首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
永平铜矿成矿流体特征研究   总被引:10,自引:0,他引:10       下载免费PDF全文
江西永平铜矿床产于萍乡-乐平断裂拗陷带中,受中石岩统叶家湾组砂页岩和灰岩地层控制,流体包裹 和硫,铅同位素数据表明,成矿流体主体为海水,并可能有部分深源流体加入,盐度w(NaCl)eq=1.5-5%,成矿作用可以分为3个阶段,在220-350度阶段形成层状矿体,在280-360度阶段形成脉状矿体;在180-300度阶段形成后期混合岩中的硫化的-石英脉,是一个类似于矿型和塞浦路斯型的华南型喷流沉积块状硫化物矿床。  相似文献   

2.
云南普朗斑岩型铜矿床成矿流体特征及矿床成因   总被引:3,自引:0,他引:3  
普朗铜矿床为滇西北地区一超大型斑岩型铜多金属矿床,它产于印支晚期石英闪长玢岩-石英二长斑岩-花岗闪长斑岩复式侵入体内,已有研究表明其形成于印支期。本次流体包裹体岩相学、显微测温及碳、氢、氧同位素综合研究表明:黄铜矿±黄铁矿-石英脉石英中主要发育含NaCl子矿物三相、气液两相及富气相3种类型的包裹体,成矿流体属中高温、高盐度(w(NaCl))NaCl-H2O热液体系,来源于印支晚期岩浆活动;辉钼矿±黄铜矿-石英脉石英中发育含NaCl子矿物三相、气液两相及含CO2 3种类型的包裹体,成矿流体属中高温、高盐度NaCl-CO2-H2O热液体系,推测来源于后期岩浆活动;晚期黄铜矿±辉钼矿-方解石脉中主要发育气液两相包裹体,成矿流体为中低温、低盐度NaCl-H2O热液体系,系NaCl-CO2-H2O型成矿流体演化产物。据此,结合区域广泛叠加发育燕山期斑岩钼矿化成矿背景,提出普朗超大型斑岩矿床可能存在燕山期Mo、Cu成矿作用叠加的认识。  相似文献   

3.
云南羊拉地区不同类型铜矿床流体包裹体研究   总被引:10,自引:0,他引:10  
云南羊拉地区现已发现4种类型的铜(多金属)矿床,即喷流-沉积(层状矽卡岩)型铜矿床、交代成因矽卡岩型铜矿床、脉状热液充填-交代型铜多金属矿床和斑岩型铜多金属矿床.对前3类矿床的流体包裹体系统研究对比表明,不同类型铜(多金属)矿床的流体包裹体特征明显不同,其中:层状矽卡岩中的流体包裹体以类型多、组分复杂、均一温度(100~620°C,一般大于300°C)和盐度高[w(NaCl)为8.3%~55.0%,一般w(NaCl)≥20.0%]且变化范围大、密度高(一般大于1.00 g/cm3)、捕获压力低(10~25 MPa)为特征,流体来源于深部和海水二个端元,其演化特征符合二元混合模式;交代矽卡岩以流体包裹体类型简单、组分单一、均一温度(一般小于250°C)和盐度中-低[w(NaCl)为9.0%~20.0%]、密度低(一般小于1.00 g/cm3)且变化范围大、捕获压力高(150 MPa)为特征,反映其流体来源单一,演化趋势属等组分自然冷却过程;脉状矿床(体)以中低温度、中等偏低的盐度和高的捕获压力为特征,其成矿流体包括3个均一温度和盐度相差不大的端元流体,所观测的流体包裹体为这3种端元流体按不同比例混合的结果.流体包裹体特征研究表明,里农铜矿集中区存在多期次、大规模的地质流体活动,这为该区大规模成矿提供了有利的条件.  相似文献   

4.
陕西金堆城斑岩钼矿床成矿流体研究   总被引:18,自引:0,他引:18  
陕西金堆城斑岩钼矿床是中国最大的钼矿床之一,按照脉体相互切割关系,成矿过程可分为两期十个阶段。矿区内流体包裹体研究表明:成矿流体以富CO2为特征,温度介于83℃~142℃之间,盐度介于27.5~42.5wt%NaCl两个区间内,具有典型的双配分模式特征。氢氧同位素特征研究表明成矿物质主要来源于岩浆流体。晚阶段有大量雨水混入热液流体中,导致流体的温度、盐度和δ18OH2O、δD值下降,引起了成矿流体中的钼金属沉淀,形成了金堆城超大型斑岩钼矿床。  相似文献   

