首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
More than one-half of the world's population is dependent on ground water for everyday uses such as drinking, cooking, and hygiene. In fact, it is the most extracted natural resource in the world. As a result of growing populations and expanding economies, many aquifers today are being depleted while others are being contaminated. Notwithstanding the world's considerable reliance on this resource, ground water resources have long received only secondary attention as compared to surface water, especially among legislatures and policymakers. Today, while there are hundreds of treaties governing transboundary rivers and lakes, there is only one international agreement that directly addresses a transboundary aquifer. Given that many of the aquifers on which humanity so heavily relies cross international borders, there is a considerable gap in the sound management, allocation, and protection of such resources. In order to prevent future disputes over transboundary aquifers and to maximize the beneficial use of this resource, international law must be clarified as it applies to transboundary ground water resources. Moreover, it must be defined with a firm basis in sound scientific understanding. In this paper we offer six conceptual models is which ground water resources can have transboudary consequences. The models are intended to help in assessing the applicability and scientific soundness of existing and proposed rules governing transboundary ground water resources. In addition, we consider the development of international law as it applies to ground water resources and make recommendations based on the models and principles of hydrogeology. The objective is the development of clear, logical, and science-based norms of state conducts as they relate to aquifers that traverse political boundaries.  相似文献   

2.
Puri S  Aureli A 《Ground water》2005,43(5):661-668
Transboundary aquifers are as important a component of global water resource systems as are transboundary rivers; yet, their recognition in international water policy and legislation is very limited. Existing international conventions and agreements barely address aquifers and their resources. To rectify this deficiency, the International Association of Hydrogeologists and UNESCO's International Hydrological Programme have established the Internationally Shared (transboundary) Aquifer Resource Management (ISARM) Programme. This multiagency cooperative program has launched a number of global and regional initiatives. These are designed to delineate and analyze transboundary aquifer systems and to encourage riparian states to work cooperatively toward mutually beneficial and sustainable aquifer development. The agencies participating in ISARM include international and regional organizations (e.g., Organization of American States, United Nations Environment Programme, United Nations Economic Commission for Europe, Food and Agriculture Organization, and South African Development Community). Using outputs of case studies, the ISARM Programme is building scientific, legal, environmental, socioeconomic, and institutional guidelines and recommendations to aid sharing nations in the management of their transboundary aquifers. Since its start in 2000, the program has completed inventories of transboundary aquifers in the Americas and Africa, and several ISARM case studies have commenced.  相似文献   

3.
The political dimension of water becomes highly important not only because of its scarcity, but also as a result of its sharing across national boundaries. Approximately 40% of the global population lives in transboundary water basins, 55% of which are located in Europe, emphasizing the need for cooperation and harmonization of policies. In order to better handle major water problems Europe have adopted the new EU Water Framework Directive 2000/60 the implementation of which is further discussed. Especially in Greece, management of transboundary rivers is of major importance, since roughly 25% of the country’s renewable resources are “imported”. However, lack of integrated approaches and legal agreements as well as administrative shortcomings, make transboundary cooperation and management a hard task. This study refers to 4 shared basins in Northern Greece and demonstrates the problems that occur for their sustainable management.  相似文献   

4.
《Water Policy》2001,3(3):229-255
This paper examines the evolution structure and characteristics of the management systems of 12 transboundary river basins: The Mekong, Indus, Ganges–Brahmaputra, the Nile, Jordan, Danube, Elbe, Rio Grande and Colorado, Rio de la Plata, Senegal and Niger. The paper presents the legal principles which guide the legal regime of the studied rivers, particularly the principle of equitable use of transboundary water resources and the obligation not to cause harm in the management of transboundary water resources. The practice of management in the abovementioned rivers is divided into three categories:(a) Treaties and agreements stopping short of allocating water between riparian states such as free navigation treaties or institutions which were established for a sole purpose such as combating pollution (Elbe, Danube, Rhine).(b) Treaties and agreements allocating water between states (the Indus, Nile, Ganges, Jordan).(c) Agreements for joint management of internationally shared waters (Colorado and Rio Grande, Mekong, Senegal and Niger).Some of the institutions discussed in this paper have evolved only after a long conflict (Indus, Ganges, Jordan) and that there is a danger of adopting institutions for only a portion of a river basin (Mekong, Nile). The success of institutions which were founded on basin-wide joint management lie in their territorial coverage and broad functional frameworks. These institutions also reflect, in the best way, the current legal norms in the management of transboundary water resources.  相似文献   

