首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Petrography demonstrates the presence of three types of fibrous calcite cement in buildup deposits of the Kullsberg Limestone (middle Caradoc), central Sweden. Translucent fibrous calcite has intrinsic blue luminescence (CL) indicative of pure calcite. This cement has 2–5 mol% MgCO3, low Mn and Fe (≤ 100 p.p.m.), and is considered to be slightly altered to unaltered, primary low- to intermediate-Mg calcite. Grey turbid fibrous calcite has variable but generally low MgCO3 content (most analyses <2 mol%) and variable CL response, with Mn and Fe concentrations up to 1200 and 500 p.p.m., respectively. The heterogeneous characteristics of this variety of fibrous calcite are caused by diagenetic alteration of a translucent fibrous calcite precursor. Light-brown turbid fibrous calcite has low MgCO3 (near 1 mol%) and variable Mn (up to 800 p.p.m.) and Fe (up to 500 p.p.m.) concentrations, with an abundance of bright luminescent patches, which formed during alteration caused by reducing diagenetic fluids. The δ13C and δ18O values of all fibrous calcite form a tight field (δ13C=1·7 to 3·1‰ PDB, δ18O= ? 2·6 to ? 4·1‰ PDB) compared with fibrous calcite isotope values from other units. Fibrous calcite δ18O values are larger than adjacent meteoric or burial cements, which have δ18O δ ? 8‰ PDB. Consequently, most diagenetic alteration of Kullsberg fibrous calcite is interpreted to have occurred in the marine diagenetic realm. First-generation equant and bladed calcite cements, which pre-date fibrous calcite, are interpreted as unaltered, low-Mg calcite marine cements based on δ13C and δ18O data (δ13C = 2·3 to 2·7‰ PDB, δ18O= ? 2·8 to ? 3·5‰ PDB). Unlike fibrous cement, which reflects global sea water chemistry, first-generation equant and bladed calcite are indicators of localized modification of seawater chemistry in restricted settings. Kullsberg abiotic marine cements have larger δ18O values than most Caradoc marine precipitates from equatorial Laurentia. Positive Kullsberg δ18O values are attributed to lower seawater temperatures and/or slightly elevated salinity on the Baltic platform relative to seawater from which other marine precipitates formed.  相似文献   

2.
The Pennsylvanian phylloid algal mounds exposed in the Cervatina Limestone of the Cantabrian Zone (NW Spain) developed during the highstands of high-frequency shallowing-upward cycles and lack evidence of subaerial exposure at their tops. Mound core facies are composed of massive bafflestones with variable amounts of calcite cements and anchicodiacean phylloid algae with cyathiform thalli preserved in growth position. Through standard petrographic, isotopic (δ18O and δ13C), major and trace element (Ca, Mg, Fe, Mn, Sr) and cathodoluminescence analyses, five calcite cement phases (cement 1 (C1)–cement 5 (C5)) have been identified filling primary and secondary pores. Early marine diagenesis is represented by micritization and non-luminescent to mottled-dull luminescent high-Mg calcite fibrous marine cement (C1). A dissolution phase then occurred and created vuggy and moldic pores. Based on the absence of field or petrographical or geochemical evidence of exposure, it is inferred that dissolution occurred in near-surface undersaturated marine waters with respect to aragonite related to progressive organic matter oxidation. Secondary porosity was subsequently filled by dull-bright-dull bladed high-Mg calcite (C2), which precipitated in the early shallow burial from marine-derived pore waters. Remaining porosity was occluded by shallow-burial precipitates consisting of non-luminescent scalenohedral low-Mg calcite (C3) followed by non-ferroan dull luminescent calcite spar (C4). Latter phases of calcite spar exhibiting non- and dull luminescence (C5) are associated with burial calcite veins. Low δ18O values (around ?8‰), moderately depleted δ13C values (around 0.5‰) and the homogeneity of trace element contents of carbonate matrix, cements and vein-filling calcites suggest burial isotopic re-equilibration and recrystallization, probably in Early Permian times during post-thrusting orocline formation.  相似文献   

