth element (HREE) patterns. All analysed rocks are characterized by enrichment in large-ion lithophile elements (LILEs) and depletion in high field strength elements (HFSEs). They also display typical features of subduction-related calc-alkaline magmas. In chondrite-normalized rare-earth element patterns, the light rare-earth elements (LREEs) are enriched ((La/Sm) N = 3.49–7.89) in comparison to those of the HREE ((Gd/Yb) N = 1.52–2.38). Except for the G-Aliabad Dome, plagioclase crystals in the Shamsabad, Ostaj, Abdollah, and Bouragh Domes are mostly oligoclase to andesine (An19–49). Amphibole and biotite are abundant ferromagnesian minerals in the subvolcanic rocks. Calcic amphiboles are dominantly magnesiohornblende, magnesiohastingsite, and tschermakite with Mg/(Mg + Fetot) ratios ranging from 0.58 to 0.78. In all the studied domes, amphiboles are typically ferric iron-rich, but that those the Shamsabad Dome have the highest Fe3+/(Fe3+ + Fe2+) ratios, between 0.69 and 0.98. Amphiboles from the Ostaj and Shamsabad Domes are relatively rich in F (0.39–1.01 wt.%) in comparison to the other studied domes. This phase commonly shows pargasitic and hastingsitic substitutions with a combination of tschermakitic and edenitic types.

Temperature-corrected Al-in-hornblende data show that amphibole phenocrysts from the Ostaj, Abdollah, and G-Aliabad Domes crystallized at pressures ranging from 2.14 to 3.42 kbar, 3.49 to 3.96 kbar, and 2.02 to 3.47 kbar, respectively. Temperatures of crystallization calculated with the amphibole–plagioclase thermometer for the Ostaj, Abdollah, and G-Aliabad subvolcanic domes range from 735°C to 826°C (mean = 786 ± 29), 778°C to 808°C (mean = 791 ± 13), and 866°C to 908°C (mean = 885 ± 12), respectively. In the annite–siderophyllite–phlogopite–eastonite quadrilateral, biotite from the G-Aliabad, Bouragh, and Ostaj Domes are characterized by relatively low total Al contents with variable Fetot/(Fetot + Mg) values from 0.26 to 0.43. All biotite analyses define a nearly straight line in the X Mg versus Fetot plot, with r = –0.96 correlation coefficient. In comparison to other domes, the F content of biotite from the G-Aliabad Dome shows high concentrations in the range of 1.80–2.57 wt.% (mean = 2.20). Inferred pre-eruptive conditions based on the calcic amphibole thermobarometric calculations for the Shamsabad, Abdollah, and Ostaj Domes show that the calc-alkaline subvolcanic magma chamber, on average, was characterized by a water content of 6.10 wt.%, a relatively high oxygen fugacity of 10–10.66 (ΔNNO + 1.28), a temperature of 896°C, and a pressure of 2.75 kbar.  相似文献   

9.
This study assesses the landslide susceptibility of the South Pars Special Zone (SPSZ) region that is located in southwest Iran. For this purpose, a combinatorial method containing multi-criteria decision-making, likelihood ratio and fuzzy logic was applied in two levels (regional and local) at three critical zones (northwest, middle and southeast of the project area). The analysis parameters were categorised in seven main triggering factors such as climatology, geomorphology, geology, geo-structure, seismic activity, landslide prone areas and man-made activities which have different classes with multi-agent partnership correlations. Landslide susceptibility maps were prepared for these levels and zones after purified and enriched fuzzy trending runs were performed. According to the results of the risk-ability assessment of the landslide occurrences for SPSZ, the north part of the study area which includes the south edge of the Assalouyeh anticline and the southern part of the Kangan anticline were estimated as high-risk potential areas that were used in landslide hazard mitigation assessment and in land-use planning.  相似文献   

