共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Atmospheric and Solar》2008,70(15):1879-1884
The variability of the critical frequency of F2 layer, foF2, over ionospheric station Grocka (44.48N, 20.31E) has been studied during the declining phase of solar cycle 23 from 2004 to 2006. The variability index was introduced to identify the daily and seasonal patterns characterizing the local mid-latitude ionosphere during quiet and disturbed geomagnetic conditions. In addition, the behaviour of the vertical total electron content values, vTEC, obtained from global positioning system (GPS) measurements in the surrounding area under these conditions is reported. The analysis shows a number of interesting features representative of the ionospheric variability relevant for ionospheric modelling as well as ionospheric propagation applications based on a single station approach. 相似文献
2.
3.
G. B. Goe 《Pure and Applied Geophysics》1971,92(1):190-206
Summary Wavelike disturbances with periods of 12 to 15 minutes detected at ionosphericF region heights by radio techniques are investigated. These disturbances in an otherwise quiet ionosphere are attributed to the presence of active wind patterns associated with the jet stream at the height of the tropopause. The active flow patterns on the tropopause weather maps indicate horizontal wind shear, the direction of flow parallel to the isolines of constant speed. Conversely, the ionospheric activity diminishes when the contours of constant wind speed swing perpendicular to the direction of flow.At times the wind patterns meander across the United States from west to east essentially unchanged. On such occasions the ionospheric activity attributed to these winds appears over a given station for 5 or 6 days, and then disappears. At other times less stable wind patterns are seen to break apart within a matter of hours and the ionospheric activity appears in correspondingly short gusts. For both cases, the ionospheric activity may be thought of as localized, in terms of global circulation, exhibiting a strong longitudinal dependence.Initial work sponsored by the Institute for Telecommunication Sciences of the Environmental Science Services Administration, Boulder, Colorado. 相似文献
4.
《Journal of Atmospheric and Solar》2002,64(3):377-387
The occurrence of pearl-type (Pc 1) micropulsations recorded at the mid-latitude station Nagycenk (Hungary) during a half solar cycle showed a quite regular variation on this long time scale. Around solar activity maximum, the number of days with Pc 1 occurrence was rather low, while it began to increase during medium solar activity rising to a maximum around solar activity minimum. Pc 1 pulsations have been analyzed in relation to further parameters and on a shorter time scale, too. Based on data of 2 years with maximum Pc 1 occurrence (around solar activity minimum in 1985 and 1986), a seasonal variation was also found. Additionally, it was confirmed that pearl-type micropulsations might frequently occur, on and after days, with geomagnetic disturbances. At Nagycenk, the selected geomagnetic disturbances were generally associated with an increased ionospheric absorption of radio waves caused by enhanced ionization due to particle precipitation from the magnetosphere into the lower ionosphere. Whistler observations carried out at Panska Veš (a station in the Czech Republic) showed a significant whistler activity connected with these geomagnetic disturbances, however, no after-effect appeared in whistler activity. One of the main goals of the present study was to find a relationship between Pc 1 pulsations and whistlers. Results revealing an increased whistler activity associated with Pc 1 occurrences confirm our previous findings rather convincingly. The latter ones hinted at the probability that certain magnetospheric configurations, e.g. geomagnetic field line shells and whistler ducts are closely connected, as similar positions of the two structures were found within the magnetosphere when characteristics of Pc 3 pulsations and whistlers were analyzed. 相似文献
5.
B. S. Lanchester M. H. Rees K. J. F. Sedgemore J. R. Palmer H. U. Frey K. U. Kaila 《Annales Geophysicae》1998,16(10):1343-1354
High time and space resolution optical and radar measurements have revealed the influence of electric fields on E-region electron density profiles in small-scale auroral structures. Large electric fields are present adjacent to auroral filaments produced by monoenergetic electron fluxes. The ionisation profiles measured within and beside the auroral filaments show the effects of plasma convection due to electric fields as well as the consequences of the response time to large and dynamic fluxes of energetic electrons. Without high-resolution optical measurements, the interpretation of the radar data is limited. 相似文献
6.
