首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The passage of Ulysses through Jupiter's magnetosphere presents a new opportunity to investigate the contribution to the Jovian magnetosphere of ions of atmospheric origin. A determination of the magnetospheric H+/He2+ flux ratio allows an estimate of the relative abundance of ionospheric material in the Jovian magnetosphere. We find that the H+/He2+ flux ratio, measured in the energy/charge range between 0.65 and 60 keV/e, steadily increases from a solar wind level of 25 at the magnetopause to a value of 700 at the point of closest approach, and then steadily decreases whilst approaching the magnetopause on the outbound path. We conclude from this that: (1) there is a significant solar wind component throughout the outer and middle magnetosphere; and (2) a significant fraction of the protons in the middle magnetosphere are of nonsolar origin.  相似文献   

2.
In this paper a quantitative analysis of magnetosheath injection regions observed by PROGNOZ-7 in the dayside high latitude boundary layer is performed. Particular emphasis is laid on describing the consequences of the observed excess transverse momentum of solar wind ions (H+ and He2+) as compared to the magnetospheric ions (e.g. He+ and O+) in the magnetosheath injection regions, hereafter referred to as energy transfer regions.An important result of this study is that the observed excess drift velocity of the solar wind ions as compared to the magnetospheric ions can be interpreted as a negative inertia current being present in the boundary layer. This means that the inertia current goes against the local electric field and that particle kinetic energy is converted into electric energy there. The dayside high-latitude boundary layer therefore constitutes a voltage generator (at least with respect to the injected magnetosheath plasma).The MHD-theory predicts a strong coupling of the energy transfer process in the boundary layer and the ionosphere, both regions being connected by field aligned currents. The rate of decay of the inertia current in the injected plasma element is in the range of a few minutes, a value which is directly proportional to the ionospheric resistance. By taking into account both the Hall and the Pedersen conductivities in the ionosphere, the theory also predicts a strong coupling between ionospheric East/West and North/South currents. A considerable part of the inertia current may actually flow in the tangential (East/West) direction due to this coupling. Thus, a consequence of the boundary layer energy transfer process is that it may generate currents, powering other magnetospheric plasma processes, down to ionospheric heights.  相似文献   

3.
Measured rates are presented for the reaction of He+ ions with H2 (and D2) molecules to form H+, H2+, and HeH+ ions, as well as for the subsequent reactions of H+ and HeH+ ions with H2 to form H3+. The neutralization of H3+ (and H5+) ions by dissociative recombination with electrons is shown to be fast. The reaction He+ + H2 is slow (k = 1.1 × 10?13 cm3/sec at300°K) and produces principally H+ by the dissociative charge transfer branch. It is concluded that there may be a serious bottleneck in the conversion of two of the primary ions of the upper Jovian ionosphere, H+ and He+ (which recombine slowly), to the rapidly recombining H3+ ion (α[H3+]?3.4 × 10?7 cm3/sec at 150°K).  相似文献   

4.
This paper presents an overview of a number of the principal findings regarding the hot plasmas (E 50 keV) in Jupiter's magnetosphere by the HISCALE instrument during the encounter of the Ulysses spacecraft with the planet in February 1992. The hot plasma ion fluxes measured by HI-SCALE in the dayside magnetosphere are similar to those measured in the same energy range in this region by the Voyager spacecraft in 1979. Within the dayside plasma sheet, the hot-ion energy densities are comparable with, or larger than, the magnetic field energy densities; these hot ions are found to corotate at about one-half the planetary corotational speed. For ions of energies 500 keV/nucleon, the protons contributed from 50–60% to as much as 80% of the energy content of these plasmas. Strong, magnetic-field-aligned streaming was found for both the ions and electrons in the high-latitude duskside magnetosphere. The ion and electron pitch-angle distributions could be characterized by cos25 α throughout many of the high anisotropy intervals of the outbound pass. There is some evidence in the ion pitch-angle distributions for a corotational component in the hot plasmas at high Jovian latitudes. While there are limitations owing to the finite geometries of the detector telescope systems on the determination of the angular spreads of the ion and electron beams, the measurements show that there are intervals when the particle distributions are not bidirectional. At such times, locally the hot plasmas could be carrying currents of 10−4μAm−2. The temporal variations in the streaming electron fluxes are substantially larger than the variations measured for the fluxes that are more locally mirroring. The temporal variations contain periodicities that may correspond to hydromagnetic wave frequencies in the magnetosphere as well as to larger scale motions of magnetospheric plasmas. On nearly half of the days for about a 130 day interval around the time of the Ulysses encounter with the planet, particles of Jovian origin were measured in the interplanetary medium. An event discussed herein shows evidence of an energy dependence of the particle release process from the planetary magnetosphere into the interplanetary medium.  相似文献   