3.
Abstract

The Upper Triassic Chang 8 Member, the eighth member of the Yanchang Formation, is a key reservoir interval in the Jiyuan area of the Ordos Basin. The reservoir quality of the Chang 8 Member tight sandstones is extremely heterogeneous owing to the widespread distribution of carbonate cements. The carbonate cements commonly develop near sandstone–mudstone interfaces and gradually decrease away from the interfaces to the centres of the sand bodies. However, the content of carbonate cements (≤6%) has a positive correlation with the visual porosity in the Chang 8 Member sandstone, revealing that the carbonate cements contribute to the compaction resistance and the residual primary pores of reservoirs during the diagenetic process. Three main types of carbonate cement are identified: type I (calcite), type II (calcite and ferrocalcite), and type III (dolomite and ankerite). The type I calcite is characterised by enriched δ13C (mean –3.41‰) and δ18O (mean –15.17‰) values compared with the type II (mean δ13C?=?–7.33‰, δ18O?=?–18.90‰) and type III (mean δ13C?=?–10.0‰, δ18O?=?–20.2‰) cements. Furthermore, the mean δ18O value (–4.7‰) of the type I pore fluids is 1.5‰ and 0.9‰ lower than the type II (mean –3.2‰) and type III (mean –3.8‰) pore fluids, respectively. This indicates that the evolving pore fluids experienced some relative strong water–rock interactions that provided the original materials (e.g. Ca2+, Fe3+, and Mg2+) for the carbonate cements during the diagenetic process. The highly saline lake water directly provided the primary material for the type I calcite precipitation, which also provided the material necessary for the precipitation of the type II and type III carbonate cements, causing enriched δ18O values of the pore fluids during the precipitation of the type II and type III carbonate cements. Although the earlier dissolved pores were filled with ferrocalcite, dolomite and ankerite in the middle–late diagenetic stages, some residual pores and fractures remained to become the potential reservoir storage spaces for the oil and gas exploration in the Jiyuan area.  相似文献   

4.
Carbonate concretions formed in bathyal and deeper settings have been studied less frequently than those formed in shallow‐marine deposits. Similarly, concretions affected by catagenetic conditions have rarely been reported. Calcite concretions in deep‐marine mudstones and greywackes of the Bardo Unit (Sudetes Mountains, Poland) formed during early diagenesis and were buried to significant depths. Petrographic and geochemical (elemental and stable C and O isotopic) analyses document their formation close to the sediment–water interface, prior to mechanical compaction within the sulphate reduction zone and their later burial below the oil window. Although the concretions were fully formed during early diagenesis, the effects of increased temperature and interaction with late‐diagenetic interstitial fluids can be discerned. During maximum burial, the concretions underwent thorough recrystallization that caused alteration of fabric and elemental and O isotope composition. The initial finely crystalline cement was replaced by more coarsely crystalline, sheaf‐like, poikilotopic calcite in the concretions. These large calcite crystals engulf and partially replace unstable detrital constituents. The extremely low δ18O values (down to ?21·2‰ Vienna Pee Dee Belemnite) in the concretions are the result of the increased temperature in combination with alteration of volcanic glass, both causing a significant 18O‐depletion of bicarbonate dissolved in the interstitial fluids. Recrystallization led to uniform O isotope ratios in the concretions, but did not affect the C isotope signature. The δ13C values of the late‐diagenetic cements precipitated in the greywacke and in cracks cutting through concretions imply crystallization in the catagenetic zone and decarboxylation as a source of the bicarbonate. These late‐diagenetic processes took place in a supposedly overpressured setting, as suggested by clastic dykes and hydrofractures that cut through both concretions and host rock. All of these features show how the effects of early and late diagenesis can be distinguished in such rocks.  相似文献   

5.
The Wilde Kirche reef complex (Early-Late Rhaetian) grew as an isolated carbonate structure within the shallow Kössen Basin. At the Triassic/Jurassic boundary a single brief (c. 10–50 ka) period of subaerial exposure occurred. The preserved karst profile (70 m thick) displays a vadose zone, enhanced dissolution at a possible palaeo-watertable (5–15 m below the exposure surface), and a freshwater phreatic zone. Karst porosity was predominantly biomouldic. Primary cavities and biomoulds were enlarged and interconnected in the freshwater phreatic zone; cavity networks developed preferentially in patch reef facies. Resubmergence of the reef complex allowed minor modification of the palaeokarst surface by sea floor dissolution and Fe-Mn crust deposition on a sediment-starved passive margin. Fibrous calcite (FC). radiaxial fibrous calcite (RFC) and fascicular optic calcite (FOC) cements preserved as low Mg calcite (LMC) are abundant in primary and karst dissolution cavities. FC cement is restricted to primary porosity, particularly as a synsedimentary cement at the windward reef margin. FC, RFC and FOC contain microdolomite inclusions and show patchy non-/bright cathodoluminescence. δ18O values of non-luminescent portions (interpreted as near original) are − 1.16 to − 1.82%0 (close to the inferred δ18O of calcite precipitated from Late Triassic sea water). δ13C values are constant (+3 to + 2.2%0). These observations suggest FC, RFC and FOC were originally marine high Mg calcite (HMC) precipitates, and that the bulk of porosity occlusion occurred not in the karst environment but in the marine environment during and after marine transgression. The HMC to LMC transition may have occurred in contact with meteoric water only in the case of FC cement. The most altered (brightly luminescent) portions of RFC/FOC cements yield δ18O=−2.44 to − 5.8%0, suggesting HMC to LMC alteration at up to 34°C. in the shallow burial environment at depths of 180–250 m. Abundant equant cements with δ18O =−4·1 to −7.1%0 show crisp, uniform or zoned dull luminescence. They are interpreted as unaltered cements precipitated at 33–36°C at 200–290 m burial depth, from marine-derived fluids under a slightly enhanced geothermal gradient. Fluids carrying the equant cements may have induced the HMC to LMC transition in the fibrous cements.  相似文献   

