首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synoptic Features of the Second Meiyu Period in 1998 over China   总被引:10,自引:0,他引:10  
1. IntroductionThe Meiyu, translated as plum rain, is a majorannual rainfall event over the Yangtze River Basin inChina and southern Japan in June and July. Theheavy rainfall is mainly caused by a quasi-stationaryfront, known as the Meiyu front, extended from east-ern China to southern Japan (Tao, 1958; Matsumotoet al., 1971; Akiyama, 1990; Gao et al, 1990). Studiesof Zhang and Zhang (1990) and Chen et al. (1998)pointed that the Meiyu front is one of the most signif-icant circulation s…  相似文献   

2.
On 21–22 July 2012, torrential rains hit North China, with the daily precipitation record at Beijing station reaching 160.6 mm; this event is named the Beijing 7–21 case. This paper assesses the likelihood of the occurrence of local torrential rains, such as the Beijing 7–21 case, from the perspective of climate variability. In particular, the influence of the Pacific Decadal Oscillation (PDO) is assessed. There were five extreme events, with daily precipitation records equal to or larger than 160.6 mm, at Beijing station during the period 1951–2012; all of these events happened during negative phases of the PDO. The present analysis indicates that precipitation events more extreme than the Beijing 7–21 case should happen more than once per decade during negative phases of the PDO, but only about once every four decades during positive PDO phases. The negative phase of the PDO is found to be associated with a much greater probability of daily records of southerly winds in North China during summer. Strong southerly summer monsoons are deemed favorable for increasing the occurrence of local extreme rainfall over North China.  相似文献   

3.
It is indicated in this paper that there were substantial differences of interannual variability (IIV) in summer rainfall over South China (RSC) among 1960–1977, 1978–1988, and 1989–2010. Notably, both IIV and mean RSC have significantly increased after 1992/1993. Relative to 1978–1988, the percentage increase of standard deviation (SD) of RSC is 230.32 % for 1993–2010. It indicates remarkable increase in IIV of RSC occurred 1993–2010, concurrent with rainfall increase. The results show that the mid-tropospheric meridional gradient of temperature over East Asia weakened in the later period, resulting in an anomalous cyclonic circulation, transporting more tropospheric moisture to South China and an upward motion at the middle and low levels of the troposphere. Meanwhile, IIV in the mid-tropospheric meridional gradient of temperature over East Asia resulted in IIVs both in the anomalous cyclonic circulation and in vertically integrated moisture content over South China. This scenario led to a significant increase in the IIV of summer rainfall over South China. Compared to 1978–1988, a greater increase in the IIV of warming over Mongolia–northeastern China and of excessive spring snow depth over the southeastern Tibetan Plateau were responsible for the increase in the IIV of the mid-tropospheric meridional gradient of the East Asian temperature during 1993–2010. Moreover, another slight increase in the IIV of summer rainfall over South China occurred in 1960–1977 relative to 1978–1988, which partly resulted from the weakening East Asian summer monsoon variability in the late 1970s.  相似文献   

4.
Hainan, an island province of China in the northern South China Sea, experienced two sustained rainstorms in October2010, which were the most severe autumn rainstorms of the past 60 years. From August to October 2010, the most dominant signal of Hainan rainfall was the 10–20-day oscillation. This paper examines the roles of the 10–20-day oscillation in the convective activity and atmospheric circulation during the rainstorms of October 2010 over Hainan. During both rainstorms,Hainan was near the center of convective activity and under the influence of a lower-troposphere cyclonic circulation. The convective center was initiated in the west-central tropical Indian Ocean several days prior to the rainstorm in Hainan. The convective center first propagated eastward to the maritime continent, accompanied by the cyclonic circulation, and then moved northward to the northern South China Sea and South China, causing the rainstorms over Hainan. In addition, the westward propagation of convection from the tropical western Pacific to the southern South China Sea, as well as the propagation farther northward, intensified the convective activity over the northern South China Sea and South China during the first rainstorm.  相似文献   