5.
Plasma and magnetic field data from PROGNOZ-7 have revealed that solar wind (magnetosheath) plasma elements may penetrate the dayside magnetopause surface and form high density regions with enhanced cross-field flow in the boundary layer.The injected magnetosheath plasma is observed to have an excess drift velocity as compared to the local boundary layer plasma, comprising both “cold” plasma of terrestrial origin and a hot ring current component. A differential drift between two plasma components can be understood in terms of a momentum transfer process driven by an injected magnetosheath plasma population. The braking action of the injected plasma may be described as a dynamo process where particle kinetic energy is transferred into electromagnetic energy (electric field). The generated electric field will force the local plasma to ε×B-drift, and the dynamo region therefore also constitutes an accelerator region for the local plasma. Whenever energy is dissipated from the energy transfer process (a net current is flowing through a load), there will also be a difference between the induced electric field and the v×B term of the generator plasma. Thus, the local plasma will drift more slowly than the injected generator plasma.We will present observations showing that a relation between the momentum transferred, the injected plasma and the momentum taken up by the local plasma exists. For instance, if the local plasma density is sufficiently high, the differential drift velocity of the injected and local plasma will be small. A large fraction of the excess momentum is then transferred to the local plasma. Conversely, a low local plasma density results in a high velocity difference and a low fraction of local momentum transfer.In our study cases the “cold” plasma component was frequently found to dominate the local magnetospheric plasma density in the boundary layer. Accordingly, this component may have the largest influence on the local momentum transfer process. We will demonstrate that this also seems to be the case. Moreover we show that the accelerated “cold” plasma component may be used as a tracer element reflecting both the momentum and energy transfer and the penetration process in the dayside boundary layer.The high He+ percentage of the accelerated “cold” plasma indicates a plasmaspheric origin. Considering the quite high densities of energetic He+ found in the boundary layer, the overall low abundance of He+ (as compared to e.g. O+) found in the plasma sheet and outer ring current evidently reduces the importance of the dayside boundary layer as a plasma source in the large scale magnetospheric circulation system.  相似文献   

6.
During its inbound journey into Jupiter's magnetosphere, Ulysses had several encounters with the Jovian plasma sheet near the magnetic equator, which were related with intensity maxima in the energetic particles. We show for the first time anisotropies in three dimensions of three ion species (protons, helium and oxygen) in the energy range 0.24 < E < 0.77 [MeV/nucleon]. The data, obtained with the Energetic Particle Composition Experiment (EPAC) onboard Ulysses have been analysed by using spherical harmonics in three dimensions. We show that the first-order anisotropies of ions in or near the plasma sheet are strongest in a plane parallel to the ecliptic plane and more or less azimuthal with respect to the rotation of Jupiter. We show that the first-order anisotropy amplitude is larger for helium and oxygen ions than for protons in nearly the same energy per nucleon range. We find flow velocities for helium ions which are not consistent with corotation, but are larger by a factor of 2 in and near the Jovian plasma sheet on the dayside magnetosphere. In contrast for protons we observe nearly corotation. Far from the plasma sheet, at high magnetic latitudes, the flow velocities are less than corotation for protons, as well as for helium and oxygen. The azimuthal particle anisotropies are explained by intensity gradients perpendicular to the centre of the plasma sheet, by E × B particle drifts, and by nonadiabatic orbits of the particles near the Jovian plasma sheet. All of the three phenomena act in the same azimuthal direction, perpendicular to the mainly radial magnetic field direction. Each of them can be estimated, but their individual effects cannot be distinguished from each other. In addition, we find a radial component of the anisotropy which apparently is stronger for protons than for heavier ions. This radial anisotropy component is interpreted as a result of the radial outward displacement of ions in an azimuthally swept back magnetic field.  相似文献   

7.
The repeated samplings of the Jovian magnetosheath during the Ulysses encounter with Jupiter provided an opportunity to probe the planetary depletion layer. Of the 10 complete crossings of the Jovian magnetopause, only three contained clear signatures of an overlying depletion layer. All of these occurred on the flanks of the magnetosphere near the dusk terminator; crossings on the dayside were ambiguous or clearly lacked a depletion layer signature. In this paper we present a detailed analysis of the observations by the Ulysses solar wind plasma and magnetometer experiments and discuss conditions favorable and unfavorable for depletion layer observation.  相似文献   