10.
In the Republic of Djibouti (Horn of Africa), fractured volcanic aquifers are the main water resources. The country undergoes an arid climate. Alluvial aquifers exist in the wadis (intermittent streams) valleys and, in relation with volcanic aquifers, form complex volcano-sedimentary systems. Due to increasing water demands, groundwater resources are overexploited and require a rigorous management. This paper is focused on the Dalha basalts aquifer, located in the Dikhil area (Southwest of Djibouti). This aquifer is of vital importance for this area. Hydrochemical data and isotopic tracers (18O and 2H) were used to identify factors and phenomena governing the groundwater’s mineralization. The Piper diagram shows complex water types. Results from multivariate statistical analyses highlight three water families according to their locations: (1) groundwater characterized by low ionic concentrations located at the wadis zones; (2) groundwater characterized by moderate salinity and (3) highly mineralized waters mainly flowing in the eastern and central part of the study area, in volcanic aquifers. Results from scatter plots, especially Na versus Cl and Br versus Cl, suggest that the origin of more saline waters is not from dissolution of halite. The δ18O and δ2H data indicate that the groundwater flowing in the alluvial aquifer is of meteoric origin and fast percolation of rainwater occurs in the volcanic aquifers. These findings provide a preliminary understanding of the overall functioning of this complex volcano-sedimentary system. Additional investigations (pumping tests, numerical modeling) are in progress to achieve a more comprehensive understanding of this system.  相似文献   

11.
Groundwater contamination is a well-known phenomenon, which occurs on local and regional scales in Izeh polje. The aims of this paper are investigation of the impact of human activities on the polje ecosystem, determination of the vulnerability of ground water, and to solve environmental problems. Nitrate contamination of groundwater in the Izeh polje was predicted using a solute transport model. The nitrate concentration in groundwater in most parts of Izeh polje is greater than maximum concentration permissible for drinking water, i.e., 45 mg/l. The main source of nitrate in the eastern underground areas of Izeh city is the domestic sewage. Bacterial pollution of shallow ground water in Izeh polje is severe and widespread. About 45% of ground water samples in May and September 2001 have positive MPN coliforms. Infiltration of polluted surface waters and decrease of water table depth, have lead to bacterial pollution of 80% of ground water samples in January 2002. The northeast, south and southwest areas of Izeh polje have higher pollution potential rather than its middle parts. The aquifer vulnerability indices in the middle, eastern, and northern parts of the polje are moderately lower as a result of decreased sediment size of the aquifer. The pollution in the polje depends on the amount and presence of pollutants. If they do exist, the possibility of pollution is considerable due to the coarseness of materials and shallow depth of groundwater table.  相似文献   

12.
Determination of total petroleum hydrocarbon distribution (TPH) in groundwater of Dezful aquifer was the main purpose of this study. The study area, which is located between latitudes 32°00′ and 32°35′?N and longitudes 48°10′ and 49°35′?E, covers about 1,920 km2 in the north of Khuzestan Province, Iran. Hydrocarbon pollutants in the area were being released into the aquifer, from a variety of sources. An oil pipe crash accident, which occurred on 19 Feb. 2009 in the vicinity of the northern part of the study area, released about 6,000 barrels of crude oil to the Karkhe River. Other possible sources of TPH in the region are asphalt factories, gas stations, and the Sabzab oil pump station. Since the main source of drinking water in the Dezful area is groundwater reservoirs, this study would be very crucial, especially when there is considerable agricultural activity in the area as well. In order to determine the presence of TPH and heavy metals in the groundwater, samples were taken from wells with different usage within two periods, i.e., in Nov. 2008 and May 2009. The second sampling operation was carried out to determine the effect of the accident in the water resources. In situ groundwater parameter measurements including pH, dissolved oxygen, temperature, and electrical conductivity were also carried out in the field. Based on the results, there are four zones in the study area which were contaminated with TPH from different origins: (1) southeast of Dezful City, which was contaminated by Shokati gas station; (2) southeast of Shush City, which was contaminated by an asphalt factory; (3) southwest of Dezful City, which was contaminated by Sabzab oil pump station; and (4) the shores of Karkhe River which were contaminated due to the pipeline crash accident. This could be a serious threat to the environment and human health because TPH concentration was higher than the EPA standard in the study area. Heavy metals were not distributed in a uniform pattern in the aquifer. The concentrations were lower than the contamination level based on the EPA drinking standard, and there was no meaningful relation between concentrations of TPH and the heavy metals. It was recommended that a monitoring network should be designed to monitor oil contaminants in the ground and surface water monthly because of importance of the water resources and presence of potential oil contaminant sources.  相似文献   