6.
Three categories of fibrous calcite from early to middle Caradoc platform-marginal buildups in east Tennessee can be delineated using cathodoluminescent microscopy, minor element chemistry and stable C-O isotopic composition. Bright luminescent fibrous cement has elevated Mn (>1000 p.p.m.), negative δ13C and intermediate δ18O values relative to other types of fibrous calcite. This cement reflects fibrous calcite that interacted with reducing Mn-rich fluids. Dully luminescent fibrous cement has elevated Fe (>400 p.p.m.), positive δ13C and negative δ18O values relative to other fibrous cements. This cement was stabilized by burial fluids. Nonluminescent fibrous cement has low Mn and Fe (generally below 400 p.p.m.) and positive δ13C and δ18O values relative to other types of fibrous calcite. The latter cement is interpreted to be the best material for determining the isotopic composition of calcite precipitated in equilibrium with early to middle Caradoc seawater, which is δ13C=1% PDB and δ18O=?4 to ?5‰ PDB. Results from this study and Ashgillian brachiopods indicate that the average δ18O composition of the Ordovician ocean, during nonglacial periods, was probably never more negative than ?3‰ SMOW. Assuming an Ordovician seawater δ18O value of ?1‰ SMOW, Holston Formation fibrous cements would have precipitated at temperatures between 27 and 36 °C, which is near the upper temperature limit for metazoans. A seawater δ18O value of ?2‰ SMOW yields temperatures ranging from 23 to 31 °C, while a ?3‰ SMOW value yields temperatures of 18–26 °C.  相似文献   

7.
ABSTRACT This paper examines the diagenetic history of dual (i.e. matrix and fracture) porosity reservoir lithologies in Cretaceous to Eocene carbonate turbidites of the Ionian fold and thrust belt, close to the oil‐producing centre of Fier–Ballsh (central Albania). The first major diagenetic event controlling reservoir quality was early cementation by isopachous and syntaxial low‐Mg calcite. These cements formed primarily around crinoid and rudist fragments, which acted as nucleation sites. In sediments in which these bioclasts are the major rock constituent, this cement can make up 30% of the rock volume, resulting in low effective porosity. In strata in which these bioclasts are mixed with reworkedmicrite, isopachous/syntaxial cements stabilized the framework, and matrixporosity is around 15%. The volumetric importance of these cements, their optical and luminescence character (distribution and dull orange luminescence) and stable isotopic signal (δ18O and δ13C averaging respectively; ?0·5‰ VPDB and +2‰ VPDB) all support a marine phreatic origin. Within these turbidites and debris flows, several generations of fractures alternated with episodes of cementation. A detailed reconstruction of this history was based on cross‐cutting relationships of fractures and compactional and layer‐parallel shortening (LPS) stylolites. The prefolding calcite veins possess orange cathodoluminescence similar to that of the host rock. Their stable isotope signatures (δ18O of ?3·86 to ?0·85‰ VPDB and δ13C of – 0·14 to + 2·98‰ VPDB) support a closed diagenetic rock‐buffered system. A similar closed system accounts for the selectively reopened and subsequently calcite‐cemented LPS stylolites (δ18O of ?1·81 to ?1·14‰ VPDB and δ13C of +1·52 to +2·56‰ VPDB). Within the prefolding veins, brecciated host rock fragments and complex textures such as crack and seal features resulted from hydraulic fracturing. They reflect expulsion of overpressured fluids within the footwall of the frontal thrusts. After folding and thrust sheet emplacement, some calcite veins are still rock buffered (δ18O of ?0·96 to +0·2‰ VPDB and δ13C of +0·79 to +1·37‰ VPDB), whereas others reflect external (i.e. extraformational) and thus large‐scale fluid fluxes. Some of these veins are linked to basement‐derived fluid circulation or originated from fluid flow along evaporitic décollement horizons (δ18O around +3·0‰ VPDB and δ13C around +1·5‰ VPDB). Others are related to the maturation of hydrocarbons in the system (δ18O around ?7·1‰ VPDB and δ13C around +9·3‰ VPDB). An open joint system reflecting an extensional stress regime developed during or after the final folding stage. This joint system enhanced vertical connectivity. This open joint network can be explained by the high palaeotopographical position and the folding of the reservoir analogue within the deformational front. The joint system is pre‐Burdigalian in age based upon a dated karstified discordance contact. Sediment‐filled karst cavity development is linked to meteoric water infiltration during emergence of some of the structures. Despite its sediment fill, the karst network is locally an important contributor to reservoir matrix porosity in otherwise tight lithologies. Development of secondary porosity along bed‐parallel and bed‐perpendicular (i.e. layer‐parallel shortening) stylolites is interpreted as a late‐stage diagenetic event associated with migration of acidic fluids during hydrocarbon maturation. Development of porosity along the LPS system enhanced the vertical reservoir connectivity.  相似文献   