5.
河北撒岱沟门斑岩型钼矿床成矿流体特征及其演化   总被引:1,自引:1,他引:0  
撒岱沟门钼矿床位于河北省境内,是该区目前已知规模最大的钼矿床,矿体分布于二长花岗岩体内,钼矿化主要与微斜长石化、硅化、白云母化关系密切.流体包裹体研究表明,撒岱沟门钼矿床主要发育3种类型的包裹体气液两相包裹体、含CO2三相包裹体和CO2包裹体.成矿前与成矿期后流体以气液两相包裹体为主,包裹体均一温度、盐度分剐为280℃~452℃、5.4%~18.4%NaCl eq和153℃~279℃、3.9%~9.7%NaCl eq;成矿期流体中3类包裹体都发育,包裹体均一温度为170℃~370℃,盐度4.3%~14.4%NaCl eq;氢氧同位素研究表明,撒岱沟门钼矿床石英中的δD为-82‰~-98‰,δ18OH2O为0.1‰~6.2‰,成矿流体以岩浆水为主,晚期有大气水的混入.成矿流体在形成过程中经历了3个阶段的流体演化早期岩浆脱水、脱气,成矿期不混溶作用和晚期大气水混合,其中,流体的不混溶作用时辉钼矿的沉淀成矿产生了积极的影响.  相似文献   

6.
大横路钴铜矿床为大型铜伴生钴矿床,矿体主要赋存于大栗子组中段含碳绢云千枚岩之中。矿床经历了海底喷流沉积、变质改造、热液叠加及表生氧化4期成矿作用。热液叠加期形成脉状与浸染状矿石并对层状矿体起到了局部改造的作用,可进一步划分为Ⅰ石英-黄铁矿阶段、Ⅱ石英-方铅矿阶段。流体包裹体岩相学、显微测温及C、H、O同位素研究,表明Ⅰ阶段石英中发育气液两相流体包裹体,均一温度为178~229℃,盐度为6.0%~11.8% NaCleqv,属于中温、低盐度的H2O-NaCl体系。流体包裹体的δDH2O约为-82.3‰~-84.8‰,δ18OH2O为5.5‰~6.4‰,δ13CPDB为-9.7‰~-5.1‰,反应成矿流体主要来自岩浆水。Ⅱ阶段石英中也以气液两相包裹体为主,均一温度为113~169℃,盐度为3.0%~8.5% NaCleqv,属于低温、低盐度的H2O-NaCl体系。流体包裹体的δD为-96.3‰~-90.7‰,δ18OH2O为1.2‰~2.5‰,δ13CPDB为-20.7‰~-16.7‰,反映成矿流体具有岩浆水与大气水混合的特点。  相似文献   

7.
云南金平龙脖河铜矿床的成矿流体特征   总被引:2,自引:0,他引:2  
龙脖河铜矿床流体包裹体和氢氧同位素研究表明其成矿流体总体上具中温、中高盐度和中偏高密度特征.成矿溶液是高矿化度的Na -Ca2 氯化物型,主要来源于岩浆水、地下热卤水、变质水混合型.从火山沉积成矿期到热液改造成矿期成矿流体的温度、盐度、压力、密度逐渐降低,前者相对于后者的成矿作用是为中性偏弱酸性环境,后者则酸性氧化性质更加明显,显示其氧化程度和开放程度的增加.  相似文献   

