共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A three-level scheme is proposed for the identification of sources of fresh and old petroleum pollution of water bodies and streams, including an optimal complex of simple, available, and highly effective physicochemical techniques, criteria, and sample processing methods ensuring the reliability of conclusions derived from them. The efficiency of application of the proposed methods is illustrated in several water bodies and streams (the Bol’shaya Krepkaya, Tuzlov, Chitinka, and other rivers), which have experienced oil pollution. 相似文献
3.
Heat and bromide were compared as tracers for examining stream/ground water exchanges along the middle reaches of the Santa Clara River, California, during a 10-hour surface water sodium bromide injection test. Three cross sections that comprise six shallow (<1 m) piezometers were installed at the upper, middle, and lower sections of a 17 km long study reach, to monitor temperatures and bromide concentrations in the shallow ground water beneath the stream. A heat and ground water transport simulation model and a closely related solute and ground water transport simulation model were matched up for comparison of simulated and observed temperatures and bromide concentrations in the streambed. Vertical, one-dimensional simulations of sediment temperature were fitted to observed temperature results, to yield apparent streambed hydraulic conductivities in each cross section. The temperature-based hydraulic conductivities were assigned to a solute and ground water transport model to predict sediment bromide concentrations, during the sodium bromide injection test. Vertical, one-dimensional simulations of bromide concentrations in the sediments yielded a good match to the observed bromide concentrations, without adjustment of any model parameters except solute dispersivities. This indicates that, for the spatial and temporal scales examined on the Santa Clara River, the use of heat and bromide as tracers provide comparable information with respect to apparent hydraulic conductivities and fluxes for sediments near streams. In other settings, caution should be used due to differences in the nature of conservative (bromide) versus nonconservative (heat) tracers, particularly when preferential flowpaths are present. 相似文献
4.
The paper deals with hydraulic problems, arising with the development of geothermal deep ground-water flow. It begins with a brief comment upon the most important principles of flow, regarding the influence of temperature of water. Further it is explained what kind of hydraulic investigations on deep boreholes are necessary and how they have to be done.Finally, it will be reported about hydraulic investigations on particular geothermal water resources in Austria. Results of a pumping test, made at a deep well and lasting 15 months, show that by thermohydraulic investigations, particularly in connexion with geophysical measurements, fundamental statements can be made about available geothermal resources of the earth's crust for the technical planning and economic working of a geothermal energy production plant. The paper ends with a brief report about experiences made with the first geothermal heat supply plant that has been installed in Austria (Waltersdorf/East Styria). 相似文献
5.
Justin E. Lawrence Christopher P.W. Pavia Sereyvicheth Kaing Heather N. Bischel Richard G. Luthy Vincent H. Resh 《水文科学杂志》2014,59(3-4):488-501
AbstractThe scarcity of water in mediterranean-climate regions makes flow management in the rehabilitation of urban streams problematic. To explore potential applications of using recycled water for stream enhancement, we examine streams in the San Francisco Bay Area of California, USA, to characterize: (a) historic flow regimes at the regional scale, (b) potential unintended ecological effects and (c) specific issues related to recycled water. We analysed historic flow regimes in five basins, performed a streamflow augmentation experiment and monitored benthic macroinvertebrates above and below a recycled-water discharge. Streamflow augmentation with recycled water can provide improved aesthetics and aquatic habitat, but there are caveats to consider. Implications of inputs of recycled water in streams, whether direct or indirect, require detailed analysis of trade-offs. Augmentation is unlikely to harm the ecology of urban streams that are now just barely flowing perennially with pools of stagnant, contaminated water, and it may reduce public health problems from mosquitoes.
Editor Z.W. Kundzewicz; Guest editor M. AcremanCitation Lawrence, J.E., Pavia, C.P.W., Kaing, S., Bischel, H.N., Luthy, R.G., and Resh, V.H., 2014. Recycled water for augmenting urban streams in mediterranean-climate regions: a potential approach for riparian ecosystem enhancement. Hydrological Sciences Journal, 59 (3–4), 488–501. 相似文献
6.