《Journal of Atmospheric and Solar》2007,69(7):767-774
Diurnal and seasonal variations of bottom side electron density profile shape parameters B0, B1, representing the bottom side F2-layer thickness and shape, are examined using modern digital ionosonde observations at a low-middle latitude station, New Delhi (28.6°N, 77.2°E, dip 42.4°N) for high solar activity (HSA) (2001–2002). Median values of these parameters are obtained at each hour during different seasons and compared with the predictions of the latest version of the international reference ionosphere (IRI), IRI-2001 model using both the options namely: IRI (Gulyaeva) and IRI (B0 Tab.). Results show in general, a large variability in B0, and B1 parameters during all the seasons, the variability is larger during nighttime than by daytime. The diurnal variation of median B0, in general, show more or less similar trends with diurnal maximum occurring around noontime, except during summer, when it occurs between 09 and 10 LT. Variation pattern of B1 in general, is identical in all the seasons with lower values of B1 by daytime than by night. Comparative studies of B0 with those obtained with the IRI model show that in general, IRI (B0 Tab.) option reveals better agreement with the observations during all the seasons for local times from about 10 LT to about 16 LT, while outside this time period IRI (Gulyaeva) matches well with the observations. The predicted B1 parameter, using IRI (B0 Tab.) is close to observations in terms of diurnal variation, while B1 using IRI (Gulyaeva) option, assumes a fixed value of 3 at all local times irrespective of season. 相似文献
7.
The South Ural meteoroid (February 15, 2013; near the city of Chelyabinsk) is undoubtedly the best documented meteoroid in history. Its passage through the atmosphere has been recorded on videos and photographs, visually by observers, with ground-based infrasound microphones and seismographs, and by satellites in orbit. In this work, the results are presented of an analysis of the transionospheric GPS sounding data collected in the vicinity of the South Ural meteoroid site, which show a weak ionospheric effect. The ionospheric disturbances are found to be asymmetric about the explosion epicenter. The received signals are compared, both in shape and amplitude, with the reported ionospheric effects of ground level explosions with radio diagnostics. It is shown that the confident registration of ionospheric effects as acoustic gravity waves (AGWs) by means of vertical sounding and GPS technologies for ground explosions in the range of 0.26–0.6 kt casts doubt on the existing TNT equivalent estimates (up to 500 kt) for the Chelyabinsk event. The absence of effects in the magnetic field and in the ionosphere far zone at distances of 1500–2000 km from the superbolide explosion epicenter also raises a question about the possibility of an overestimated TNT equivalent. An alternative explanation is to consider the superposition of a cylindrical ballistic wave (due to the hypersonic motion of the meteoroid) with spherical shock waves caused by the multiple time points of fragmentation (multiple explosions) of the superbolide as a resulting source of the AGW impact on ionospheric layers. 相似文献
8.
化极转换是磁异常解释的重要基础,为了克服在地磁纬度较低的地区尤其是磁赤道附近化极不稳定的问题,出现了多种化极方法.本文基于概率成像技术提出了一种等效物性的反演方法,实现对地下等效场源的反演成像,取得了对低纬度磁异常稳定化极的效果.化极反演中逐次对剩余异常进行反演成像,实现由概率模型到物性模型的复杂映射,避免了类似反演中需要大型方程组求解等问题,并将概率模型的构制、物性参数的反演和反演评价有机地集成到一起,加速了反演成像的进程,使反演成像速度与目前概率成像的计算速度达到可相比拟的程度.对理论模型和实际资料的计算表明,该方法对低纬度磁异常化极处理是稳定有效的,而且可以较好地压制噪声干扰,能够在噪声干扰条件下进行反演化极. 相似文献
9.
10.
Global Positioning System (GPS) derived total electron content (TEC) measurements were analyzed to investigate the ionospheric
response during the X-class solar flare event that occurred on 5-6 December 2006 at geomagnetic conjugate stations: Syowa,
Antarctica (SYOG) (GC: 69.00°S, 39.58°E; CGM: 66.08°S, 71.65°E) and árholt, Iceland (ARHO) (GC: 66.19°N, 342.89°E; CGM: 66.37°N,
71.48°E). Bernese GPS software was used to derive the TEC maps for both stations. The focus of this study is to determine
the symmetry or asymmetry of TEC values which is an important parameter in the ionosphere at conjugate stations during these
solar flare events. The results showed that during the first flares on 5 December, effects were more pronounced at SYOG than
at ARHO. However, on 6 December, the TEC at ARHO showed a sudden spike during the flare with a different TEC variation at
SYOG. 相似文献
11.