8.
滇西兰坪盆地西缘铜矿床矿物流体包裹体研究   总被引:5,自引:0,他引:5  
滇西兰坪中新生代盆地西缘发育众多的铜多金属矿床,主要以脉状或透镜状赋存于由砂岩、粉砂岩和页岩组成的含盐红色碎屑岩建造中,或产于火山岩中。本文在前人工作基础上,对区域3个代表性矿床进行了系统的矿物流体包裹体地球化学研究,结果表明:区域铜矿床矿物流体包裹体类型简单,以气液两相包裹体和液相包裹体为主;均一温度不高,显示成矿为中低温度;流体包裹体成分显示为a^+(K^+)+Ca^2+Cl^-+SO^2-4型,表明成矿流体主要是以大气降水补给的热卤水;成矿流体气相组成主要为H2O和CO2,还原性烃类气体的存在并与氧化性气体的反相关关系显示其与盆地有机质的密切关系及在成矿过程中的重要性。结合成矿地质背景及矿物氢氧同位素的分析,认为该带中的矿床地幔物质参与成矿是次要的,成因上应为受深断裂控制的、大气降水补给的热卤水型矿床。  相似文献   

9.
陕西省双王金矿床成矿流体特征及其地质意义   总被引:1,自引:3,他引:1  
双王金矿位于陕西省太白县西南部,矿床赋存于秦岭泥盆系地层中。双王金矿床8号、9号、7号、5号、6号、2号矿体内热液矿物流体包裹体系统研究表明:成矿早期、主成矿期和成矿后期包裹体均一温度主要范围分别为300~463℃、220~340℃和100~279℃。主成矿期成矿流体具有低盐度(2.1%~22.7%NaCleqv)、富CO2和含有N2、CH4等气体的特征。从矿区东部向西部成矿压力有逐渐降低的趋势,流体体系趋于开放。成矿流体来源较为复杂,以岩浆水和变质水为主,后期有大气降水的混入。包裹体的多样性及演化特征和角砾岩型矿化特征显示双王金矿床成矿流体具有不混溶性特征,成矿压力约为100~170 MPa。流体的减压沸腾是导致金沉淀成矿的重要原因。  相似文献   

10.
辽宁高家堡子银矿床流体包裹体研究   总被引:10,自引:0,他引:10  
高家堡子银矿床经历了沉积—变质期和热液叠加期。包裹体岩相学研究表明,沉积—变质期不发育可供研究的流体包裹体,热液叠加期发育大量原生流体包裹体,其中石英—黄铁矿阶段主要发育型气液两相、型含CO2三相、型单CO2及型单液相包裹体,包裹体均一温度为136~359℃,盐度为3.1%~15.9%NaCleq,成矿流体属NaCl-H2O-CO2体系;独立银阶段主要发育型气液两相和型单液相包裹体,包裹体均一温度、盐度分别为114~190℃,2.0%~5.5%NaCleq,属低温、低盐度NaCl-H2O流体体系。通过与矿区新岭岩体中流体对比研究发现,两者存在一定的相似性,表明成矿阶段流体主要来自岩浆热液,在成矿过程中,成矿流体经历了早期阶段不混溶作用到晚期阶段地下水的混合过程。流体的不混溶作用到混合过程对银的沉淀成矿产生了重要影响。  相似文献   

11.
云南羊拉铜矿床位于金沙江构造带中部,是中-晚三叠世金沙江洋盆向西俯冲闭合-碰撞造山过程中形成的一个大型铜矿床.矿体多呈层状、似层状产出,与酸性岩体关系密切,矿体受岩体、围岩和构造“三位一体”共同控制,具明显的夕卡岩型矿床特征.通过对矿区大理岩以及不同成矿阶段形成的典型矿物的稳定同位素地球化学研究,发现夕卡岩中最主要的矿物石榴石的δ18OSMOW为6.7‰,暗示了夕卡岩可能直接继承了酸性岩体的氧同位素组成;主成矿期石英的δD值变化范围为-112‰~-77‰,δ18OH2o值变化范围为-2.42‰~4.85‰,反映了成矿流体可能主要为岩浆水,并有大气降水的加入;方解石的δ13CPDB值变化范围为-5.2‰~-1.7‰,δ18 OSMOW值变化范围为12.7‰~ 20.1‰,表明其碳、氧可能主要来源于岩浆,部分可能来自于大理岩;围岩大理岩的δ13CPDB值为3.6‰~5.0‰,δ18 OSMOW值为21.2‰~ 25.4‰,说明大理岩是由海相碳酸盐岩经重结晶作用形成,随着大理岩与矿体距离的减小,其δ13C、δ18O值都有不断降低的趋势,说明在成矿流体交代大理岩围岩的过程中,低δ13C、δ18O值的流体不断与大理岩发生同位素交换,使大理岩的δ13C、δ18O值降低,且距离矿体越近,同位素交换越强烈;矿石硫化物的δ34S值为-6.9‰~2.5‰,集中于-2‰~1‰,说明矿石硫主要为岩浆硫.综上所述并结合矿床的地质特征,认为羊拉铜矿床为一个典型的夕卡岩型铜矿床.  相似文献   