Commonly measured water quality parameters were compared to heat as tracers of stream water exchange with ground water. Temperature, specific conductance, and chloride were sampled at various frequencies in the stream and adjacent wells over a 2-year period. Strong seasonal variations in stream water were observed for temperature and specific conductance. In observation wells where the temperature response correlated to stream water, chloride and specific conductance values were similar to stream water values as well, indicating significant stream water exchange with ground water. At sites where ground water temperature fluctuations were negligible, chloride and/or specific conductance values did not correlate to stream water values, indicating that ground water was not significantly influenced by exchange with stream water. Best-fit simulation modeling was performed at two sites to derive temperature-based estimates of hydraulic conductivities of the alluvial sediments between the stream and wells. These estimates were used in solute transport simulations for a comparison of measured and simulated values for chloride and specific conductance. Simulation results showed that hydraulic conductivities vary seasonally and annually. This variability was a result of seasonal changes in temperature-dependent hydraulic conductivity and scouring or clogging of the streambed. Specific conductance fits were good, while chloride data were difficult to fit due to the infrequent (quarterly) stream water chloride measurements during the study period. Combined analyses of temperature, chloride, and specific conductance led to improved quantification of the spatial and temporal variability of stream water exchange with shallow ground water in an alluvial system. 相似文献
7.
In this paper we develop a classification system for small headwater streams predicated upon an understanding of the dominant physical processes acting in the channel and its basin, and the conditions under which these processes operate. The variables used to build the classification are hillslope gradient, valley width as compared to channel width, channel gradient, channel depth and sediment size. Using physical laws and morphologic relationships, we recognize domains in which various processes dominate. Channels within the same process domain can be expected to behave in a similar manner in transporting sediment and water and responding to and recovering from basin disturbance, therefore we use the domains to recognize distinct channel types. This classification system provides the foundation for building an approach for identifying basins and streams that are comparably sensitive to landuse. 相似文献
8.
A stochastic model for synthetic data generation is not available in the literature for daily flows of intermittent streams. Such a model is required in the planning and operation of structures on an intermittent stream for purposes where short time flow fluctuations are important. In this study a model is developed for such a case. The model consists of four steps: determination of the days on which flow occurs, determination of the days on which a flow increment occurs, determination of the magnitude of the flow increment, and calculation of the flow decrement on days when the flow is reduced. The first two steps are modelled by a three‐state Markov chain. In the third step, flow increments on the rising limb of the hydrograph are assumed to be gamma distributed. In the last step an exponential recession is used with two different coefficients. Parameters of the model are estimated from the observed daily stream flow data for each month of the year. The model is applied to a daily flow series of 35 years' length. It is seen that the model can preserve the short‐term characteristics (the ascension and recession curves and peaks) of the hydrograph in addition to the long‐term characteristics (mean, variance, skewness, lag‐one and higher lag autocorrelation coefficients, and zero flow percentage). The number of parameters of the model can be decreased by fitting Fourier series to their annual variation. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
9.
ABSTRACTUnderstanding of the effect of basin water resources utilization on lake nutrients is helpful to prevent lake eutrophication and facilitate sustainable water resources management. In this study, a lake basin dualistic water cycle system is established to identify the environmental effect of lake water. Four water utilization indicators were chosen to build a driving relationship with the lake nutrients. Three different trophic lakes in Yunnan Province, China – Dianchi, Erhai and Fuxian – were selected to demonstrate the changes in basin water utilization, runoff, nutrient loads and water-use indicators for the period 2000–2015. In addition, the driving forces of water-use indicators to nutrients (total nitrogen and total phosphorus) were analysed by a general additive model. Finally, an optimized water utilization system for each lake basin is proposed. The research provides a practical tool for water resources and environmental management in lake basins. 相似文献
10.