5.
Mann?CKendall non-parametric test was employed for observational trend detection of monthly, seasonal and annual precipitation of five meteorological subdivisions of Central Northeast India (CNE India) for different 30-year normal periods (NP) viz. 1889?C1918 (NP1), 1919?C1948 (NP2), 1949?C1978 (NP3) and 1979?C2008 (NP4). The trends of maximum and minimum temperatures were also investigated. The slopes of the trend lines were determined using the method of least square linear fitting. An application of Morelet wavelet analysis was done with monthly rainfall during June?CSeptember, total rainfall during monsoon season and annual rainfall to know the periodicity and to test the significance of periodicity using the power spectrum method. The inferences figure out from the analyses will be helpful to the policy managers, planners and agricultural scientists to work out irrigation and water management options under various possible climatic eventualities for the region. The long-term (1889?C2008) mean annual rainfall of CNE India is 1,195.1?mm with a standard deviation of 134.1?mm and coefficient of variation of 11%. There is a significant decreasing trend of 4.6?mm/year for Jharkhand and 3.2?mm/day for CNE India. Since rice crop is the important kharif crop (May?COctober) in this region, the decreasing trend of rainfall during the month of July may delay/affect the transplanting/vegetative phase of the crop, and assured irrigation is very much needed to tackle the drought situation. During the month of December, all the meteorological subdivisions except Jharkhand show a significant decreasing trend of rainfall during recent normal period NP4. The decrease of rainfall during December may hamper sowing of wheat, which is the important rabi crop (November?CMarch) in most parts of this region. Maximum temperature shows significant rising trend of 0.008°C/year (at 0.01 level) during monsoon season and 0.014°C/year (at 0.01 level) during post-monsoon season during the period 1914?C2003. The annual maximum temperature also shows significant increasing trend of 0.008°C/year (at 0.01 level) during the same period. Minimum temperature shows significant rising trend of 0.012°C/year (at 0.01 level) during post-monsoon season and significant falling trend of 0.002°C/year (at 0.05 level) during monsoon season. A significant 4?C8?years peak periodicity band has been noticed during September over Western UP, and 30?C34?years periodicity has been observed during July over Bihar subdivision. However, as far as CNE India is concerned, no significant periodicity has been noticed in any of the time series.  相似文献   

6.
7.
Rainfall erosivity, which shows a potential risk of soil loss caused by water erosion, is an important factor in soil erosion process. In consideration of the critical condition of soil erosion induced by rainfall in Guangdong Province of southern China, this study analyzed the spatial and temporal variations in rainfall erosivity based on daily rainfall data observed at 25 meteorological stations during the period of 1960–2011. The methods of global spatial autocorrelation, kriging interpolation, Mann–Kendall test, and continuous wavelet transform were used. Results revealed that the annual rainfall erosivity in Guangdong Province, which spatially varied with the maximum level observed in June, was classified as high erosivity with two peaks that occur in spring and summer. In the direction of south–north, mean annual rainfall erosivity, which showed significant relationships with mean annual rainfall and latitude, gradually decreased with the high values mainly distributed in the coastal area and the low values mainly occurring in the lowlands of northwestern Guangdong. Meanwhile, a significant positive spatial autocorrelation which implied a clustered pattern was observed for annual rainfall erosivity. The spatial distribution of seasonal rainfall erosivity exhibited clustering tendencies, except spring erosivity with Moran’s I and Z values of 0.1 and 1.04, respectively. The spatial distribution of monthly rainfall erosivity presented clustered patterns in January–March and July–October as well as random patterns in the remaining months. The temporal trend of mean rainfall erosivity in Guangdong Province showed no statistically significant trend at the annual, seasonal, and monthly scales. However, at each station, 1 out of 25 stations exhibited a statistically significant trend at the annual scale; 4 stations located around the Pearl River Delta presented significant trends in summer at the seasonal scale; significant trends were observed in March (increasing trends at 3 stations), June (increasing trends at 4 stations located in the Beijiang River Basin), and October (decreasing trends at 4 stations) at the monthly scale. In accordance with the mean annual rainfall over Guangdong Province, the mean annual rainfall erosivity showed two significant periodicities of 3–6 and 10–12 years at a confidence level of 95 %. In conclusion, the results of this study provide insights into the spatiotemporal variation in rainfall erosivity in Guangdong Province and support for agrolandscape planning and water and soil conservation efforts in this region.  相似文献   