8.
The Jebel Ressas Pb–Zn deposits in North‐Eastern Tunisia occur mainly as open‐space fillings (lodes, tectonic breccia cements) in bioclastic limestones of the Upper Jurassic Ressas Formation and along the contact of this formation with Triassic rocks. The galena–sphalerite association and their alteration products (cerussite, hemimorphite, hydrozincite) are set within a calcite gangue. The Triassic rocks exhibit enrichments in trace metals, namely Pb, Co and Cd enrichment in clays and Pb, Zn, Cd, Co and Cr enrichment in carbonates, suggesting that the Triassic rocks have interacted with the ore‐bearing fluids associated with the Jebel Ressas Pb–Zn deposits. The δ18O content of calcite associated with the Pb–Zn mineralization suggests that it is likely to have precipitated from a fluid that was in equilibrium with the Triassic dolostones. The δ34S values in galenas from the Pb–Zn deposits range from ?1.5 to +11.4‰, with an average of 5.9‰ and standard deviation of 3.9‰. These data imply mixing of thermochemically‐reduced heavy sulfur carried in geothermal‐ and fault‐stress‐driven deep‐seated source fluid with bacterially‐reduced light sulfur carried in topography‐driven meteoric fluid. Lead isotope ratios in galenas from the Pb–Zn deposits are homogenous and indicate a single upper crustal source of base‐metals for these deposits. Synthesis of the geochemical data with geological data suggests that the base‐metal mineralization at Jebel Ressas was formed during the Serravallian–Tortonian (or Middle–Late Miocene) Alpine compressional tectonics.  相似文献   

9.
Carbonate concretions in the Lower Carboniferous Caton Shale Formation contain diagenetic pyrite, calcite and barite in the concretion matrix or in different generations of septarian fissures. Pyrite was formed by sulphate reduction throughout the sediment before concretionary growth, then continued to form mainly in the concretion centres. The septarian calcites show a continuous isotopic trend from δ13C=?28·7‰ PDB and δ18O=?1·6‰ PDB through to δ13C=?6·9‰ PDB and δ18O=?14·6‰ PDB. This trend arises from (1) a carbonate source initially from sulphate reduction, to which was added increasing contributions of methanogenic carbonate; and (2) burial/temperature effects or the addition of isotopically light oxygen from meteoric water. The concretionary matrix carbonates must have at least partially predated the earliest septarian cements, and thus used the same carbonate sources. Consequently, their isotopic composition (δ13C=?12·0 to ?10·1‰ PDB and δ18O=?5·7 to ?5·6‰ PDB) can only result from mixing a carbonate cement derived from sulphate reduction with cements containing increasing proportions of carbonate from methanogenesis and, directly or indirectly, also from skeletal carbonate. Concretionary growth was therefore pervasive, with cements being added progressively throughout the concretion body during growth. The concretions contain barite in the concretion matrix and in septarian fissures. Barite in the earlier matrix phase has an isotopic composition (δ34S=+24·8‰ CDT and δ18O=+16·4‰ SMOW), indicating formation from near‐surface, sulphate‐depleted porewaters. Barites in the later septarian phase have unusual isotopic compositions (δ34S=+6 to +11‰ CDT and δ18O=+8 to +11‰ SMOW), which require the late addition of isotopically light sulphate to the porewaters, either from anoxic sulphide oxidation (using ferric iron) or from sulphate dissolved in meteoric water. Carbon isotope and biomarker data indicate that oil trapped within septarian fissures was derived from the maturation of kerogen in the enclosing sediments.  相似文献   

