首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transfer of organic carbon (OC) from the terrestrial to the oceanic carbon pool is largely driven by riverine and aeolian transport. Before transport, however, terrigenous organic matter can be retained in intermediate terrestrial reservoirs such as soils. Using compound-specific radiocarbon analysis of terrigenous biomarkers their average terrestrial residence time can be evaluated.Here we show compound-specific radiocarbon (14C) ages of terrigenous biomarkers and bulk 14C ages accompanied by geochemical proxy data from core top samples collected along transects in front of several river mouths in the Black Sea. 14C ages of long chain n-alkanes, long chain n-fatty acids and total organic carbon (TOC) are highest in front of the river mouths, correlating well with BIT (branched and isoprenoid tetraether) indices, which indicates contribution of pre-aged, soil-derived terrigenous organic matter. The radiocarbon ages decrease further offshore towards locations where organic matter is dominated by marine production and aeolian input potentially contributes terrigenous organic matter. Average terrestrial residence times of vascular plant biomarkers deduced from n-C29+31 alkanes and n-C28+30 fatty acids ages from stations directly in front of the river mouths range from 900 ± 70 years to 4400 ± 170 years. These average residence times correlate with size and topography in climatically similar catchments, whereas the climatic regime appears to control continental carbon turnover times in morphologically similar drainage areas of the Black Sea catchment. Along-transect data imply petrogenic contribution of n-C29+31 alkanes and input via different terrigenous biomarker transport modes, i.e., riverine and aeolian, resulting in aged biomarkers at offshore core locations. Because n-C29+31 alkanes show contributions from petrogenic sources, n-C28+30 fatty acids likely provide better estimates of average terrestrial residence times of vascular plant biomarkers. Moreover, sedimentary n-C28 and n-C30 fatty acids appear clearly much less influenced by autochthonous sources than n-C24 and n-C26 fatty acids as indicated by increasing radiocarbon ages with increasing chain-length and are, thus, more representative as vascular plant biomarkers.  相似文献   

2.
We measured molecular distributions and compound-specific hydrogen (δD) and stable carbon isotopic ratios (δ13C) of mid- and long-chain n-alkanes in forest soils, wetland peats and lake sediments within the Dorokawa watershed, Hokkaido, Japan, to better understand sources and processes associate with delivery of terrestrial organic matter into the lake sediments. δ13C values of odd carbon numbered C23-C33n-alkanes ranged from −37.2‰ to −31.5‰, while δD values of these alkanes showed a large degree of variability that ranged from −244‰ to −180‰. Molecular distributions in combination with stable carbon isotopic compositions indicate a large contribution of C3 trees as the main source of n-alkanes in forested soils whereas n-alkanes in wetland soil are exclusively derived from marsh grass and/or moss. We found that the n-alkane δD values are much higher in forest soils than wetland peat. The higher δD values in forest samples could be explained by the enrichment of deuterium in leaf and soil waters due to increased evapotranspiration in the forest or differences in physiology of source plants between wetland and forest. A δ13C vs. δD diagram of n-alkanes among forest, wetland and lake samples showed that C25-C31n-alkanes deposited in lake sediments are mainly derived from tree leaves due to the preferential transport of the forest soil organic matter over the wetland or an increased contribution of atmospheric input of tree leaf wax in the offshore sites. This study demonstrates that compound-specific δD analysis provides a useful approach for better understanding source and transport of terrestrial biomarkers in a C3 plant-dominated catchment.  相似文献   

3.
Carbon isotope studies have been carried out on marine Phanerozoic sediments of the Williston Basin, North America. Special attention was given to the recognition of systematic variations with age.δ 13C measurements on the carbonate fraction show a 3%0 depletion from the Cambrian to the Mississippian and a 1–2%0 enrichment to the Jurassic. Both the sign of these displacements and a good correlation with the organic carbon content suggest that real variations in the rate of photosynthesis may have been the driving force for these changes with age.Because of the large isotopic heterogeneities in the organic biomass, systematic fluctuations with age in the δ 13C-values of the total organic carbon record are hard to prove. Nevertheless, a significant 3%0 depletion was observed from the Devonian to the end of the Carboniferous. This depletion seems to occur on a worldwide scale. It is therefore proposed that a rise in the rate of photosynthesis as a consequence of the colonization of the continents by higher plants is the global cause of this displacement in the isotope record of the total organic carbon.The bitumen fraction does not show any systematic isotope variations with age.Comparison of coexisting δ 13Corg13Cbit pairs demonstrates that during the Ordovician-Mississippian time period no significant (> 1%0) differences in the isotope values of these two organic carbon sources can be observed. In contrast the bitumen fraction is depleted in 13C as compared to the total organic carbon in the Cambrian as well as in the Pennsylvanian-Cretaceous time interval. Several parameters, i.e. the depth of burial of these sediments, the 12(pristane/n-C17 + phytane/n-C18) ratio and the n-alkane distribution pattern support the theory that the rank of the organic matter may be responsible for the observed isotopic pattern.  相似文献   