8.
Gao  Feng  Chen  Xiaoling  Yang  Wenfu  Wang  Wenwen  Shi  Lijiang  Zhang  Xiaolong  Liu  Yaomeng  Tian  Yaofei 《Theoretical and Applied Climatology》2022,148(3-4):955-966
Theoretical and Applied Climatology - Under the background of global warming, an analysis of the trend and variability of rainfall time series on various timescales is very important for...  相似文献   

9.
Summary An unusually long-lived (33 hours), devastating (local maximum rainfall rate over 800 mm/24 hr) meso--scale (diameter smaller than 200 km) convective system that occurred over the Mediterranean coast of Spain has been simulated reasonably well by means of a regional numerical model. Several runs of the model including parameterized convection and boundary conditions of varying degrees of complexity have been performed. In most of these experiments, the main characteristics of the event, namely its, stationarity and duration, are captured. The direct relationship between the Lagrangian lifetime of a meteorological system and its degree of deturministic predictability seems to be corroborated by the results: It appears that the meso--scale forcing that preceded and favoured the MCS was especially well predictable, and once initiated, the simulated MCS seems to have several feedback mechanisms helping to extend its life. Results are encouraging, because they reveal that it might be possible to predict very severe episodes of small MCSs such as the one shown here sufficiently in advance.With 15 Figures  相似文献   

10.
This paper presents the patterns and trends of haze over 31 provincial capitals in China between 1980 and 2005. The haze measurements were based on human visual range observations at 31 synoptic meteorological stations operated by the China Meteorological Administration (CMA). The high haze regions were found in largely populated cities such as Chongqing, Beijing, and Shenyang, while the low haze regions were located in the cities with small populations such as Lhasa, Kunming, and Guiyang in southwestern China and Haikou in southern China. The haziness of the 12 cities shows a significantly (95%) decreasing trend, while that of the 13 cities shows a significantly increasing trend over the 25-year study period. The increases are evident in the eastern and southwestern cities in China. It has also been found that there is a decreasing haze trend in winter but an increasing trend in summer for many cities. Nonetheless, the causality for the reduction of aerosol emissions has not been established. This report is the first survey and preliminary analysis done on haze patterns and trends from 1980 to 2005 over the capital cities of 31 provinces in Mainland China.  相似文献   

11.
Since the 1950s, the terrestrial carbon uptake has been characterized by interannual variations, which are mainly determined by interannual variations in gross primary production (GPP). Using an ensemble of seven-member TRENDY (Trends in Net Land–Atmosphere Carbon Exchanges) simulations during 1951–2010, the relationships of the interannual variability of seasonal GPP in China with the sea surface temperature (SST) and atmospheric circulations were investigated. The GPP signals that mostly relate to the climate forcing in terms of Residual Principal Component analysis (hereafter, R-PC) were identified by separating out the significant impact from the linear trend and the GPP memory. Results showed that the seasonal GPP over China associated with the first R-PC1 (the second R-PC2) during spring to autumn show a monopole (dipole or tripole) spatial structure, with a clear seasonal evolution for their maximum centers from springtime to summertime. The dominant two GPP R-PC are significantly related to Sea Surface Temperature (SST) variability in the eastern tropical Pacific Ocean and the North Pacific Ocean during spring to autumn, implying influences from the El Ni?o–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). The identified SST and circulation factors explain 13%, 23% and 19% of the total variance for seasonal GPP in spring, summer and autumn, respectively. A clearer understanding of the relationships of China’s GPP with ocean–atmosphere teleconnections over the Pacific and Atlantic Ocean should provide scientific support for achieving carbon neutrality targets.  相似文献   