10.
Two types of ‘pseudobreccia’, one with grey and the other with brown mottle fabrics, occur in shoaling‐upward cycles of the Urswick Limestone Formation of Asbian (Late Dinantian, Carboniferous) age in the southern Lake District, UK. The grey mottle pseudobreccia occurs in cycle‐base packstones and developed after backfilling and abandonment of Thalassinoides burrow systems. Burrow infills consist of a fine to coarse crystalline microspar that has dull brown to moderate orange colours under cathodoluminescence. Mottling formed when an early diagenetic ‘aerobic decay clock’ operating on buried organic material was stopped, and sediment entered the sulphate reduction zone. This probably occurred during progradation of grainstone shoal facies, after which there was initial exposure to meteoric water. Microspar calcites then formed rapidly as a result of aragonite stabilization. The precipitation of the main meteoric cements and aragonite bioclast dissolution post‐date this stabilisation event. The brown mottle pseudobreccia fabrics are intimately associated with rhizocretions and calcrete, which developed beneath palaeokarstic surfaces capping cycle‐top grainstones and post‐date all depositional fabrics, although they may also follow primary depositional heterogeneities such as burrows. They consist of coarse, inclusion‐rich, microspar calcites that are always very dull to non‐luminescent under cathodoluminescence, sometimes with some thin bright zones. These are interpreted as capillary rise and pedogenic calcrete precipitates. The δ18O values (?5‰ to ?8‰, PDB) and the δ13C values (+2‰ to ?3‰, PDB) of the ‘pseudobreccias’ are lower than the estimated δ18O values (?3‰ to ?1‰ PDB) and δ13C values of (+2‰ to +4‰ PDB) of normal marine calcite precipitated from Late Dinantian sea water, reflecting the influence of meteoric waters and the input of organic carbon.  相似文献   

11.
碳酸盐胶结物是古流体活动的产物,蕴含着成岩环境、成岩流体演化等方面的有益地质信息。综合运用岩石学、矿物学和地球化学方法,对柴北缘西段鄂博梁构造带侏罗系、古近系、新近系储层中普遍存在的碳酸盐胶结物的成因机制进行了研究。结果表明,研究区碳酸盐胶结物以方解石和含铁方解石为主。鄂博梁I号构造主要见方解石,其碳、氧同位素分布范围较大:-13.47‰ <δ13CPDB <2.54‰,-15.93‰ <δ18OPDB <-4.74‰,成因多种多样,与有机质脱羧、同生-准同生、甲烷生成等作用有关;鄂博梁III号-鸭湖构造则主要见含铁方解石,其碳、氧同位素分布集中:-4.24‰ <δ13CPDB <-1.99‰,-11.17‰ <δ18OPDB <-9.41‰,为沉积压实水沉淀而成。碳酸盐胶结物的成因揭示了鄂博梁构造带无机-有机流体的活动信息,从而为该地区油气成藏研究提供了重要依据。  相似文献   

12.
Deposition of the Gully Oolite was locally interrupted by emergence and a regionally extensive palaeosol is present at the top of the unit. Early diagenetic phases include isopachous, fibrous submarine cements, nonluminescent vadose cements, and mixing zone dolomite. Subsequent nonferroan phreatic cements are non- to dully luminescent and in restricted vertical intervals predate significant compaction. More usually, however, phreatic cements postdate extensive overpacking of allochems. Ooid isotopic composition (δ18O=-7·80° to -3·10° and δ13C = -2·38° to +3·28°) is similar to that of associated phreatic cements and the data suggest that the bulk of ooid stabilization and cementation occurred within meteoric groundwaters. The extensive allochem overpacking appears to have occurred during the first few tens of metres of burial and intergranular macroporosity was eliminated prior to deep burial. Fracturing of the Gully Oolite during the Hercynian Orogeny and subsequent post-orogenic uplift led to localized dolomitization, several generations of calcite veins, and the restricted occurrence of 18O depleted cements in inter- and intragranular microporosity. Some of the veins clearly relate to Triassic exhumation of the Carboniferous Limestone, but others may be related to post-Mesozoic uplift and erosion of South Wales. Fracture-associated dolomitization may have occurred within a large-scale post-orogenic groundwater system, with Mg2+ being supplied through the release of deeply buried diagenetic brines.  相似文献   