13.
Groundwater is the main source of water in arid and semi-arid regions, so it is very important to recognize vulnerable parts of aquifer under future climate change conditions. In this research, 16 climate models were evaluated based on weighting approach. HADCM3 and CGCM2.3.2a models were selected for temperature and precipitation prediction, respectively. LARS-WG was used for downscaling AOGCMs outputs. Results show that temperature increase by 1.4 °C and precipitation changes between +10 and ?6 % under B1 and A2 emission scenario, respectively. Runoff volumes will decrease by ?39 % under A2 emission scenario whereas runoff volume will increase by +12 % under B1 emission scenario. Simulation of groundwater head variation by MODFLOW software indicates higher groundwater depletion rate under A2 scenario compared to B1 scenario. Groundwater model outputs indicate that the most vulnerable part of the aquifer is located in the southwest region. Large number of extraction wells and low aquifer transmissivity are the reasons for high vulnerability of the region.  相似文献   

14.
15.
Bardsir plain is located in the central part of Kerman Province of Iran. The relative prevalence of arsenic-related cancers, the high concentration of arsenic in nearby plains, as well as the recharge of this aquifer through the mountains composed of high-sulfide volcanic rocks have been motivations of the authors to study the concentration of this element in Bardsir plain. Arsenic concentration was measured in 63 groundwater samples using inductively coupled plasma mass spectrometry method. The results were evaluated through iso-concentration maps, correlation diagrams, and multivariate statistical methods. Accordingly, the concentration of arsenic ranges from 1.3 to 464.5 μg/l with an average value of 134.2 μg/l. So, the groundwaters are enriched with arsenic to much higher levels than permitted for than drinking water acceptable level (10 μg/l). The high arsenic levels in groundwaters of Bardsir plain are ascribed to joint influence of decomposition of sulfides present in mountainous volcanic rocks and the mixing with hydrothermal waters in some locations. Supposedly, the prevalence of higher than 8 pH values has enhanced the release of arsenic from Fe-hydroxides generated during sulfide weathering process.  相似文献   

16.
In the coastal region of Bangladesh, groundwater is mainly used for domestic and agricultural purposes, but salinization of many groundwater resources limits its suitability for human consumption and practical application. This paper reports the results of a study that has mapped the salinity distribution in different aquifer layers up to a depth of 300 m in a region bordering the Bay of Bengal based on the main hydrochemistry and has investigated the origin of the salinity using Cl/Br ratios of the samples. The subsurface consists of a sequence of deltaic sediments with an alternation of more sandy and clayey sections in which several aquifer layers can be recognized. The main hydrochemistry shows different main water types in the different aquifers, indicating varying stages of freshening or salinization processes. The most freshwater, soft NaHCO3-type water with Cl concentrations mostly below 100 mg/l, is found in the deepest aquifer at 200–300 m below ground level (b.g.l.), in which the fresh/saltwater interface is pushed far to the south. Salinity is a main problem in the shallow aquifer systems, where Cl concentrations rise to nearly 8000 mg/l and the groundwater is mostly brackish NaCl water. Investigation of the Cl/Br ratios has shown that the source of the salinity in the deep aquifer is mixing with old connate seawater and that the saline waters in the more shallow aquifers do not originate from old connate water or direct seawater intrusion, but are derived from the dissolution of evaporite salts. These must have been formed in a tidal flat under influence of a strong seasonal precipitation pattern. Long dry seasons with high evaporation rates have evaporated seawater from inundated gullies and depressions, leading to salt precipitation, while subsequent heavy monsoon rains have dissolved the formed salts, and the solution has infiltrated in the subsoil, recharging groundwater.  相似文献   