5.
This paper contains an account of UN/EEC-sponsored research on water quality monitoring and assessments in the catchments areas of Europe's 10 transboundary rivers. In this context, water quality assessments established on the basis of monitoring data for Poland's rivers are discussed. Consideration is also given to the water quality assessment methods recommended by the EU Directives. The problem has been exemplified by the analysis of water quality variations in the transboundary river Odra in the time span of 1973–2003. For the years 1993–2003, the trends in water quality variations are calculated and the rates of variation are analysed. The points in time when the water quality will have attained the second class purity values are predicted, taking into account the requirements specified in Polish, Czech and German standards. Analysis of the trends in the variations of pollution parameters has revealed that the achievability of good water quality depends on the limit values adopted for the assessment.  相似文献   

6.
Arnold GE  Buzás Z 《Ground water》2005,43(5):669-678
In Europe, a long history of cooperation over transboundary rivers--most notably the Rhine and Danube rivers--exists. To help foster cooperation and communication vis-à-vis transboundary ground water, the United Nations Economic Commission for Europe (UNECE), as part of its ground water program, conducted a survey on transboundary aquifers in Europe. The survey produced 25 responses from 37 countries and identified 89 transboundary aquifers. Respondents reported on the degree of ground water use within their own boundaries, transboundary aspects (agreements, joint commissions, etc.) of ground water, and transboundary aquifers themselves. The inventory proved useful, but a number of problems were identified: different map scales and symbols, difficulty in identifying transboundary aquifers, inconsistent labeling of aquifers, and data discrepancies. The UNECE ground water program also drafted guidelines for monitoring and assessment of transboundary ground water. These guidelines are not legally binding but have been adopted by 25 countries, deal mainly with monitoring and assessment, and are being implemented through a number of pilot projects. Other organizations-the United Nations Scientific, Educational and Cultural Organization, the Food and Agriculture Organization, the International Association of Hydrogeologists, and the European Union--are all supporting the investigation of transboundary aquifers in an effort to facilitate data sharing and coordinated management of these valuable resources.  相似文献   

7.
Managing water resources, in terms of both quality and quantity, in transboundary rivers is a difficult and challenging task that requires efficient cross-border cooperation and transparency. Groundwater pollution risk assessment and mapping techniques over the full catchment area are important tools that could be used as part of these water resource management efforts, to estimate pollution pressures and optimize land planning processes. The Evros river catchment is the second largest river in Eastern Europe and sustains a population of 3.6 million people in three different countries (Bulgaria, Turkey and Greece). This study provides detailed information on the main pollution sources and pressures in the Evros catchment and, for the first time, applies, assesses and evaluates a groundwater pollution risk mapping technique using satellite observations (Landsat NDVI) and an extensive dataset of field measurements covering different seasons and multiple years. We found that approximately 40 % of the Greek part of the Evros catchment is characterized as of high and very high pollution risk, while 14 % of the study area is classified as of moderate risk. Both the modeled and measured water quality status of the river showed large spatiotemporal variations consistent with the strong anthropogenic pressures in this system, especially on the northern and central segments of the catchment. The pollutants identified illustrate inputs of agrochemicals and urban wastes in the river. High correlation coefficients (R between 0.79 and 0.85) were found between estimated pollution risks and measured concentrations of those chemical parameters that are mainly attributed to anthropogenic activities rather than in situ biogeochemical processes. The pollution risk method described here could be used elsewhere as a decision support tool for mitigating the impact of hazardous human activities and improving management of groundwater resources.  相似文献   