13.
The calcite fossils of the Derbyhaven Beds, Isle of Man, have δ13C values (+ 1·8 PDB) similar to modern, shallow-water marine skeletons, but the δ18O values (?6·1 PDB) are much lighter than modern skeletons. The light oxygen values indicate either re-equilibration with isotopically light water before cementation started, or Carboniferous sea water with δ18O of ?6‰. Aragonite dissolution was followed by precipitation of zoned calcite cement. In this cement, up to six intracrystalline zones, recognized in stained thin sections, show isotopic variation. Carbon varies from + 3-8 to + 1-2‰. and oxygen from ? 2-6 to ? 12-4‰. with decreasing age of the cement. This trend is attributed to increasing temperature and to isotopic evolution of the pore waters during burial. The zoned calcite is sequentially followed by dolomite and kaolinite cements which continue the trend towards light isotopic values. This trend is continued with younger, fault-controlled dolomite, and is terminated by vein-filling calcite and dolomite. The younger calcite, interpreted as a near-surface precipitate from meteoric waters, is unrelated to the older sequence of carbonates and has distinctly different carbon isotope ratios: δ13C ? 6-8‰.  相似文献   

14.
The oxygen isotope compositions of diagenetic carbonate minerals from the Lower Jurassic Inmar Formation, southern Israel, have been used to identify porewater types during diagenesis. Changes in porewater composition can be related to major geological events within southern Israel. In particular, saline brines played an important role in late (Pliocene-Pleistocene) dolomitization of these rocks. Diagenetic carbonates included early siderite (δ18OSMOW=+24.4 to +26.5‰δ13CPDB=?1.1 to +0.8‰), late dolomite, ferroan dolomite and ankerite (δ18OSMOW=+18.4 to +25.8‰; δ13CPDB=?2.1 to +0.2‰), and calcite (δ18OSMOW=+21.3 to +32.6‰; δ13CPDB=?4.2 to + 3.2‰). The petrographic and isotopic results suggest that siderite formed early in the diagenetic history at shallow depths. The dolomitic phases formed at greater depths late in diagenesis. Crystallization of secondary calcite spans early to late diagenesis, consistent with its large range in isotopic values. A strong negative correlation exists between burial depth (temperature) and the oxygen isotopic compositions of the dolomitic cements. In addition, the δ18O values of the dolomitic phases in the northern Negev and Judea Mountains are in isotopic equilibrium with present formation waters. This behaviour suggests that formation of secondary dolomite post-dates the tectonic activity responsible for the present relief of southern Israel (Upper Miocene to Pliocene) and that the dolomite crystallized from present formation waters. Such is not the case in the Central Negev. In that locality, present formation waters have much lower salinities and δ18O values, indicating invasion of freshwater, and are out of isotopic equilibrium with secondary dolomite. Recharge of the Inmar Formation by meteoric water in the Central Negev occurred in the Pleistocene, and halted formation of dolomite.  相似文献   

15.
《Geochimica et cosmochimica acta》1999,63(13-14):1981-1989
In order to better understand environmental factors controlling oxygen isotope shifts in autochthonous lacustrine carbonate sequences, we undertook an extensive one-year study (March, 1995 to February, 1996) of water-column chemistry and daily sediment trap material from a small lake in Central Switzerland. Comparisons between calculated equilibrium isotope values, using the fractionation equation of Friedman and O’Neil, (1977) and measured oxygen isotope ratios of calcite in the sediment-traps reveal that oxygen isotopic values of autochthonous calcite (δ18O) are in isotopic equilibrium with ambient water during most of the spring and summer, when the majority of the calcite precipitates. In contrast, small amounts of calcite precipitated in early-spring and again in late-autumn are isotopically depleted in 18O relative to the calculated equilibrium values, by as much as 0.8‰. This seasonally occurring apparent isotopic nonequilibrium is associated with times of high phosphorous concentrations, elevated pH (∼8.6) and increased [CO32−] (∼50 μmol/l) in the surface waters. The resulting weighted average δ18O value for the studied period is −9.6‰, compared with a calculated equilibrium δ18O value of −9.4‰. These data convincingly demonstrate that δ18O of calcite are, for the most part, a very reliable proxy for temperature and δ18O of the water.  相似文献   