12.
13.
The spatio-temporal variability in summer rainfall within eastern China is identified based on empirical orthogonal function (EOF) analysis of daily rain-gauge precipitation data for the period 1979–2003. Spatial coherence of rainfall is found in the Yangtze Basin, and a wavelet transform is applied to the corresponding principal component to capture the intraseasonal oscillation (ISO) of Yangtze rainfall. The ensemble mean wavelet spectrum, representing statistically significant intraseasonal variability, shows a predominant oscillation in summer Yangtze rainfall with a period of 20–50 days; a 10–20-day oscillation is pronounced during June and July. This finding suggests that the 20–50-day oscillation is a major agent in regulating summer Yangtze rainfall. Composite analyses reveal that the 20–50-day oscillation of summer Yangtze rainfall arises in response to intraseasonal variations in the western North Pacific subtropical high (WNPSH), which in turn is modulated by a Rossby wave-like coupled circulation–convection system that propagates northward and northwestward from the equatorial western Pacific. When an anomalous cyclone associated with this Rossby wave-like system reaches the South China Sea (SCS) and Philippine Sea, the WNPSH retreats northeastward due to a reduction in local pressure. Under these conditions, strong monsoonal southwesterlies blow mainly toward the SCS–Philippine Sea, while dry conditions form in the Yangtze Basin, with a pronounced divergent flow pattern. In contrast, the movement of an anomalous anticyclone over the SCS–Philippine Sea results in the southwestward extension of the WNPSH; consequently, the tropical monsoonal southwesterlies veer to the northeast over the SCS and then converge toward the Yangtze Basin, producing wet conditions. Therefore, the 20–50-day oscillation of Yangtze rainfall is also manifest as a seesaw pattern in convective anomalies between the Yangtze Basin and the SCS–Philippine Sea. A considerable zonal shift in the WNPSH is associated with extreme dry (wet) episodes in the Yangtze Basin, with an abrupt eastward (westward) shift in the WNPSH generally leading the extreme negative (positive) Yangtze rainfall anomaly by a 3/8-period of the 20–50-day oscillation. This finding may have implications for improving extended-range weather forecasting in the Yangtze Basin.  相似文献   

14.
The aircraft-based experiment KABEG97 (Katabatic wind and boundary-layer front experiment around Greenland) was performed in April/May 1997. During the experiment, surface stations were installed at five positions on the ice sheet and in the tundra near Kangerlussuaq, West Greenland. A total of nine katabatic wind flights were performed during quite different synoptic situations and surface conditions, and low-level jets with wind speeds up to 25m s-1 were measured under strong synoptic forcing of the katabatic wind system. The KABEG data represent a unique data set for the investigation of katabatic winds. For the first time, high-resolution and accurate aircraft measurements can be used to investigate the three-dimensional structure of the katabatic wind system for a variety of synoptic situations.Surface station data show that a pronounced daily cycle of the near-surface wind is present for almost all days due to the nighttime development of the katabatic wind. In a detailed case study the stably-stratified boundary layer over the ice and the complex boundary-layer structure in the transition zone ice/tundra are investigated. The katabatic wind system is found to extend about 10 km over the tundra area and is associated with strong wind convergence and gravity waves. The investigation of the boundary-layer dynamics using the concept of a two-layer katabatic wind model yields the results that the katabatic flow is always a shooting flow and that the pure katabatic force is the main driving mechanism for the flow regime, although a considerable influence of the large-scale synoptic forcing is found as well.  相似文献   