8.
The COSPIN/KET experiment onboard Ulysses has been monitoring the flux of 3–20 MeV electrons in interplanetary space since the launch of Ulysses in October 1990. The origin of these electrons has been known for a long time to be the Jovian magnetosphere. Propagation models assuming interplanetary diffusion of these electrons in the ideal Parker magnetic field were successfully developed in the past. The average electron flux measured by our experiment agrees with these models for most of the times before and after the Jovian flyby of February 1992, i.e. in and out of the ecliptic down to 28° S of heliographic latitude for the last data presented here (end of March 1993).However, in addition to this average flux level well accounted for by diffusion in an ideal Parker field, we have found very short duration electron events which we call “jets”, characterized by: (i) a sharp increase and decrease of flux; (ii) a spectrum identical to the electron spectrum in the Jovian magnetosphere; and (iii) a strong first-order anisotropy. These jets only occur when the magnetic field at Ulysses lies close to the direction of Jupiter, and most of the time (86% of the events) points outwards from Jupiter, i.e. has the same polarity after the flyby as the Jovian dipole (North to South). These events are interpreted as crossings by Ulysses of magnetic flux tubes or sheets directly connected to the location of the Jovian magnetosphere from which electrons escape into interplanetary space. The average thickness of these sheets is 1011cm or 14 Jovian radii. These jets are clearly identified up to 0.4 a.u. before the Jupiter flyby in the ecliptic plane, and up to 0.9 a.u. out of the ecliptic.Moreover, the characteristic rocking of the electron spectrum in the Jovian magnetosphere with a 10 h periodicity is found to be present during the jets, and predominantly during them. In the past, this modulation has been reported to be present in interplanetary space as far as 1 a.u. upwind of Jupiter, a fact which cannot be accounted for by diffusion in the average Parker magnetic field. Our finding gives a simple explanation to this phenomenon, the 10 h modulation being carried by the “jet” electrons which travel with no appreciable diffusion along magnetic field lines with a direction far from the ideal Parker spiral.  相似文献   

9.
We have constructed a chemical reaction model in a contracting interstellar cloud including 104 species which are involved in a network of 557 reactions. The chemical kinetic equations were integrated as a function of time by using gear package. The evolution of the system was followed in the density range 10–107 particles cm-3.The calculated fractional abundances of the charged species are in good agreement with those given by other investigators. The charge density has been followed in diffuse, intermediate and dense regions. The most dominant ionic species are metallic ions, HCO+ and H 3 + in the shielded regions and atomic ions H+, C+, Si+, He+, S+ and metal ions in the diffuse and intermediate regions. The abundances of negatively charged ions were found to be negligible. The results of the calculations on the different metallic ions are interpreted.  相似文献   

10.
Extensive calculations have been made of the behaviour of He+ for situations where ion outflow occurs from the topside ionosphere. For these circumstances, steady state solutions for the He+ continuity, momentum and energy equations have been obtained self-consistently, yielding density, velocity and temperature profiles of He+ from 200 to 2000 km altitude. To model the high latitude topside ionosphere, a range of background H+O+ ionospheres was considered with variations in the H+ outflow velocity, the presence of a perpendicular electric field and different peak O+ densities. In addition, the atmospheric density of neutral helium was chosen to model typical observed winter and summer densities. From our studies we have found that: (a) The outflowing He+ has density profiles of similar shape to those of H+, for basically different reasons; (b) The effect of the perpendicular electric field differs considerably for H+ and He+. This difference stems from the fact that an electric field acts to alter significantly the O+ density at high altitudes and this, in turn, changes the H+ escape flux through the O++H charge exchange reaction. A similar situation does not occur for He+ and therefore the He+ escape flux exhibits a negligibly small change with electric field; (c) The fractional heating of He+ due to the He+O+ relative flow is not as effective in heating He+ as the H+O+ relative flow is in heating H+; (d) During magnetospheric disturbances when the N2 density at the altitude of the He+ peak (600 km) can increase by a factor as large as 50, the He+ peak density decreases only by approximately a factor of 2; and (e) The He+ escape flux over the winter pole is approximately a factor of 20 greater than the He+ escape flux over the summer pole. Consequently, on high latitude closed field lines there could be an interhemispheric He+ flux from winter to summer.  相似文献   