8.
International borders, ground water flow, and hydroschizophrenia   总被引:1,自引:0,他引:1  
A substantial body of research has been conducted on transboundary water, transboundary water law, and the mitigation of transboundary water conflict. However, most of this work has focused primarily on surface water supplies. While it is well understood that aquifers cross international boundaries and that the base flow of international river systems is often derived in part from ground water, transboundary ground water and surface water systems are usually managed under different regimes, resulting in what has been described as "hydroschizophrenia." Adding to the problem, the hydrologic relationships between surface and ground water supplies are only known at a reconnaissance level in even the most studied international basins, and thus even basic questions regarding the territorial sovereignty of ground water resources often remain unaddressed or even unasked. Despite the tensions inherent in the international setting, riparian nations have shown tremendous creativity in approaching regional development, often through preventive diplomacy, and the creation of "baskets of benefits," which allow for positive-sum, integrative allocations of joint gains. In contrast to the notion of imminent water wars, the history of hydropolitical relations worldwide has been overwhelmingly cooperative. Limited ground water management in the international arena, coupled with the fact that few states or countries regulate the use of ground water, begs the question: will international borders serve as boundaries for increased "flows" of hydrologic information and communication to maintain strategic aquifers, or will increased competition for shared ground water resources lead to the potential loss of strategic aquifers and "no flows" for both ground water users?  相似文献   

9.
The number of international agreements on transboundary water bodies and streams was found to increase rapidly in the late XX and early XXI century. The institutional and regulatory conditions required for solving the problems of international rivers and lakes are discussed. A system of governmental bodies in Russia, dealing with the use and protection of transboundary water bodies and streams is described. The international cooperation of Russia in the management of transboundary water bodies and streams is shown.  相似文献   

10.
Yanmei He 《Ground water》2017,55(4):489-494
China shares more than 20 transboundary aquifers with its coaquifer states, but they have not exploited their transboundary groundwater resources, and these resources have not been governed by any international agreements. Given the close interaction between surface water and groundwater, and the growing demands for transboundary groundwater in China and its coaquifer states, there is increasing necessity for these countries to undertake international cooperation on this issue. This article overviews China's transboundary aquifers, reviews the duty to cooperate on China's transboundary groundwater as well as the emerging transboundary aquifer law. It concludes by providing some proposals on international cooperation in this context, based on the two theories of international water law—limited territorial sovereignty and common interests, taking into account the practicability of China's cooperation with its coaquifer states. The author suggests that China cooperates with its coaquifer states through such means as the exchange of data and information, joint monitoring, the conclusion of bilateral or multilateral aquifer agreements, the establishment of joint management mechanisms, and international technical cooperation.  相似文献   

11.
Abstract

The planning of water resources depends on the type and size of projects, the ecological factors involved, etc. Emphasis is placed on presenting an overview of water resources through meteorological, hydrological, ecological and economic data. Economic data include all costs and benefits, specifically those hitherto under estimated, environmental social costs and benefits. This study was carried out on the Bedthi and Aghnashini rivers in the Uttara Kannada district of the Western Ghats region, Karnataka State, India. It is estimated that 720 and 510 million kWh of electricity can be generated in Bedthi and Aghnashini River basins, respectively, if all the streams are harnessed. Focusing on land submergence impact, a model is proposed to minimize submergence and maximize net energy in a region with seasonal power generation, reservoir storage capacity (to meet the region's demand during all seasons) and installed generation capacity as the decision variables. Net energy analyses incorporating biomass energy lost in submergence show that maximization in net energy at a site is possible if the hydroelectric generation capacity is adjusted according to the seasonal variations in the river's water discharge. A Decision Support System (DSS) used for optimal design of hydroelectric projects in Uttara Kannada district is discussed.  相似文献   

12.
Conflict situations in transboundary water use and the associated problems of harmonization of the interests of the users who claim the resources of transboundary water bodies. Mechanisms are proposed for the harmonization of the interests of states using transboundary water bodies in the absence of agreements regarding joint management strategies. The harmonization is being carried out with the quantitative and qualitative characteristics of water resources under stochastic conditions taken into account.  相似文献   