12.
云南羊拉铜矿床磁黄铁矿标型矿物学特征及成矿意义   总被引:2,自引:0,他引:2  
羊拉铜矿床是三江成矿带中段重要的大型铜矿床之一,其矿床成因一直没有明确界定。里农矿段是羊拉铜矿床最主要的组成部分,该矿段矿石中黄铜矿、磁黄铁矿和黄铁矿发育,其中,磁黄铁矿矿石是矿床中含量最高的硫化物矿石。本文选取里农矿段的磁黄铁矿矿石样品,利用矿相学、电子探针和X射线衍射对磁黄铁矿形态、成分和结构标型特征进行分析,探讨其形成环境和沉淀机制,为揭示矿床成因提供有效约束。研究结果表明:羊拉铜矿床矿体具有典型的矽卡岩型矿床特征,多呈层状、似层状产出,且与花岗闪长岩岩体关系密切,受花岗闪长岩岩体和大理岩、变质石英砂岩等地层以及断裂构造的共同控制;磁黄铁矿矿石呈铁黑色、古铜色、铜褐色,块状和浸染状构造;镜下为黄白色、黄褐色,无内反射色,非均质性不明显,他形-半自形粒状结构。局部可见磁黄铁矿被石英±黄铜矿±黄铁矿±方解石脉切断,也见闪锌矿中有乳滴状、叶片状黄铜矿发育。磁黄铁矿中Fe元素含量为59.25%~60.25%,平均为59.71%,S元素为39.10%~39.97%,平均39.52%,化学分子式为Fe6S7~Fe8S9;晶胞参数平均值为a0=11.912,b0=6.859,c0=12.813,磁黄铁矿的粉晶X射线衍射曲线呈强度大致相等的双峰,表明羊拉铜矿床的磁黄铁矿以单斜磁黄铁矿为主。据此判断该区成矿作用过程中富硫、并经历快速降温变化,非均匀应力作用使六方磁黄铁矿转化成了单斜磁黄铁矿;磁黄铁矿中的硫是以S2-的形式存在,在六方磁黄铁矿向单斜磁黄铁矿的转化过程中,磁黄铁矿晶格中的Fe离子略有减少,Fe1-xS的电负性稍有增加,还原性增强;在Fe-S相图中,磁黄铁矿位于单斜磁黄铁矿和黄铁矿共生相区,表明成矿温度在250℃左右。即羊拉铜矿床的磁黄铁矿主体是形成于富硫、非均匀应力、中温的还原环境。该区磁黄铁矿富Co贫Ni,Co/Ni值范围较大,分布于矽卡岩型铜矿床范围附近,与典型矽卡岩型铜矿有相似的矿床地质和矿物学特征,表明羊拉铜矿床属于矽卡岩型矿床。据此综合羊拉铜矿床的构造背景和地球化学特征,推断了其可能的成矿作用过程:晚三叠世早期,该区由挤压环境逐步转换为伸展环境,使得之前的一些逆断层叠加张性特点。含矿岩浆沿这些断裂裂隙上侵,与低温围岩(主要为里农组大理岩)接触并有大气降水的加入,使得岩浆及成矿热液快速降温。冷凝的岩浆和热液堵塞了围岩的裂隙,原本开放的环境逐渐变得封闭、高压和还原。后续岩浆在此封闭的环境中降低了冷凝速度,而在还原性条件下,流体中铜元素的溶解度比在氧化性流体中低,更有益于铜元素的沉淀成矿,从而形成羊拉铜矿。  相似文献   