V. V. Belikovich V. D. Vyakhirev E. E. Kalinina V. D. Tereshchenko S. M. Chernyakov V. A. Tereshchenko 《Geomagnetism and Aeronomy》2008,48(1):98-103
The results of observations of the solar eclipse ionospheric effects on March 29, 2006, are presented. The observations were conducted using the partial reflection method near Nizhni Novgorod and the vertical sounding method at the automatic ionospheric station near Murmansk. It has been obtained that the electron density at altitudes of 77 and 91 km decreases by a factor of more than 4; in this case the response of the ionosphere at an altitude of 91 km lags behind the eclipse maximum phase on the Earth by approximately 20 min. It has been established that the eclipse in the E and F1 regions of the polar ionosphere causes a change in the electron density by 15–20%. The delay time of this effect varies from 12 to 24 min depending on the altitude. It has been registered that the reflection virtual altitude at altitudes of the ionospheric F region increases in Murmansk and Nizhni Novgorod. 相似文献
12.
13.
We analyze the characteristics of the wavenumber-domain factor for magnetic reduction to the pole (RTP) at low latitudes, and then propose a new wavenumber-domain method for RTP at low latitudes, herein called the antisymmetric factor method, based on modification of the RTP factor. The method applies the antisymmetric factor in a given scope of directions centered along the magnetic declination to suppress amplification of the RTP factor, stabilizing the RTP. Meanwhile it utilizes the routine RTP factor in other directions to preserve the effective RTP features. The test on the synthetic data demonstrates that the method is robust and effective. Finally, we use the new method, as well as a variable magnetic inclinations algorithm, to perform RTP on the real data of total magnetic intensity anomalies in the South China Sea, and obtain the reliable RTP anomalies. 相似文献
14.
Using GPS and GLONASS navigation systems, instantaneous observations of solar burst effects on the Earth’s ionosphere are made. These observations are carried out for both Northern and Southern hemispheres, including the ionosphere at polar and equatorial latitudes. It is shown that the rate of total electron content (TEC) change is agrees well with the time profiles of solar bursts. An experimental dependence of the electron content gradient on the elevation angle is obtained. 相似文献
15.
V.I. Kurkin O.M. Pirog N.M. Polekh A.V. Mikhalev I.N. Poddelsky A.E. Stepanov 《Journal of Atmospheric and Solar》2008,70(18):2346-2357
We present the results of studies of the subauroral and mid-latitude ionosphere variations in the north-eastern region of Asia. We used the data from network of vertical and oblique-incidence sounding ionosondes and optical measurements. Long-term experiments on the radio paths Magadan–Irkutsk and Norilsk–Irkutsk were carried out within the period 2005–2007. Vertical sounding stations operated in standard regime. Observation of airglow near Irkutsk was provided by the zenith photometer that measured intensities of 557.7 and 630.0 nm atomic oxygen emissions. The results may be summarized as follows. (1) Large daytime negative disturbances are observed during the main and recovery phases mainly at high latitudes, whereas the positive disturbances observed during the main phase at mid latitudes. The disturbances changed their sign between Yakutsk and Irkutsk. (2) During the main and recovery storm phases the fall of foF2 associated with the equatorward wall of the main ionospheric trough is observed in the afternoon and evening. (3) Fluctuations of the electron density more intensive at mid latitudes during the storm main phase are observed during all considered periods. They are classed as traveling ionospheric disturbances (TID). Such sharp gradients of electron density are responsible for the strong changes in the characteristics of the radio wave propagation, particularity MOF. (4) A large-scale ionospheric disturbance is noted at the meridional chain of ionosonds in December 2006 as the sharp increase of foF2. It appears in the evening in the minimum of Dst at high latitude and propagate to equator. (5) A maximum of 630 nm emission above Irkutsk corresponds to the foF2 increase. (6) The obtained experimental data on the net of vertical and oblique-incidence sounding with high time resolution show that such net is the effective facility to study the conditions of the radio wave propagation and can be used for the diagnostic of the ionosphere. 相似文献
16.
基于改造化极因子的低磁纬度频率域化极方法具有计算速度快、控制参数少、操作简单、化极稳定等优点.本文分析压制因子法和伪倾角法的化极因子特征及其控制参数的影响,在此基础上改进伪倾角法的化极因子,即在磁偏角垂直方向及附近采用伪倾角法化极因子,而在其他方向采用常规频率域化极因子.改进后的伪倾角法既能有效压制磁偏角垂直方向及附近化极因子的放大作用,使得化极稳定,又能减少其他方向有效信号的化极特征的损失,提高化极精度.理论模型数据试验表明本文改进方法有效.利用本文改进方法对南海海域磁总场异常数据进行了变磁倾角化极,得到南海海域化极磁异常,这为研究南海大地构造特征和岩浆活动提供重要的参考资料. 相似文献
17.