4.
Organic geochemical characterization of cutting samples from the Abu Hammad-1 and Matariya-1 wells elucidates the depositional environment and source rock potential of the Jurassic and Lower Cretaceous successions and the Middle Miocene to Pleistocene section in the southern and eastern Nile Delta Basin. The burial and thermal histories of the Mesozoic and Miocene sections were modeled using 1D basin modeling based on input data from the two wells. This study reveals fair to good gas-prone source rocks within the Upper Jurassic and Lower Cretaceous sections with total organic carbon (TOC) averaging 2.7% and hydrogen index (HI) up to 130 mg HC/g TOC. The pristane/n-C17 versus phytane/n-C18 correlation suggests mixed marine and terrestrial organic matter with predominant marine input. Burial and thermal history modeling reveals low thermal maturity due to low heat flow and thin overburden. These source rocks can generate gas in the western and northern parts of the basin where they are situated at deeper settings. In contrast, the thick Middle Miocene shows fair source rock quality (TOC averaging at 1.4%; HI maximizing at 183 mg HC/g TOC). The quality decreases towards the younger section where terrestrial organic matter is abundant. This section is similar to previously studied intervals in the eastern Nile Delta Basin but differs from equivalents in the central parts where the quality is better. Based on 1D modeling, the thick Middle Miocene source rocks just reached the oil generation stage, but microbial gas, however, is possible.  相似文献   

5.
Two piston cores, one located far from the continents (The North Pacific Ocean: ES core), and another located comparatively closer to the continents (The Bering Sea: BOW-8a core) were investigated to reconstruct environmental changes on source land areas. The results show significant contribution of terrestrial organic matter to sediments in both cores. The δ13C values of n-C27, n-C29, and n-C31 alkanes in sediments from the North Pacific ES core show significant glacial to interglacial variation whereas those from the Bering Sea core do not. Variations of δ13C values of land plant n-alkanes are related to the environmental or vegetational changes in the source land areas. Environmental changes, especially, aridity, rainfall, and pCO2 during glacial/interglacial transitional periods can affect vegetation, and therefore C3 / C4 plant ratios, resulting in δ13C changes in the preserved land plant biomarkers. Maximum values of δ13C as well as maximum average chain length values of long chain n-alkanes in the ES core occur mostly at the interglacial to glacial transition zones reflecting a time lag related to incorporation of living organic matter into soil and transportation into ocean basins via wind and/or ability of C4 plants to adapt for a longer period before being replaced by C3 plants when subjected to gradual climatic changes. Irregular variations with no clear glacial to interglacial trends in the BOW-8a core may result from complex mixture of aerosols from westerly winds and riverine organic matter from the Bering Sea catchments. In addition, terrestrial organic matter entering the Bering Sea could originate from multiple pathways including eolian, riverine, and ice rafted debris, and possibly be disturbed by turbidity and other local currents which can induce re-suspension and re-sedimentation causing an obliterated time relation in the Bering Sea biomarker records.  相似文献   