13.
Freshwater resources in the arid Arabian Peninsula, especially transboundary aquifers shared by Saudi Arabia, Jordan, and Iraq, are of critical environmental and geopolitical significance. Monthly Gravity Recovery and Climate Experiment (GRACE) satellite‐derived gravity field solutions acquired over the expansive Saq transboundary aquifer system were analysed and spatiotemporally correlated with relevant land surface model outputs, remote sensing observations, and field data to quantify temporal variations in regional water resources and to identify the controlling factors affecting these resources. Our results show substantial GRACE‐derived terrestrial water storage (TWS) and groundwater storage (GWS) depletion rates of ?9.05 ± 0.25 mm/year (?4.84 ± 0.13 km3/year) and ?6.52 ± 0.29 mm/year (?3.49 ± 0.15 km3/year), respectively. The rapid decline is attributed to both climatic and anthropogenic factors; observed TWS depletion is partially related to a decline in regional rainfall, while GWS depletions are highly correlated with increasing groundwater extraction for irrigation and observed water level declines in regional supply wells.  相似文献   

14.
In water-deficient rivers, environmental flows (e-flows) are usually sustained via inter-basin water transfer projects from water-sufficient rivers, but these projects incur tremendous costs and may lead to many negative ecological effects, such as ecological invasion. This research proposed to transfer hydropower instead of water from water-sufficient rivers, because hydropower could substitute for water to promote economic development and reduce water withdrawal from water-deficient rivers (conserved water). In addition, based on the analysis of eco-hydrological processes, the flow regime alteration plays an important role in restoring riverine ecosystem. With the goal of minimum flow regime alternation, we set up two scenarios to distribute the annual conserved water, and determined the optimal amount of transferred hydropower and the optimal use of conserved water, which could effectively sustain the e-flows. Accordingly, this paper established a computable general equilibrium model to analyse the substitution of hydropower for water in a water-deficient river basin, and determined the water withdrawal volume that could be reduced. We adopted a range-of-variability approach to measure the degree of flow regime alteration, and optimized the flow regime management scheme. The Luanhe River Basin was adopted as a study case. The results showed that: the water-hydropower equivalent decreased as the transferred hydropower into the Luanhe River Basin increased; a transferred hydropower amount of 22.46 kWh/s, equivalent to 18.30 m3/s conserved water, was optimal for the river basin; the conserved water should be distributed to the Luanhe River in the proportions of 0.55:0.1:0.35 during the wet, normal and dry seasons, respectively, which is the optimal scheme to sustain the hydrological processes of the river.  相似文献   

15.
During the end of the 20th and the beginning of the 21st centuries, interest has risen in new and renewable energy sources, and especially wind energy for electricity generation. In a short time, wind energy has been welcomed by society, industry and politicians as a clean, practical, economical and environmentally friendly alternative to existing fossil fuels. As a result of extensive studies on this topic, wind energy has recently been applied in various industries, and has started to compete with other energy resources. Wind energy applications and turbine installations at different scales have increased since the beginning of this millennium. Technically installed wind turbines capacity factors have high values in most areas of Turkey. It is seen that, in general, the modeling of wind speed and its parameters have been studied and researched rather than wind power technological development in Turkey. Wind investors had doubts about uncertainties in the renewable energy policies. After May 2007, an energy efficiency law was accepted and 10 years of electricity generation by renewable sources is considered as guaranteed by the Turkish government. The installed wind power has reached 131.35 MW in Turkey and it is expected that this value will be increased to 808.81 MW by the end of 2008. The dependence of strong technological and economical development on Turkey's energy needs have increased and new national or international sources have to be taken into account for the energy sector of the country. It is clear that this source gap could be filled by using the high potential of wind power, which is estimated at 58 GW. It is expected that installed wind power to supply up to 5% of electricity consumption by 2015 and for the end of 2008 this ratio will increase to 2% (it is currently ca. 1.0%). However, unexpected and unpredicted wind power applications have occurred on November 1st, 2007 in Turkey. It has been announced that 78,000.00 MW wind power investments have been applied by the Energy Market Regulatory Authority (EMRA). This is a new era for the Turkish energy sector and there is no model for this new situation. Therefore, in this paper, wind energy in Turkey is reviewed and opened up for further discussion.  相似文献   