11.
The problem of the ionospheric formation in the Jovian upper atmosphere is examined. By adopting two plausible atmospheric models, we solve coupled time-dependent continuity equations for ions H2+, H5+, H+, H3+ and HeH+ simultaneously. It is shown that both radiative and three body association of H+ to H2 are important for the determination of the structure of the Jovian ionosphere. The maximum electron density in the daytime is found to be about 105 cm?3. It is also shown that diurnal variation with large-amplitude can exist in the Jovian ionosphere.  相似文献   

12.
Low-resolution spectra of the Io plasma torus have been obtained on 10 and 11 February 1992 (2 days after the Ulysses encounter) using the 2 m telescope of the Bulgarian National Observatory. The spectra show the forbidden line emissions of S+ (λλ 6716, 6731 Å) and S2+ (λ 6312 Å). Measured intensities are compared with a Voyager-type model. The intensity distribution of [SII] is found to deviate from the model predictions which indicates a change in the torus at the Ulysses encounter when compared with the Voyager epoch. A corotating structure was observed, both in [SII] and [SIII], at λIII = 170°, showing that the torus was not azimuthally symmetric. The λ 6716/λ 6731 and λ 6731/ λ 6312 line ratios indicate a higher electron density at the time of the Ulysses observations. Additionally, the shift of the torus caused by the dawn-dusk electric field could be observed. Peak intensities in [SII] were found at 5.66 ± 0.02 RJ on the West ansa and 5.91 ± 0.04 RJ on the East.  相似文献   

13.
B.N. Khare  Carl Sagan 《Icarus》1977,30(1):231-233
Measurements of the temperature dependence between 77 and 333°K of the infrared spectrum of cyclic octatomic sulfur suggest that the 23 μm Jovian feature very tentatively identified by Houck et al. [Science 189, 720–722 (1975)] is not due to S8; and that the temperature dependence of the frequency of the 835 cm? band of S8 may be a useful temperature marker in planetary studies.  相似文献   

14.
The diurnal and seasonal variations of H+, He+, N+, O+ and Ne are analyzed at 1400-km altitude. Using longitudinally averaged observations of ISIS-2 (April 1971 to December 1972), the ion and electron densities are decomposed via spherical harmonics and Fourier series into time-independent, seasonal and diurnal terms. The time-independent terms of H+ and He+ show a plateauor trough-like structure at medium to low latitudes and a strong decrease towards the poles; N+ and O+, on the other hand, yield an almost inverse picture with a density increase at high latitudes. All constituents, except He+, show at polar latitudes an enhancement during local summer conditions and a depletion during local winter conditions; He+, however, exhibits a winter bulge and a density minimum during local summer. The diurnal variations are strongly latitude dependent; while the amplitudes (relative) of H+, He+, and Ne are rather small, the heavier ions N+ and O+ show a deep minimum early in the morning and a high but flat maximum during daytime.  相似文献   

15.
An empirical model of atomic ion densities (H+, He+, N+, O+) is presented up to 4000 km altitude as a function of time (diurnal, annual), space (position, altitude) and solar flux (F10.7) — using observations of satellites (AE-B, AE-C, AE-D, AE-E, ISIS-2, OGO-6) and rockets during quiet geophysical conditions (K p 3). The numerical treatment is based upon harmonic functions for the horizontal pattern and cubic splines for the vertical structure.The ion densities increase with increasing height up to a maximum (depending roughly on the ion mass) and decrease beyond that with increasing altitude. Above 200 km, O+ is the main ionic constituent being replaced at approximately 800 km (depending on latitude, local time, etc.) by H+. Around polar regions the light ions, H+ and He+, are depleted (polar wind) and the heavier ones enhanced. During local summer conditions the ion densities increase around polar latitudes and correspondingly decrease during local winter, except He+ which reflects the opposite pattern. Diurnal variations are intrinsically coupled to the individual plasma layers: N+ and O+ peak, in general, during daytime, while the amplitudes and phases of H+ and He+ change strongly with altitude and latitude. Earth, Moon and Planets Review article.  相似文献   

16.
The Ulysses flyby of Jupiter has permitted the detection of a variety of quasiperiodic magnetospheric phenomena. In this paper, Unified Radio and Plasma Wave Experiment (URAP) observations of quasiperiodic radio bursts are presented. There appear to be two preferred periods of short-term variability in the Jovian magnetosphere, as indicated by two classes of bursts, one with 40 min periodicity, the other with 15 min periodicity. The URAP radio direction determination capability provides clear evidence that the 40 min bursts originate near the southern Jovian magnetic pole, whereas the source location of the 15 min bursts remains uncertain. These bursts may be the signatures of quasiperiodic electron acceleration in the Jovian magnetosphere; however, only the 40 min bursts occur in association with observed electron bursts of similar periodicity. Both classes of bursts show some evidence of solar wind control. In particular, the onset of enhanced 40 min burst activity is well correlated with the arrival of high-velocity solar wind streams at Jupiter, thereby providing a remote monitor of solar wind conditions at Jupiter.  相似文献   