6.
Samples of Sphagnum palustre and peat from the Erxianyan peatland, central China, were analyzed for lipids and their carbon isotopes to investigate how lipid distributions respond to hydrological change and to evaluate the importance of the contribution of microbial lipids to the peat moss. The lipids in samples collected from different hydrological settings in and around a pond and in the central part of the bog show clear variation along the hydrological gradient, with higher n-C23/n-C25 alkane ratio values and lower ACL (average chain length) values of long chain n-alkanes, n-fatty alcohols and n-fatty acids at the wetter sites. Although the relationship between the S. palustre lipids and the hydrological conditions can be partially overprinted in peat by an input from vascular plants, lipid ratios such as Paq and ACL can provide useful qualitative information about Sphagnum contributions. In addition, lipid composition and carbon isotope values provide information about microbial activity associated with S. palustre. The occurrence of a high abundance of 7-methylheptadecane in submerged S. palustre is an indication of cyanobacteria in the living peat moss. The relatively 13C-depleted carbon isotope values of the n-C23 alkane could result from the influence of symbiotic methanotrophs on the carbon available for assimilation by S. palustre.  相似文献   

7.
Agricultural grasses cover a major part of the land surface in temperate agro-ecosystems and contribute significantly to the formation of soil organic matter. Crop-derived lipids are assumed to be responsible for fast carbon turnover in soils. Differences in lipid distribution patterns between crops following C3 and C4 photosynthesis pathways have rarely been described, but could be useful for source apportionment of crop-derived input into soils or sediments. The distribution of long chain n-carboxylic acids (C22, C24, C26) reveals significant differences between crop plants following either the C3 or the C4 photosynthetic carbon fixation pathway. The plant compartments leaves, stems and roots of C4 plants contain relatively large proportions (> 40%) of n-C24 carboxylic acid when compared to C3 plants. These reveal larger relative proportions of n-C22 and n-C26 acids, whose relative abundance is subject to change between different plant compartments and during the growing season. The carboxylic acid ratio [CAR = n-C24/(n-C22 + n-C26) carboxylic acids] provides distinct ratios for C4 (> 0.67) and C3 crops (< 0.67) and can thus be used as a molecular marker for the differentiation of crop plant biomass. In combination with the bulk stable carbon isotopic composition (δ13C) the CAR can be used as a tool for the estimation of the C4 derived carbon proportion in soils or sediments.  相似文献   

8.
We characterized the compositions of organic compounds in a Cheremushka bog sediment core (deposited over the last 35 kyr), located at the eastern coast of Lake Baikal, to obtain basic information about the terrestrial organic matter (OM) which contributed to Lake Baikal sediments. The bog sediment was analyzed for the molecular composition of n-alkanes, lignin phenols and n-C24 to C30 alkanoic acids, as well as the carbon isotopic composition of plant wax derived n-C27 to C33 alkanes.Concentrations of lignin phenols [vanillyl (V) plus syringyl (S) phenols] normalized to total organic carbon (TOC) in the Holocene are twice those for the last glacial maximum (LGM), while concentrations of TOC-normalized n-C24 to C30 alkanoic acids do not change markedly in this period. Thus, the ratio of lignin phenols to n-C24 to C30 alkanoic acids increases from the LGM to the Holocene. This result is essentially consistent with pollen analysis indicating an expansion of woody plants in the Holocene and a prevailing herb-abundant environment for the LGM. The δ13C values of n-C27 to C33 alkanes (e.g. ?29‰ to ?33‰ for C31) indicate the presence of C3-dominant plants throughout the core.The contribution of terrestrial OM to Lake Baikal sediments was estimated using the biomarkers, on the assumption that the OM in the bog sediments is a representative of the terrestrial OM around the lake. Hence, the estimation using lignin phenol or n-C24 to C30 alkanoic acid parameters indicates that 11–24% of the TOC in the Academician Ridge sediments is land-derived for both the Holocene and the LGM, which is similar to the estimates from C/N values of bulk OM. However, the estimates for terrestrial OM using the n-C27 to C33 alkane parameter are generally higher than those using lignin phenol or n-C24 to C30 alkanoic acid parameters. The difference is thought to be associated with the difference in source and behavior of these biomarkers.  相似文献   