13.
李洁  陈文  雍拥  杨莉  刘月东  罗诚  孙敬博  张斌 《岩石学报》2014,30(8):2269-2278
云南羊拉铜矿位于德钦县羊拉乡,构造上夹持在金沙江断裂和羊拉断裂两条南北向区域性断裂之间。矿区内自北向南由4个主要岩体组成,对应7个主要矿段,其中里农矿段为羊拉铜矿集中区。本文选取里农岩体边缘相岩石进行岩石学、岩石地球化学以及年代学方面的研究。地球化学特征表明,岩体亏损高场强元素,富集大离子亲石元素,稀土元素配分图解上显示出具有弱的负Eu异常,轻重稀土比值LREE/HREE为9.38~10.23,轻重稀土明显分馏,稀土总量较高的特点,这些均说明源区有来自大陆地壳的贡献;运用Maniar主量元素构造判别法判定里农岩体为大陆碰撞型花岗岩(CCG型花岗岩)。通过锆石U-Pb定年得到了227.73±0.99Ma的年龄数据,代表岩体的侵位时代。结合以往研究,初步认为:1)里农岩体为大陆碰撞型花岗岩,形成于碰撞造山时期,结合锆石U-Pb年龄可推测至晚三叠世(227Ma之前),金沙江缝合带沿该处已经闭合,进入到了碰撞造山阶段;2)羊拉铜矿为构造控矿矿床。在里农岩体持续时间约12Myr左右(239~227Ma)的缓慢冷却阶段,岩浆热液逐渐富集矿化金属元素,在227Ma左右,岩体及地层快速抬升冷却,羊拉铜矿开始进入主成矿阶段。  相似文献   

14.
15.
云南德钦羊拉大型铜矿隶属我国著名的羊拉-鲁春铜多金属矿化集中区,其铜矿产与区内印支期侵入岩有着密切的时空、成因联系。云南德钦羊拉大型铜矿区与花岗闪长岩岩体密切共生,花岗闪长岩由南往北依次出露路农、里农、江边、贝吾岩体,其中里农花岗闪长岩可见辉绿岩墙侵入。锆石原位U-Pb定年和Lu-Hf同位素分析结果表明,4组年龄分别为238~239Ma(里农和路农岩体),228Ma(江边岩体),222Ma(辉绿岩墙),214Ma(贝吾岩体)。这些年龄代表锆石的结晶年龄,对应路农、里农、江边、辉绿岩墙、贝吾花岗闪长岩岩体的形成年龄,同时显示该岩带由南往北年龄由老到新的侵位序列。显示羊拉大型铜矿区花岗闪长岩体是三叠纪时期的花岗质岩浆多次涌动侵入形成的,其中伴随辉绿岩墙的侵入,岩浆活动持续时间约15Ma。里农铜矿体辉钼矿成矿(Re-Os)年龄为228~230Ma,显然羊拉铜矿床的成矿作用也在该时期完成。羊拉大型铜矿区花岗闪长岩体的全岩εNd(t)值为-5.0~-5.5,中元古代(1.24~1.39Ga)的亏损地幔模式年龄,锆石εHf(t)值为-4.3~+2.4,锆石Hf同位素地壳模式年龄(1.1~1.5Ga),εHf(t)值主要为负值揭示其源区可能主要为陆壳物质,部分锆石的εHf(t)值为正值,说明在其形成过程中有一定比例的亏损地幔物质的加入,源区同位素的不均一,是壳幔相互作用的结果,中元古代模式年龄说明其源区主要以扬子克拉通下地壳物质为主。这些新资料为理解滇西古特提斯构造演化提供了重要的地球化学制约。  相似文献   

16.
云南羊拉铜矿成因新认识及勘查技术模型   总被引:1,自引:0,他引:1  
尹静  徐伯恩  罗诚  尹光候 《矿产与地质》2011,(6):461-469,485
羊拉铜矿主要由里农、路农、江边3个矿段组成.含矿岩系为下泥盆统江边组中段—中上泥盆统里农组上段,产有层状和似层状火山—喷流沉积矿体;印支—燕山早期具岛弧性质的中酸性岩浆侵入,形成矽卡岩型和改造叠加矿体;构造—岩浆演化至燕山早期末形成斑岩和断裂构造中脉状矿体,是一个具有巨大找矿潜力的既受层控,又绕岩体,从岩体穿插至围岩之...  相似文献   