The possibility that conditions on the Sun and in the Earth’s magnetosphere can affect human health at the Earth’s surface has been debated for many decades. This work reviews the research undertaken in the field of heliobiology, focusing on the effect of variations of geomagnetic activity on human cardiovascular health. Data from previous research are analysed for their statistical significance, resulting in support for some studies and the undermining of others. Three conclusions are that geomagnetic effects are more pronounced at higher magnetic latitudes, that extremely high as well as extremely low values of geomagnetic activity seem to have adverse health effects and that a subset of the population (10–15%) is predisposed to adverse health due to geomagnetic variations. The reported health effects of anthropogenic sources of electric and magnetic fields are also briefly discussed, as research performed in this area could help to explain the results from studies into natural electric and magnetic field interactions with the human body.Possible mechanisms by which variations in solar and geophysical parameters could affect human health are discussed and the most likely candidates investigated further. Direct effects of natural ELF electric and magnetic fields appear implausible; a mechanism involving some form of resonant absorption is more likely. The idea that the Schumann resonance signals could be the global environmental signal absorbed by the human body, thereby linking geomagnetic activity and human health is investigated. Suppression of melatonin secreted by the pineal gland, possibly via desynchronised biological rhythms, appears to be a promising contender linking geomagnetic activity and human health. There are indications that calcium ions in cells could play a role in one or more mechanisms. It is found to be unlikely that a single mechanism can explain all of the reported phenomena. 相似文献
18.
《Journal of Atmospheric and Solar》2007,69(7):817-825
Measurements from the Global Positioning System (GPS) satellites provide a valuable source of information about the ionosphere in the form of ray-path integrations of electron density. Total electron content (TEC) through the ionosphere can be estimated for specific satellite-to-ground paths using the two GPS frequencies and knowledge of the dispersive properties of the ionosphere. One approach used is the ionospheric imaging tool Multi Instrument Data Analysis System (MIDAS), which uses differential phase data from a number of GPS satellites and receivers to create an ionospheric movie of electron density. This paper addresses the accuracy with which MIDAS images the electron density at the F-layer peak. Firstly, the image accuracy is tested using a simulation of the imaging technique, representative of 1 year of data. Experimental GPS phase data are then used to image the electron density during a period of disturbed geomagnetic activity during April 2002. The images are compared to independent measurements from three ionosondes located across Europe and confirm the underestimate in peak electron density that was found in the simulation. Regardless of the peak density errors the vertical TEC in the images remains accurate. The accuracy of the imaged peak electron density is shown to improve across the image when measurements from ionosondes are included in the inversion process. 相似文献
19.
Interference effects of aircraft on earth's electromagnetic response at very low frequency and low frequency 下载免费PDF全文
Over the last few decades, very low frequency electromagnetics has been widely and successfully applied in mineral exploration and groundwater exploration. Many radio transmitters with strong signal‐to‐noise ratios are scattered in the very low frequency band and low frequency band. Based on experiences gained from ground measurements with the radio‐magnetotelluric technique operating in the frequency interval 1–250 kHz, broadband magnetometers have been used to cover both very low frequency (3–30 kHz) and low frequency (30–300 kHz) bands to increase the resolution of the near‐surface structure. The metallic aircraft as a conductive body will distort the magnetic signal to some extent, and thus it is important to investigate aircraft interference on the electromagnetic signal. We studied noise caused by rotation of an aircraft and the aircraft itself as a metallic conductive body with three methods: 3D wave polarization, determination of transmitter direction and full tipper estimation. Both very low frequency and low frequency bands were investigated. The results show that the magnetic field is independent of the aircraft at low frequencies in the very low frequency band and part of the low frequency band (below 100 kHz). At high frequencies (above 100 kHz), the signals are more greatly influenced by the aircraft, and the wave polarization directions are more scattered, as observed when the aircraft turned. Some aircraft generated noise mixed with radio transmitter signals, detected as ‘dummy’ signals by the 3D wave polarization method. The estimated scalar magnetic transfer functions are dependent on the aircraft flight directions at high frequencies, because of aircraft interference. The aircraft eigenresponse in the transfer functions (tippers) between vertical and horizontal magnetic field components was compensated for in the real part of the estimated tippers, but some unknown effect was still observed in the imaginary parts. 相似文献