9.
The organic rich Safer shales exposed in the north-central part of onshore Marib-Shabowah Basin are evaluated and their depositional environments are interpreted. Total organic carbon contents (TOC) of the shales range from 1.02–16.8 wt%, and yield hydrogen index (HI) values ranging from 130 to 820 mg HC/g TOC, consistent with mainly Type II with minor contributions from Type I and mixed Types II–III kerogens. The Safer shale samples have vitrinite reflectance values in the range of 0.5–1.0 Ro%, indicating early mature to peak mature stage for oil generation. Tmax values range from 429–438 °C, which are in reasonably good agreement with vitrinite reflectance data. Kerogen microscopy shows that the Safer shales are characterized by high amounts of organic matter, consisting predominantly of yellow fluorescing amorphous organic matter and alginite of marine origin. This is supported by their high content of hydrogen rich Type II and I oil-prone kerogen.The biomarker distributions of the Upper Jurassic Safer extracts are characterized by dominant low to medium molecular weight compounds (n-C14 to n-C20), low Pr/Ph ratio (<1.0), high phytane/n-C18 ratios (0.82–2.68), and predominant regular sterane C27. All biomarker parameters clearly indicate that the organic matter was derived from marine algal inputs and deposited under anoxic (reducing) conditions. Hypersaline conditions also prevailed during deposition of these sediments, as indicated by the presence of gammacerane.  相似文献   

10.
Concentration profiles of five C25 and C30 biogenic alkenes in a sediment core collected from the upper anoxic basin of the Pettaquamscutt River have been determined. The five alkenes were identified usin gas chromatography/mass spectrometry as three isomeric C25 dienes, a C25 triene and a bicyclic C30 diene. All five compounds exhibit subsurface concentration maxima, thought to result from either preservation of a past increase in alkene production or a current bacterial in situ production at depth. Similarities exist in the concentrations of two alkenes common to this core and a core from upper Narragansett Bay, despite significant differences in the origin and content of sedimentary organic matter (as inferred from organic carbon and δ 13C measurements) at each location. These observations support the proposed bacterial in situ synthesis of alkenes. Other alkenes, whose concentration in sediments had been previously correlated with the incidence of marine organic matter, were not detected in the upper basin sediments. Their absence is consistent with the range of organic carbon δ 13C values measured, which indicate that the component originating from marine sources is small. A comparison of organic carbon and δ 13C values in this core with those previously reported from a core collected in an adjoining basin indicate that the sedimentary regimes at the two sites differ despite their close proximity and similar hydrography.  相似文献   

11.
Atmospheric dust samples collected along a transect off the West African coast have been investigated for their lipid content and compound-specific stable carbon isotope compositions. The saturated hydrocarbon fractions of the organic solvent extracts consist mainly of long-chain n-alkanes derived from epicuticular wax coatings of terrestrial plants. Backward trajectories for each sampling day and location were calculated using a global atmospheric circulation model. The main atmospheric transport took place in the low-level trade-wind layer, except in the southern region, where long-range transport in the mid-troposphere occurred. Changes in the chain length distributions of the n-alkane homologous series are probably related to aridity, rather than temperature or vegetation type. The carbon preference of the leaf-wax n-alkanes shows significant variation, attributed to a variable contribution of fossil fuel- or marine-derived lipids. The effect of this nonwax contribution on the δ13C values of the two dominant n-alkanes in the aerosols, n-C29 and n-C31 alkane, is, however, insignificant. Their δ13C values were translated into a percentage of C4 vs. C3 plant type contribution, using a two-component mixing equation with isotopic end-member values from the literature. The data indicate that only regions with a predominant C4 type vegetation, i.e. the Sahara, the Sahel, and Gabon, supply C4 plant-derived lipids to dust organic matter. The stable carbon isotopic compositions of leaf-wax lipids in aerosols mainly reflect the modern vegetation type along their transport pathway. Wind abrasion of wax particles from leaf surfaces, enhanced by a sandblasting effect, is most probably the dominant process of terrigenous lipid contribution to aerosols.  相似文献   