15.
Using model simulated data, the distribution characteristics, genesis, and impacts on precipitation of available potential energy (APE) are analyzed for a heavy rainfall event that took place over the eastern Tibetan Plateau during 10–11 July 2018. Results show that APE was mainly distributed below 4 km and within 8–14 km. The APE distribution in the upper level had a better correspondence with precipitation. Northwestern cold advection and evaporation of falling raindrops were primary factors leading to positive anomalies of APE in the lower level, while positive anomalies of APE in the upper level were caused by a combination of thermal disturbances driven by latent heat and potential temperature perturbations resulting from the orography of the Tibetan Plateau. Budget analysis of APE indicated that APE fluxes and conversion between APE and kinetic energy (KE) were the main source and sink terms. Meridional fluxes of APE and conversion of KE to APE fed the dissipation of APE in the lower level. Vertical motion enhanced by conversion of APE to KE in the upper level was the major factor that promoted precipitation evolution. A positive feedback between APE and vertical motion in the upper level generated a powerful correlation between them. Conversion of KE to APE lasted longer in the lower level, which weakened vertical motion; whereas, northwestern cold advection brought an enhanced trend to the APE, resulting in a weak correlation between APE and vertical motion.摘要针对2018年7月10-11日青藏高原东部一次暴雨过程, 利用模式模拟资料分析了有效位能分布特征,成因及其对降水发展演变的影响.结果表明, 有效位能主要分布在对流层低层4km以下和高层8-14km, 高层有效位能和降水有更好的对应性西北冷平流和降水粒子下落的蒸发作用是低层有效位能高值中心的主要成因, 而降水过程释放潜热带来的热力扰动叠加高原大地形造成的位温扰动是导致高层有效位能高值的主要原因.有效位能收支分析表明, 有效位能的通量输送项以及与动能间的转换项是主要源汇项.低层有效位能的经向通量输送和动能向有效位能的转化补给了有效位能的耗散;高层有效位能向垂直动能转化增强垂直运动是促进降水发展演变的主要因素.高层有效位能与垂直运动之间的正反馈过程使得两者相关性较强;低层较长时间内均存在垂直动能向有效位能的转化, 削弱了垂直运动, 而西北冷平流使得低层有效位能有增强的趋势, 因此二者相关性较弱.  相似文献   

16.
Based on the primitive equation model with p-σincorporated coordinate system originally developed by Qian et al., a one-way nested fine mesh limited area model is developed. This model is nested with ECMWF T42 data to simulate the extra-intensive rainfall event occurring in the Changjiang and Huaihe River valleys in summer of 1991. The results show that the model has cer-tain capacity to fairly reproduce the regional distribution and the movement of the main rainfall belts. Therefore it can be used as a regional climate model to simulate and predict the short-range regional climate changes.  相似文献   

17.
Detailed spatiotemporal structures for the submonthly-scale (7–25 days) intraseasonal oscillation (ISO) in summer monsoon rainfall and atmospheric circulation were investigated in South Asia using high-quality rainfall and reanalysis datasets. The Meghalaya–Bangladesh–coast of the western Myanmar (MBWM) region is the predominant area of submonthly-scale ISO in the Asian monsoon regions. The distinct rainfall ISO is caused by a remarkable alternation of low-level zonal wind between westerly and easterly flows around the Gangetic Plain on the same timescales. In the active ISO phase of the MBWM, a strong low-level westerly/southwesterly flows around the plain and a center of cyclonic vorticity appears over Bangladesh. Hence, a local southerly flows toward the Meghalaya Plateau and there is strong southwesterly flow towards the coast along southeastern Bangladesh and western Myanmar, resulting in an increase in orographic rainfall. Rainfall also increases over the lowland area of the MBWM due to the low-level convergence in the boundary layer under the strong cyclonic circulation. The submonthly-scale low-level wind fluctuation around the MBWM is caused by a westward moving n = 1 equatorial Rossby (ER) wave. When the anticyclonic (cyclonic) anomaly related to the ER wave approaches the Bay of Bengal from the western Pacific, humid westerly/southwesterly (easterly/southeasterly) flows enhance around the Gangetic Plain on the northern fringe of the anticyclone (cyclone) and in turn promote (reduce) rainfall in the MBWM. Simultaneously, robust circulation signals are observed over the mid-latitudes. In the active phase, cyclonic anomalies appear over and around the TP, having barotropic vertical structure and also contributing to the enhancement of low-level westerly flow around the Gangetic Plain. In the upper troposphere, an anticyclonic anomaly is also observed upstream of the cyclonic anomaly over the TP, having wavetrain structure. The mid-latitude circulation around the TP likely helps to induce the distinct ISO there in conjunction with the equatorial waves. Thus, the distinct ISO in the MBWM is strongly enhanced locally (~500 km) by the terrain features, although the atmospheric circulation causing the ISO has a horizontal scale of ~6,000 km or more, extending across the whole Asian monsoon system from the tropics to mid-latitudes.  相似文献   