16.
Carbonate cements in late Dinantian (Asbian and Brigantian) limestones of the Derbyshire carbonate platform record a diagenetic history starting with early vadose meteoric cementation and finishing with burial and localized mineral and oil emplacement. The sequence is documented using cement petrography, cathodoluminescence, trace element geochemistry and C and O isotopes. The earliest cements (Pre-Zone 1) are locally developed non-luminescent brown sparry calcite below intrastratal palaeokarsts and calcretes. They contain negligible Fe, Mn and Sr but up to 1000 ppm Mg. Their isotopic compositions centre around δ18O =?8.5‰, δ13C=?5.0‰. Calcretes contain less 13C. Subsequent cements are widespread as inclusion-free, low-Mg, low-Fe crinoid overgrowths and are described as having a‘dead-bright-dull’cathodoluminescence. The‘dead’cements (Zone 1) are mostly non-luminescent but contain dissolution hiatuses overlain by finely detailed bright subzones that correlate over several kilometres. Across‘dead'/bright subzones there is a clear trend in Mg (500–900 ppm), Mn (100–450 ppm) and Fe (80-230 ppm). Zone 1 cements have isotopic compositions centred around δ18O =?8.0‰ and δ13C=?2.5‰. Zone 2 cement is bright, thin and complexly subzoned. It is geochemically similar to bright subzones of Zone 1 cements. Dull Zone 3 cement pre-dates pressure dissolution and fills 70% or more of the pore space. It generally contains little Mn, Fe and Sr but can have more than 1000 ppm Mg, increasing stratigraphically upwards. The δ18O compositions range from ?5.5 to ?15‰ and the δ13C range is ?1 to + 3.20/00. Zone 4 fills veins and stylolite seams in addition to pores. It is synchronous with Pb, Ba, F ore mineralization and oil migration. Zone 4 is ferroan with around 500 ppm Fe, up to 2500 ppm Mg and up to 1500 ppm Mn. Isotopic compositions range widely; δ15O =?2.7 to ?9‰ and δ13C=?3.8 to+2.50‰. Unaltered marine brachiopods suggest a Dinantian seawater composition around δ15O = 0‰ (SMOW), but vital isotopic effects probably mask the original δ13C (PDB) value. Pre-Zone 1 calcites are meteoric vadose cements with light soil-derived δ13C and light meteoric δ18O. An unusually fractionated‘pluvial’δ15O(SMOW) value of around — 6‰ is indicated for local Dinantian meteoric water. Calcrete δ18O values are heavier through evaporation. Zone 1 textures and geochemistry indicate a meteoric phreatic environment. Fe and Mn trends in the bright subzones indicate stagnation, and precipitation occurred in increments from widespread cyclically developed shallow meteoric water bodies. Meteoric alteration of the rock body was pervasive by the end of Zone 1 with a general resetting of isotopic values. Zone 3 is volumetrically important and external sources of water and carbonate are required. Emplacement was during the Namurian-early Westphalian by meteoric water sourced at a karst landscape on the uplifted eastern edge of the Derbyshire-East Midland shelf. The light δ18O values mainly reflect burial temperatures and an unusually high local heat flow, but an input of highly fractionated hinterland-derived meteoric water at the unconformity is also likely. Relatively heavy δ13C values reflect the less-altered state of the source carbonate and aquifer. Zone 4 is partly vein fed and spans burial down to 2000 m and the onset of tectonism. Light organic-matter-derived δ13C and heavy δ18O values suggest basin-derived formation water. Combined with textural evidence of geopressures, this relates to local high-temperature ore mineralization and oil migration. Low water-to-rock ratios with host-rock buffering probably affected the final isotopic compositions of Zone 4, masking extremes both of temperature and organic-matter-derived CO2.  相似文献   

17.
Oxygen isotopic compositions of chert and calcite cements in the Lake Valley Formation indicate that these diagenetic features cannot be equilibrium co-precipitates in spite of their coexistence in the same interstices. Petrography of megaquartz and non-ferroan calcite cements indicates that both are original precipitates that formed during pre-Pennsylvanian time at shallow burial depths (< 215m) implying precipitation temperatures less than 30°C. Under these constraints the δ18Os of megaquartz (mean =+27.00/00 SMOW; range =+ 24.8 to + 28.90/00) and calcite (mean =+ 28.00/00 SMOW; range =+ 27.3 to + 28.40/00) are best interpreted as unaltered since precipitation; thus, they must reflect the oxygen isotopic composition of pre-Pennsylvanian pore waters. Microquartz and chalcedony are interpreted to have formed from recrystallization of pre-Pennsylvanian opal-CT precursors, and therefore probably re-equilibrated during recrystallization in late or post-Mississippian time. We propose a model integrating the isotopic data with regional petrographic and sedimentological data that explains the greater consistency and generally greater δ18Os values of the calcites compared to those of the cherts. This model is one of chertification and calcite cementation in a regional meteoric phreatic ground-water system, the seaward terminus of which moved southward during lowering of pre-Pennsylvanian sea level. The calcite cements and some of the opal-CT precursor to microquartz and chalcedony are interpreted to have formed in the more seaward portions of the groundwater system. The megaquartz precipitated in the more inland parts of the phreatic groundwater system where rainfall was isotopically lighter and more variable. As such, the δ18Os of the megaquartz reflect the isotopic composition of groundwaters in areas undersaturated with respect to calcite.  相似文献   