12.
The carbon geochemistry of serpentinized peridotites and gabbroic rocks recovered at the Lost City Hydrothermal Field (LCHF) and drilled at IODP Hole 1309D at the central dome of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) was examined to characterize carbon sources and speciation in oceanic basement rocks affected by long-lived hydrothermal alteration. Our study presents new data on the geochemistry of organic carbon in the oceanic lithosphere and provides constraints on the fate of dissolved organic carbon in seawater during serpentinization. The basement rocks of the Atlantis Massif are characterized by total carbon (TC) contents of 59 ppm to 1.6 wt% and δ13CTC values ranging from −28.7‰ to +2.3‰. In contrast, total organic carbon (TOC) concentrations and isotopic compositions are relatively constant (δ13CTOC: −28.9‰ to −21.5‰) and variations in δ13CTC reflect mixing of organic carbon with carbonates of marine origin. Saturated hydrocarbons extracted from serpentinites beneath the LCHF consist of n-alkanes ranging from C15 to C30. Longer-chain hydrocarbons (up to C40) are observed in olivine-rich samples from the central dome (IODP Hole 1309D). Occurrences of isoprenoids (pristane, phytane and squalane), polycyclic compounds (hopanes and steranes) and higher relative abundances of n-C16 to n-C20 alkanes in the serpentinites of the southern wall suggest a marine organic input. The vent fluids are characterized by high concentrations of methane and hydrogen, with a putative abiotic origin of hydrocarbons; however, evidence for an inorganic source of n-alkanes in the basement rocks remains equivocal. We propose that high seawater fluxes in the southern part of the Atlantis Massif likely favor the transport and incorporation of marine dissolved organic carbon and overprints possible abiotic geochemical signatures. The presence of pristane, phytane and squalane biomarkers in olivine-rich samples associated with local faults at the central dome implies fracture-controlled seawater circulation deep into the gabbroic core of the massif. Thus, our study indicates that hydrocarbons account for an important proportion of the total carbon stored in the Atlantis Massif basement and suggests that serpentinites may represent an important—as yet unidentified—reservoir for dissolved organic carbon (DOC) from seawater.  相似文献   

13.
Biomarker compositions of particulate organic matter (POM) from the oligotrophic Lake Brienz and the eutrophic Lake Lugano (both Switzerland) are compared, in order to obtain information about organic matter (OM) production and transformation processes in relation to water column stratification. Eutrophic conditions in Lake Lugano are reflected by enhanced alkalinity, elevated total organic carbon (TOC) and chlorin contents compared with Lake Brienz. Lower δ13C values of dissolved inorganic carbon (DIC) in Lake Lugano reflect enhanced OM respiration in the water column.Differences in OM dynamics between both lakes, as well as seasonal variations, are evidenced by TOC-normalised concentration profiles of total fatty acids (FAs) and total neutrals. In Lake Brienz, the results reflect the relative contributions of primary productivity and refractory, allochthonous OM to POM, governed by particle load and interflows due to density stratification. The depth trends at Lake Lugano are a result of high primary productivity, water column stratification and associated particle load in the upper layers, as well as microbially induced degradation close to the chemocline and greater preservation under anoxic conditions. Minor differences exist with regard to the OM composition. In both lakes, FA distributions and the composition of n-alkanols indicate a predominant autochthonous OM source (algae, zooplankton, bacteria). Inputs of OM from diatoms are reflected in highly-branched isoprenoid (HBI) alkenes, 16:1 n-FAs and 24-methylcholesta-5,22-dien-3β-ol (either epibrassicasterol or brassicasterol). Differences in relative proportions of n-C16 vs. n-C18 FAs and alkanols, respectively, as well as in the percentages of C27, C28 and C29 sterols relative to the sum of sterols are related to differences in the abundances of chrysophytes, diatoms and green algae within the euphotic zone of both lakes as well as in bacterial activity and soil in-wash. High relative proportions of cholesterol in the autumn samples, most pronounced at Lake Lugano, were attributed to an increased input from zooplankton grazing in the water column.Differences in OM degradation processes are reflected in slightly higher chlorin index values and higher relative proportions of saturated vs. unsaturated n-FAs in Lake Lugano. Higher contents of branched chain FAs, 16:1ω7 n-FA, and enhanced 18:1ω7/18:1ω9 n-FA ratios suggest enhanced bacterial biomass in the water column of Lake Lugano close to the chemocline. Increasing proportions of saturated n-FAs and n-alkanols with increasing water depth, most distinct in the autumn for both lakes, argue for intensified bacterial activity and degradation of OM during autumn. High relative contents of sterols and low n-alkanol concentrations in POM close to the chemocline at Lake Lugano during spring are interpreted to reflect higher primary productivity in the photic zone, OM export to the deeper parts and enhanced degradation rates of more labile constituents (i.e. C13–C20 n-alkanols), as compared to Lake Brienz.  相似文献   