18.
1.IntroductionAlthoughGCMsprovedsuccessfulinreproducingthebasicfeaturesoflarge--scaleatmosphericcirculations(Gates,1992),theyaretoocoarsetodescribethedetailsofregionalclimatepatterns(Grotch,etal.,1991).Intheregionswheretheatmosphericdynamicalandphysicalforcingsvaryonascaleoflessthanafewhundredkilometers,suchasinthepresenceofcomplexterrain,afactorof10orgreaterincreaseinmodelhorizontalresolutionmayberequiredtosimulatetherealisticregionalresponsestothefutureclimatechanges.Duetothelimitationsinb…  相似文献   

19.
Tree-ring width (TRW) and stable carbon isotope (??13C) in tree-ring cellulose of subalpine fir (Abies fabri) were used to develop high-resolution climate proxy data to indicate snow-depth variations in the Gongga Mountain, west China. Tree radial growth- and ??13C-climate response analyses demonstrated that the TRW and ??13C at the timberline (3,400?m.a.s.l.) are mainly influenced by temperature and precipitation of previous growth seasons and current summer (June to August) under cold and humid conditions. Considering the analogous control factors on both tree growth and carbon isotope discrimination (??13C) and snow accumulation, the negative and significant relationships between tree-ring parameters (TRW and ??13C) and mean monthly snowpack depth were found. Herein, by combining two tree-ring parameters, a primary snow-depth reconstruction (previous October to current May) over the reliable period A.D. 1880?C2004 was estimated. The reconstruction explains 58.0% of the variance in the instrumental record, and in particular captures the longer-term fluctuations successfully. Except the period with extreme higher snowpack depth around 1990, the snowpack depth seems to fluctuate in a normal way. The reconstruction agrees with the nearby snowpack depth record in Kangding and the mean observed snowpack-depth variations of the stations on the Tibetan Plateau, particularly at long-term scales. The snowpack depth in low-frequency fluctuations, during the past century, agrees quite well with the Eastern India precipitation covering the period of previous October?Ccurrent May. Our results suggest that combing tree-ring width and ??13C in certain subalpine tree species growing on the Tibetan Plateau may be an effective way for reconstructing regional snowpack variations.  相似文献   

20.
Shaolei TANG  Jing-Jia LUO  Jiaying HE  Jiye WU  Yu ZHOU  Wushan YING 《大气科学进展》2021,38(12):2023-2039,中插8-中插11
The extreme floods in the Middle/Lower Yangtze River Valley (MLYRV) during June?July 2020 caused more than 170 billion Chinese Yuan direct economic losses. Here, we examine the key features related to this extreme event and explore relative contributions of SST anomalies in different tropical oceans. Our results reveal that the extreme floods over the MLYRV were tightly related to a strong anomalous anticyclone persisting over the western North Pacific, which brought tropical warm moisture northward that converged over the MLYRV. In addition, despite the absence of a strong El Ni?o in 2019/2020 winter, the mean SST anomaly in the tropical Indian Ocean during June?July 2020 reached its highest value over the last 40 years, and 43% (57%) of it is attributed to the multi-decadal warming trend (interannual variability). Based on the NUIST CFS1.0 model that successfully predicted the wet conditions over the MLYRV in summer 2020 initiated from 1 March 2020 (albeit the magnitude of the predicted precipitation was only about one-seventh of the observed), sensitivity experiment results suggest that the warm SST condition in the Indian Ocean played a dominant role in generating the extreme floods, compared to the contributions of SST anomalies in the Maritime Continent, central and eastern equatorial Pacific, and North Atlantic. Furthermore, both the multi-decadal warming trend and the interannual variability of the Indian Ocean SSTs had positive impacts on the extreme floods. Our results imply that the strong multi-decadal warming trend in the Indian Ocean needs to be taken into consideration for the prediction/projection of summer extreme floods over the MLYRV in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号