17.
孙诺  黄明  闵毅  陈浪  刘江涛  曹宝宝  熊伊曲 《岩石学报》2014,30(9):2644-2656
宝兴厂斑岩铜钼金矿床是三江成矿带上与富碱斑岩有关的典型斑岩型矿床,产出于金沙江-哀牢山深大断裂带中部东侧。宝兴厂矿床铜、钼、金、铁等各类型矿化皆有发育,具有复杂的岩浆活动及热液演化。矿区岩浆岩主要为喜马拉雅期富碱复式岩体,包括正长斑岩、石英二长斑岩、花岗斑岩和斑状花岗岩等,具有多期次侵入特征。铜钼矿体主要分布于花岗斑岩和斑状花岗岩内部,铁金矿体主要分布于岩体内外接触带上,矿体呈脉状、透镜状或似层状。热液蚀变由内向外分带显著,依次为钾硅酸盐化(黑云母化)、绢云母化、青磐岩化(绿泥石-绿帘石化),局部黏土化。本文通过系统的野外观测、详细的岩芯编录以及全面的岩相学观察,依据矿物共生组合、矿化热液脉体穿切关系及蚀变特征,将宝兴厂矿床内主要矿化脉体分为3类:A脉、B脉及D脉。通过对3类脉体内石英中流体包裹体的显微测温工作和成矿流体物理化学条件计算,剖析了成矿流体演化特征,探讨了成矿作用过程与成因机理。A脉与钾长石化和黑云母化蚀变关系密切,多为不规则脉状,宽约1~5mm,矿物组合一般为石英±钾长石±黑云母±少量黄铜矿±少量黄铁矿。石英多呈他形细粒,少量黄铁矿、黄铜矿沿石英颗粒边界呈浸染状产出。脉体中常含有黑云母、钾长石,两侧常见钾长石蚀变晕。A脉中一般没有矿化。B脉宽约15~30mm,矿物组合一般为:石英±辉钼矿±黄铜矿±黄铁矿。靠近脉壁的石英多为他形细粒,向中心转变为长柱状垂直于脉壁对称生长。硫化物呈线状分布于脉体的中心或边缘。B脉一般没有蚀变,偶见少量的绿帘石化-绿泥石化。D脉与绿泥石化-绢云母化关系密切,脉体规则连续,脉体宽度变化范围大,为1~30mm。矿物组合一般为石英±绿泥石±黄铁矿±少量黄铜矿。石英数量较少,多呈半自形-他形粗粒,相对于B脉黄铁矿含量明显增多,黄铜矿含量减少,呈浸染状分布,脉体中钾长石、黑云母常蚀变为绢云母和绿泥石,脉体两侧常具有绿泥石-绢云母蚀变晕。A脉形成于成矿早阶段斑岩尚未固结时,其流体包裹体以含子晶(NaCl子晶为主)多相包裹体和富气相包裹体组合为特点,均一温度为364~550℃,盐度分别集中在45.64%~52.89%NaCleqv(含子晶多相包裹体)和3.3%~16.34%NaCleqv(气液两相包裹体)两个区间内,该阶段流体显示出沸腾、不混溶及发生相分离特征。根据A脉中5个含石盐子晶的包裹体压力估算图,得出宝兴厂矿床A脉中LVH相包裹体被捕获时的最低压力为50~145MPa,按地压梯度27MPa/km换算,A脉形成的深度最少1.8~5.4km。B脉形成于成矿主阶段,石英中发育含子晶多相包裹体(NaCl子晶)和富气相包裹体,均一温度为210~410℃,盐度集中在34.24%~52.04%NaCleqv和5.23%~13.99%NaCleqv两个区间内,该阶段成矿流体发生减压沸腾作用,使得Cu、Mo、Au大量沉淀,根据NaCl-H2O体系P-T相图压力估算,B脉的形成压力大约为15~48MPa,形成深度为0.56~1.78km。D脉形成于成矿晚阶段,石英以发育大量富液相包裹体为特征,均一温度为223~303℃,盐度集中在3.53%~11.71%NaCleqv范围内,该阶段成矿流体以中-低温、低盐度的岩浆热液与大气降水的混合流体为主,流体压力也降低到15MPa,形成深度不超过0.56km。宝兴厂矿床热液流体演化总体趋势为:由早阶段的高温、中-高盐度的岩浆热液向成矿晚阶段中-低温、低盐度的岩浆热液+大气降水混合流体转变。  相似文献   