14.
Agricultural soils are regarded as one potential sink for atmospheric CO2 via photosynthetic fixation in plant biomass and subsequent transformation into soil organic matter upon soil diagenesis. The difference in C-isotope signatures of C3- vs. C4-plants allows for a natural isotopic labelling of soil organic matter after changes from C3- to C4-cropping. In this study, we demonstrate that isotopic shifts are paralleled by molecular signatures of C3- vs. C4-crop alkyl lipids. Turnover times vary significantly, based on cropping techniques. For grain-maize cropped soils at steady state average turnover times of 40 years for bulk SOC, 35 years for n-alkanes and 21 years for n-carboxylic acids were determined. Turnover times for silage-maize cropped soil at steady state were on average 250 years for bulk SOC, 60 years for n-alkanes and 49 years for n-carboxylic acids. Turnover times reported here for silage-maize cropped soils may be taken as maximum values only, because they derive from a single trial, which was affected by addition of anthropogenic refractory carbon. Discrimination of input from various plant parts (roots, stems and leaves) based on bulk C-isotopes is not feasible but can easily be achieved using compositions of carboxylic acids, especially the ratio of n-C24 vs. n-C22+26 and their respective C-isotope values. This enables delineation of the influence of different cropping techniques, e.g., silage- or grain-maize, on carbon storage in soils. Admixture of external sources of organic matter to the soil organic carbon pool of an urban site in Halle, Germany was identified based on alkyl lipid distributions. Nearby lignite mining was identified as a source for non-crop-derived alkyl lipids, primarily based on the elevated n-C26-carboxylic acid content and heavier carbon isotopic signatures.  相似文献   

15.
《Applied Geochemistry》2003,18(8):1241-1249
A combination of δ 13C values with C/N ratios in suspended matter has been used to examine the seasonal relationship between C4 and C3 vegetation along the Loess Plateau, NW China. The C isotopic composition of suspended organic matter in rivers, together with C/N ratios can differentiate between soil and plant material, and can be used to estimate the relative contributions of soil organic C and plant litter to the suspended matter. The relationship between C isotopic composition and C/N ratios indicates that the samples are a mixture of two end members: (1) modern soils with relatively constant δ 13C values, low C content and low C/N ratios; (2) plant litter with varying δ 13C values, high C content and high C/N ratios. The results reflect the seasonal distribution of C4/C3 vegetation within the area studied, as part of the Loess Plateau. The abundance of C4 grasses is about 20% for the current summer vegetation ecosystem in the eastern part of the Loess Plateau. Hence, the use of δ 13C values and C/N ratios of suspended matter in rivers and modern soil may be useful for reflecting seasonal distribution of C4/C3 vegetation in catchments. This could be a useful tool for distinguishing between catchments for GIS studies, and long term planning for ecological management of catchment areas.  相似文献   

16.
This new study was carried out in order to accurately characterize the geochemical pattern of Ousselat organic-rich facies from the Ypresian basin in central-northern Tunisia. It has been found that the organic matter is located towards the end of diagenesis/beginning of catagenesis. This assumption is supported by the relative low T max values (429–439°C) and by steranes maturity parameters such as C29 αα 20S/(20S + 20R), and C29 ββ/(ββ + αα). High HI values and the abundance of saturates (1–83%) compared to aromatics (2–27%) are unequivocal evidence of type-II organic matter as indicated by a high abundance of cholestane and the predominance of short-chain n-alkanes centred at n-C18 and at n-C20. Total organic carbon (TOC) content and petroleum potential values suggest that the Ypresian period corresponds to an anoxic event which led to the accumulation and preservation of large quantities of organic matter with high primary production. Due to their geochemical characteristics, the Lower Eocene facies represent a new potential source rocks in central-northern Tunisia.  相似文献   

17.
Multidisciplinary analysis of the carbonaceous sediments of Warkalli Formation (Mio-Pliocene) from the Warkalli cliff section has been done to assess the source of organic matter, palaeodepositional settings and the hydrocarbon potential. The n-alkane distribution from n-C12 to n-C33 along with bimodal distribution indicates significant organic matter contribution from microbial activity and higher plants. The contribution from angiosperm source vegetation is indicated by the oleanane type of triterpenoids. The hopanes distribution indicates the immature stage of the organic matter, which is in agreement with the Tmax (av. 401 °C) and huminite reflectance (av. 0.28% Rr) values. The total organic carbon (TOC) contents vary between 0.8 and 6.72 wt. % in the studied sediments. Hydrogen index and oxygen index values range from 16 to106 mg HC/g TOC, and 113 to 344 mg CO2/g TOC, respectively. The maceral content is low, being dominated by the detrohuminite submaceral and the mineral matter accounts for 68 to 77% of the total composition. The phytoclast group (63–87%) is dominant with subordinate amorphous organic matter (4–35%). The study shows that the sediments were deposited in a marginal suboxic basin with intermittent variations. All the parameters unequivocally suggest that the studied sequence holds the potential to generate gaseous hydrocarbons.  相似文献   