16.
Faulting and weathering can endanger quarry operations by decreasing the total reserve, quarry’s useful life and production value. We investigated weathering and faulting problems in the Çatalca granite quarry at Istanbul in Turkey, using the Very Low Frequency (VLF) method. VLF method is an electromagnetic method which is very successful in locating vertical discontinuities such as faults and fracture zones. This method measures the apparent resistivity of the rocks in the region, besides the electromagnetic parameters such as tilt angle and ellipcity. Apparent resistivity is a very sensitive parameter to water presence inside the pores and fractures of the rocks. This feature enables the VLF method to map the boundaries between the fresh and cracked granite and altered zones in the quarry. In this work we mapped the faults and weathered zones within the granite in Çatalca quarry and found a high resistivity zone at the central part of the survey area which may be suitable for production. This study also shows the efficiency of the VLF method in understanding the structural and textural features of a quarry and estimating zones with high quality rocks for production planning.  相似文献   

17.
The Euphrates and Tigris rivers serve as the most important water resources in the Middle East. Precipitation in this region falls mostly in the form of snow over the higher elevations of the Euphrates Basin and remains on the ground for nearly half of the year. This snow‐covered area (SCA) is a key element of the hydrological cycle, and monitoring the SCA is crucial for making accurate forecasts of snowmelt discharge, especially for energy production, flood control, irrigation, and reservoir‐operation optimization in the Upper Euphrates (Karasu) Basin. Remote sensing allows the detection of the spatio‐temporal patterns of snow cover across large areas in inaccessible terrain, such as the eastern part of Turkey, which is highly mountainous. In this study, a seasonal evaluation of the snow cover from 2000 to 2009 was performed using 8‐day snow‐cover products (MOD10C2) and the daily snow‐water equivalent (SWE) product. The values of SWE products were obtained using an assimilation process based on the Helsinki University of Technology model using equal area Special Sensor Microwave Imager (SSM/I) Earth‐gridded advanced microwave scanning radiometer—EOS daily brightness‐temperature values. In the Karasu Basin, the SCA percentage for the winter period is 80–90%. The relationship between the SCA and the runoff during the spring period is analysed for the period from 2004 to 2009. An inverse linear relationship between the normalized SCA and the normalized runoff values was obtained (r = 0·74). On the basis of the monthly mean temperature, total precipitation and snow depth observed at meteorological stations in the basin, the decrease in the peak discharges, and early occurrences of the peak discharges in 2008 and 2009 are due to the increase in the mean temperature and the decrease in the precipitation in April. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

This paper reviews current knowledge of the potential impacts of climate change on water resources in Africa and the possible limits, barriers or opportunities for adaptation to climate change in internationally-shared river basins. Africa faces significant challenges to water resources management in the form of high variability and regional scarcity, set within the context of generally weak institutional capacity. Management is further challenged by the transboundary nature of many of its river basins. Climate change, despite uncertainty about the detail of its impacts on water resources, is likely to exacerbate many of these challenges. River basins, and the riparian states that share them, differ in their capacities to adapt. Without appropriate cooperation adaptation may be limited and uneven. Further research to examine the factors and processes that are important for cooperation to lead to positive adaptation outcomes and the increased adaptive capacity of water management institutions is suggested.  相似文献   

19.
The effect of water consumption and reservoirs on the regime and water resources of Russian rivers emptying into the Arctic Ocean is discussed. The impact of reservoirs on the annual and seasonal runoff of regulated rivers is estimated. The transformation of this impact along the rivers down to their outlet sections is analyzed. Possible variants of the development of water management measures in Arctic river basins in the first quarter of the 21st century are considered.  相似文献   

20.
An approach to developing harmonized strategies of the use of transboundary water resources is considered. The principle of open management is examined in two possible situations of strategy development—either there is no agreement between governments regarding the use of a transboundary water body, or the existing agreement is to be revised. Perfect harmonization is attained in both variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号