17.
18.
Several transient increases of electrons with energies in the range 40–100 keV have been detected upstream and immediately downstream from the Jovian bow shock (and only in these regions), by instruments on the Ulysses spacecraft during February 1992. The energy spectra of these electrons differ markedly from the energy spectrum of the trapped magnetospheric electrons measured by the same instrument. Two populations of the upstream electrons were identified. Type I electrons appear at times when the direction of the interplanetary magnetic field at the spacecraft could have been tangent to the Jovian bow shock surface thus paralleling, for the first time at another planetary bow shock, the rather well understood situation at Earth's bow shock. Type II electrons have the same energy spectrum as Type I electrons, but are not so clearly associated with the tangent field-line condition. They occur at high southerly latitudes only while the Type I electrons are detected both on the inbound and outbound passages. Type II electrons have never been reported at the Earth's bow shock or any other planetary bow shock. Under the assumption that the field line that goes through Ulysses connects to the bow shock in a straight line, two possible explanations for the Type II electrons may be: (1) very large distortions of the bow shock surface, perhaps caused by deformations of the magnetopause, may permit the tangent condition; and (2) upstream electrons are preferentially, but not necessarily, accelerated when the IMF is tangent to the bow-shock surface.  相似文献   

19.
We derive the expression for the ponderomotive force in the real multicomponent magnetospheric plasma containing heavy ions. The ponderomotive force considered includes the induced magnetic moment of all the species and arises due to inhomogeneity of the traveling low-frequency electromagnetic wave amplitude in the nonuniform medium. The nonlinear stationary force balance equation is obtained taking into account the gravitational and centrifugal forces for the plasma consisting of the electrons, protons and heavy ions (He+). The background geomagnetic field is taken for the dayside of the magnetosphere, where the magnetic field have magnetic “holes” (Antonova and Shabansky in Geomagn. Aeron. 8:639, 1968). The balance equation is solved numerically to obtain the nonlinear density distribution of ions (H+) in the presence of heavy ions (He+). It is shown that for frequencies less than the helium gyrofrequency at the equator the nonlinear plasma density perturbations are peaked in the vicinity of the equator due to the action of the ponderomotive force. A comparison of the cases of the dipole and dayside magnetosphere is provided. It is obtained that the presence of heavy ions leads to decrease of the proton density modification.  相似文献   

20.
We have performed a survey of the characteristics of two types of large spatial-scale solar-wind structures, stream interaction regions (SIRs), and interplanetary coronal mass ejections (ICMEs), near 5.3 AU, using solar-wind observations from Ulysses. Our study is confined to the three aphelion passes of Ulysses, and also within ± 10° of the solar ecliptic plane, covering a part of 1992, 1997 – 1998, and 2003 – 2005, representing three slices of different phases of the solar activity cycle. Overall, there are 54 SIRs and 60 ICMEs in the survey. Many are merged in hybrid events, suggesting that they have undergone multiple interactions prior to reaching Jovian orbit. About 91% of SIRs occur with shocks, with 47% of such shocks being forward – reverse shock pairs. The solar-wind velocity sometimes stays constant or even decreases within the interaction region near 5.3 AU, in contrast with the gradual velocity increase during SIRs at 1 AU. Shocks are driven by 58% of ICMEs, with 94% of them being forward shocks. Some ICMEs seem to have multiple small flux ropes with different scales and properties. We quantitatively compare various properties of SIRs and ICMEs at 5.3 AU, and study their statistical distributions and variations with solar activity. The width, maximum dynamic pressure, and peak perpendicular pressure of SIRs all become larger than ICMEs. Dynamic pressure (P dyn) is expected to be important for Jovian magnetospheric activity. We have examined the distributions of P dyn of SIRs, ICMEs, and general solar wind, but these cannot explain the observed bimodal distribution of the location of the Jovian magnetopause. By comparing the properties of SIRs and ICMEs at 0.72, 1, and 5.3 AU, we find that the ICME expansion slows down significantly between 1 and 5.3 AU. Some transient and small streams in the inner heliosphere have merged into a single interaction region. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号