18.
The Holder Formation (Pennsylvanian, Virgilian) of southern New Mexico, USA, consists of limestones interbedded with siliciclastics. It was deposited during times of glacio-eustatic sea-level change and was exposed subaerially during multiple sea-level lowstands. Microcomponents and whole-rock samples of limestones were analysed for δ13C and δ18O values to examine the method of whole-rock isotopic analysis for detecting subaerial exposure events and to determine the diagenetic processes acting during subaerial exposure. Whole-rock isotopic shifts are not consistently present across petrographically identified subaerial exposure surfaces. Apparently, whole-rock isotopic shifts do not result from wholesale replacement of the host sediment during soil formation. However, the isotopic shifts are present in calcareous, soil-precipitated microcomponents, such as rhizoliths, laminated crusts, and soil-precipitated cements. The components are heterogeneous in isotopic composition, but converge on a meteoric calcite line at about δ18O=?5.5‰. These microcomponents are heterogeneous in distribution and may either dominate or be a minor constituent of the whole rock at a single stratigraphic horizon. Without petrographic selection of palaeosol components, the detection of whole-rock isotopic shifts may depend on the selection or chance sampling of a rock containing abundant microcomponents precipitated in a soil environment. Only minor whole-rock isotopic shifts come from those rocks bearing no evidence of exposure and bearing lithological characteristics suggesting subaerial exposure was unlikely.  相似文献   

19.
Zoned calcites were found in the phragmacone chambers of three Sonniniid ammonites from marine Middle Jurassic sandstones (Isle of Skye, U.K.). Each ammonite has a unique sequence of up to nine zones of calcite which fill or partially fill the chambers. Zones are defined by changes in the density of minute opaque inclusions and variation in trace-element composition. Proximal (early) calcites have undulose extinction and some exhibit the specific fabrics of fascicular-optic and radiaxial fibrous calcites. Microdolomite inclusions are found in one specimen. Early calcites, interpreted as replacements after a single isopachous fringe of acicular carbonate (probably high magnesium calcite), are succeeded by blocky ferroan calcite cement. In one specimen there are two distinct generations of calcite, in the others there is a continuous mosaic incorporating both early calcites and late cement. Isotopic composition of the early calcite zones demonstrates the initial importance of organic derived carbon (δ13C =— 26‰, δ18O ‰ O). Further cementation and mineralogical stabilization took place at increased temperatures and probably after modification of the pore water isotopic composition (calcites with δ13C =— O‰, δ18O~— 10‰). The distinctive fabrics and zonal patterns probably developed during the replacement of the precursor cement and are not primary growth features. Reversals in isotopic and trace element trends are believed to be related to the rate of neomorphic crystal growth and hence to the degree of exchange with external pore waters. Further increase in temperature, probably during Tertiary igneous activity, gave rise to the extremely light δ18O values of the late cements in the ammonite which had previously had least contact with external waters (cements with δ13C ~ O, δ18O ~— 20‰).  相似文献   

20.
We discuss the nature of the ore-forming hydrothermal fluid in the Noya gold-bearing calcite-quartz-adularia veins of central Kyushu, Japan on the basis of oxygen, carbon, and strontium isotope ratios, and aqueous speciation calculations for the present-day geothermal fluid. The isotopic values of the Noya ore-forming fluid were estimated to be −6.5‰ for δ13C and −7.5‰ for δ18O. The oxygen isotopic equilibrium temperatures for vein calcite are more than 180°C at the bottom of the Noya mineralization zone, and decrease with increasing elevation. As the temperature decreased, the dominant carbon species in the fluid changed from H2CO3 to HCO3- at about 120°C. The equilibrium temperatures for vein quartz are consistent with the calcite calculations. The carbon and oxygen isotope trends of the Noya vein calcite and the isotope ratios of strontium suggest that the fluids that precipitated the Noya veins were controlled by an andesite-dominated geology. Chondrite-normalized REE patterns for the white-colored veins from wells 51-WT-1 and 51-WT-2 displayed a light REE-rich pattern with positive Eu anomalies, suggesting the existence of a reducing environment for the fluid. The pyrite-rich gray-colored veins and a silicified rock from well 51-WT-2 showed higher REE concentrations than did the white veins. Altered host andesitic rocks have similar REE patterns to that of the silicified rock, and have higher REE contents than the others in the drill cores. Aqueous speciation calculations showed that the fluid in the hydrothermal reservoir is currently in muscovite stability. The fluid at the ore-mineralization stage may have contained more potassium or have had a higher pH, so that adularia precipitated with calcite and quartz, as well as gold. Fluid boiling at depth in the system produced the gold-bearing calcite-quartz-adularia veins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号