18.
Compound-specific isotope analysis has become an important tool in environmental studies and is an especially powerful way to evaluate biodegradation of hydrocarbons. Here, carbon isotope ratios of light hydrocarbons were used to characterise in-reservoir biodegradation in the Gullfaks oil field, offshore Norway. Increasing biodegradation, as characterised, for example, by increasing concentration ratios of Pr/n-C17 and Ph/n-C18, and decreasing concentrations of individual light hydrocarbons were correlated to 13C-enrichment of the light hydrocarbons. The δ13C values of C4 to C9n-alkanes increase by 7-3‰ within the six oil samples from the Brent Group of the Gullfaks oil field, slight changes (1-3‰) being observed for several branched alkanes and benzene, whereas no change (<1‰) in δ13C occurs for cyclohexane, methylcyclohexane, and toluene. Application of the Rayleigh equation demonstrated high to fair correlation of concentration and isotope data of i- and n-pentane, n-hexane, and n-heptane, documenting that biodegradation in reservoirs can be described by the Rayleigh model. Using the appropriate isotope fractionation factor of n-hexane, derived from laboratory experiments, quantification of the loss of this petroleum constituent due to biodegradation is possible. Toluene, which is known to be highly susceptible to biodegradation, is not degraded within the Gullfaks oil field, implying that the local microbial community exhibits rather pronounced substrate specificities. The evaluation of combined molecular and isotopic data expands our understanding of the anaerobic degradation processes within this oil field and provides insight into the degradative capabilities of the microorganisms. Additionally, isotope analysis of unbiodegraded to slightly biodegraded crude oils from several oil fields surrounding Gullfaks illustrates the heterogeneity in isotopic composition of the light hydrocarbons due to source effects. This indicates that both source and also maturity effects have to be well constrained when using compound-specific isotope analysis for the assessment of biodegradation.  相似文献   

19.
Benzene extractable aliphatic hydrocarbons from the New Albany Shale in the Illinois Basin were characterized by gas chromatography and mass spectrometry, and the total organic matter of the shale was characterized by solid state carbon-13 cross polarization magic angle spinning nuclear magnetic resonance. Core samples from a northwest-trending cross-section of the Illinois Basin were studied. Gas chromatography (GC) and gas chromatography-mass spectrometric analysis (GC/MS) data indicate a regional variation of the aliphatic composition of the shale extracts. A positive, linear relationship between the two ratios, pristane/n-C17 and phytane/n-C18, is indicated. The NMR results indicated that organic matter deposited in northwestern Illinois shale is relatively high in aliphatic hydrocarbon content while, in contrast, organic matter found in southeastern Illinois shale is relatively low in aliphatic hydrocarbon content. Our findings suggest that the organic variation of the shale is mainly due to the differences in thermal maturity of the shale organic matter and the use of pristane/n-C17 ratio as a thermal parameter in the study of oil may be extended to the study of the ancient sediments.  相似文献   

20.
Lignin oxidation products and 13C/12C ratios were compared as indicators of land-derived organic matter in surface sediments from the western Gulf of Mexico. Whole sediments were reacted with cupric oxide to yield phenolic oxidation products that indicated the types and relative amounts of the lignins that were present.Measurements of lignin concentration and carbon isotope abundances both indicated a sharp offshore decrease of land-derived organic matter in most areas of the western Gulf. This decrease results primarily from mixing of terrestrial and marine organic matter. The terrestrially derived material in these sediments has a lignin content similar to that of grasses and tree leaves. Flowering plants contribute most of the sedimented lignin compounds. These lignins apparently occur in the form of well-mixed plant fragments that are transported to sea by rivers and deposited primarily on the inner continental shelf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号