17.
During the French-Japanese Kaiko project, Seabeam, seismic and submersible observations were made in the eastern part of the Nankai subduction zone, close to the area of collision between the Izu-Bonin island arc and the Japan margin. The most prominent feature is the Zenisu Ridge, an elongated relief of the Philippine Sea plate running parallel to the Trench. Magnetic anomalies indicate that the crust of the Zenisu Ridge is a part of the Shikoku oceanic basin formed in the Early Miocene, 23 Ma ago and presumably uplifted at a later stage. Structural analysis of seismic data and diving observations lead us to interpret the superficial structure as being due to compressive tectonics. Mapping the acoustic basement reveals that the southeastern flank of the ridge is bounded by a double thrust, both segments being of equal magnitude (vertical offset about 1 to 1.5 km). Geophysical data support the hypothesis of a main thrust cutting through most of the lithosphere and flattening at depth. The overall structure of the surrounding area reveals a compressive deformation zone widening toward the east, the magnitude of the compressive deformation decreasing westward as well as southward of the Zenisu Ridge.  相似文献   

18.
Numerical models are useful in the evaluation of the interaction between groundwater systems and mining activities. They can be successfully used to predict the quantity of inflow into open pits and to design an appropriate dewatering system. In this paper, a two-dimensional axi-symmetric finite element model called SEEP/W has been used to predict the groundwater inflow into Sangan open pit mine (anomaly north C). The Sangan iron mine is located at 280 km south-east of Mashhad, Iran, in arid and warm climate conditions wherein precipitation is generally limited. The water inflow to the pit is mainly from a confined aquifer, mainly by horizontal flow in the upper layers and vertical flow at the pit bottom. The results of the numerical model of the ground water inflow are presented and compared with those obtained from Theis, Cooper-Jacob and Jacob-Lohman analytical solutions. Ground water inflow monitoring was also carried out in a trial excavation at the Sangan mine in order to calibrate the model. The model was then used to predict groundwater inflow into Sangan open pit mine during its advancement. This model provides valuable information for designing an appropriate dewatering system.  相似文献   

19.
20.
Investigation on drought characteristics such as severity, duration, and frequency is crucial for water resources planning and management in a river basin. While the methodology for multivariate drought frequency analysis is well established by applying the copulas, the estimation on the associated parameters by various parameter estimation methods and the effects on the obtained results have not yet been investigated. This research aims at conducting a comparative analysis between the maximum likelihood parametric and non-parametric method of the Kendall \(\tau \) estimation method for copulas parameter estimation. The methods were employed to study joint severity–duration probability and recurrence intervals in Karkheh River basin (southwest Iran) which is facing severe water-deficit problems. Daily streamflow data at three hydrological gauging stations (Tang Sazbon, Huleilan and Polchehr) near the Karkheh dam were used to draw flow duration curves (FDC) of these three stations. The \(Q_{75}\) index extracted from the FDC were set as threshold level to abstract drought characteristics such as drought duration and severity on the basis of the run theory. Drought duration and severity were separately modeled using the univariate probabilistic distributions and gamma–GEV, LN2–exponential, and LN2–gamma were selected as the best paired drought severity–duration inputs for copulas according to the Akaike Information Criteria (AIC), Kolmogorov–Smirnov and chi-square tests. Archimedean Clayton, Frank, and extreme value Gumbel copulas were employed to construct joint cumulative distribution functions (JCDF) of droughts for each station. Frank copula at Tang Sazbon and Gumbel at Huleilan and Polchehr stations were identified as the best copulas based on the performance evaluation criteria including AIC, BIC, log-likelihood and root mean square error (RMSE) values. Based on the RMSE values, nonparametric Kendall-\(\tau \) is preferred to the parametric maximum likelihood estimation method. The results showed greater drought return periods by the parametric ML method in comparison to the nonparametric Kendall \(\tau \) estimation method. The results also showed that stations located in tributaries (Huleilan and Polchehr) have close return periods, while the station along the main river (Tang Sazbon) has the smaller return periods for the drought events with identical drought duration and severity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号