18.
河南小秦岭杨砦峪金矿床成矿流体特征   总被引:1,自引:1,他引:1  
河南省杨砦峪金矿床位于华北克拉通南缘,是小秦岭地区大型的石英脉型金矿床。据野外观察,成矿过程经历了4个阶段:Ⅰ黄铁矿-石英脉阶段;Ⅱ石英-黄铁矿阶段;Ⅲ石英-多金属硫化物阶段;Ⅳ石英-碳酸盐阶段。包裹体岩相学、显微测温以及激光拉曼显微探针研究显示,该矿床为CO2-H2O-NaCl±CH4流体体系,并且发生不混溶。从第Ⅰ成矿阶段到Ⅳ成矿阶段,流体包裹体的均一温度范围分别是307~407℃,270~320℃,225~272℃和166~226℃,呈现逐步降低的趋势;盐度w(NaCleq)平均值分别为7.3%,7.1%,9.0% 和6.4%。各阶段成矿压力为120~178 MPa,85~140 MPa,75~130 MPa和60~122 MPa,呈现逐渐降低的趋势。流体不混溶作用是导致杨砦峪矿质沉淀的重要原因,其诱因可能与控矿断裂由压扭转为张扭所导致的构造减压有关。  相似文献   

19.
安徽铜陵冬瓜山铜(金)矿床成矿流体特征及成矿过程探讨   总被引:1,自引:0,他引:1  
流体包裹体的研究表明冬瓜山铜(金)矿床原生流体包裹体分为气液两相水溶液包裹体(Ⅰ型)和含子矿物多相水溶液包裹体(Ⅱ型),以Ⅰ型包裹体为主。同一矿物中多种类型包裹体共存,且均一温度相近、均一方式不同,显示成矿过程中流体可能发生过沸腾作用。流体包裹体均一温度大致可分为318.8~547.5℃、220.1~378.2℃和196.7~263.2℃三个区间,对应流体密度和均一压力分别为0.86~0.98 g/cm3和(219~661)×105 Pa、0.66~1.08 g/cm3 和(26~190)×105 Pa、0.88~0.96 g/cm3和(17~48)×105 Pa,盐度w(NaCleq)峰值为12%~16%和40%~48%。结合成矿流体的演化特征,对成矿过程进行了探讨,认为流体的不混溶是引起成矿物质沉淀富集成矿的重要因素。  相似文献   

20.
陕西穆家庄铜矿床后生成矿作用的流体地球化学证据   总被引:2,自引:2,他引:2  
尽管秦岭泥盆系铅锌金多金属成矿带成矿作用均与热水喷流沉积作用有关,柞山地区却有别于凤太地区,具有独特的铜矿成矿背景。流体包裹体研究揭示了后生成矿流体的两阶段流体演化过程:第一阶段的成矿流体为中温,中高盐度岩浆热液含CO2的NaCl-H2O流体。均一温度为190~265℃,盐度12.5~35.34(wt%NaCl),压力12.8~21.3MPa,在同一寄主矿物中均一温度变化小,而盐度变化极大,是岩浆流体沸腾的产物;第二阶段成矿流体为中高温,中高盐度岩浆期后热液NaCl-H2O流体。均一温度为300~350℃,盐度7.4~41.59(wt%NaCl),压力10.8~19.3MPa。反映了岩浆期后热液流体的二次沸腾。应用流体地球化学的综合方法(包裹体流体组成、演化)识别出后生交代流体性质。穆家庄铜矿的成矿流体第一阶段为岩浆水,第二阶段的成矿流体为岩浆水加部分地层水(建造水)。氢氧同位素分析也支持上述结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号