The need to identify groundwater seepage locations is of great importance for managing both stream water quality and groundwater sourced ecosystems due to their dependency on groundwater‐borne nutrients and temperatures. Although several reconnaissance methods using temperature as tracer exist, these are subjected to limitations related to mainly the spatial and temporal resolution and/or mixing of groundwater and surface water leading to dilution of the temperature differences. Further, some methods, for example, thermal imagery and fiber optic distributed temperature sensing, although relative efficient in detecting temperature differences over larger distances, these are labor‐intensive and costly. Therefore, there is a need for additional cost‐effective methods identifying substantial groundwater seepage locations. We present a method expanding the linear regression of air and stream temperatures by measuring the temperatures in dual‐depth; in the stream column and at the streambed‐water interface (SWI). By doing so, we apply metrics from linear regression analysis of temperatures between air/stream and air/SWI (linear regression slope, intercept, and coefficient of determination), and the daily water temperature cycle (daily mean temperatures, temperature variance, and the mean diel temperature fluctuation). We show that using metrics from only single‐depth stream temperature measurements are insufficient to identify substantial groundwater seepage locations in a head‐water stream. Conversely, comparing the metrics from dual‐depth temperatures show significant differences; at groundwater seepage locations, temperatures at the SWI merely explain 43–75% of the variation opposed to ? 91% at the corresponding stream column temperatures. In general, at these locations at the SWI, the slopes ( < 0.25) and intercepts ( > 6.5 °C) are substantially lower and higher, respectively, while the mean diel temperature fluctuations ( < 0.98 °C) are decreased compared to remaining locations. The dual‐depth approach was applied in a post‐glacial fluvial setting, where metrics analyses overall corroborated with field measurements of groundwater fluxes and stream flow accretions. Thus, we propose a method reliably identifying groundwater seepage locations along streambeds in such settings. 相似文献
11.
《Limnologica》2021
Monitoring programs are among the first steps to develop robust management strategies, especially in international transboundary waters. Understanding how water quality parameters are impacted by different types of land use promotes a baseline for stakeholders to define the best governance for the management of water resources. Seeking to provide this type of information, we sampled 24 streams – 12 in Brazil and 12 in Paraguay – in February, April, July, September, and November 2019. We determined water quality parameters, grouped into three categories: morphometric, physical and chemical, and nutrients. We explored differences in water quality parameters between countries, and over a one-year sampling. We also tested whether Brazilian and Paraguayan streams are impacted by agriculture, urbanization, and forest cover. Finally, we performed a partial RDA to test the influence of land use on water quality parameters and controlled spatial autocorrelation by including spatial variables (dbMEM) as a condition. Most of the water quality parameters showed significant differences between countries; only turbidity, and pH, presented significant differences between countries and sampling periods, and only water temperature varied significantly along the year. We did not find evidence that different types of land use are causing physical and chemical variance in Brazilian and Paraguayan streams (R² = 0.06, p = 0.68). In conclusion, the results evidenced that the main differences in the water quality parameters occur between countries. Based on the results, transboundary governance can use these data to implement integrated water resources management cooperation. 相似文献
12.
AbstractIn order to apply the EU Water Framework Directive for temporary streams, it is important to quantify the space–time development of different aquatic states. We report on research on the development of aquatic states for temporary streams in the Evrotas basin, Greece. The SIMGRO regional hydrological model was used in a GIS framework to generate flow time series for the Evrotas River and all major tributaries. Five flow phases were distinguished: flood conditions, riffles, connected pools, isolated pools and dry bed conditions. Thresholds based on local hydraulic characteristics were identified per stream reach and flow phase, enabling the frequency of flow phases per month and the average frequencies for all streams to be derived. Three historical scenarios within the 20th century, marking periods of major changes in water management, were investigated. Additionally, a climate scenario for the 2050s was analysed. Simulations revealed that low flows are now much lower, mainly because more groundwater is abstracted for irrigation. The consequence is that stretches of the river fall dry during several months, causing the ecological status to deteriorate.
Editor Z.W. Kundzewicz Associate editor X. Chen 相似文献
13.
14.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency. 相似文献
15.
《Limnologica》2020
We assessed water quality using physical, chemical, and biological characteristics in 37 streams between Puerto Maldonado and Cusco in Peru. Study sites ranged from ∼200 to 4000 m in elevation, with streams selected as pairs (control/natural vs. human impacted) along this gradient. In general, temperature decreased (R2 = 0.82) and other parameters increased [dissolved oxygen (R2 = 0.19), conductivity (R2 = 0.17), pH (R2 = 0.37)] with elevation. Macroinvertebrates were hand collected by professional entomologists and using leaf packs implemented by conservation workers. The professionals identified 213 unique taxa from the hand collections, with 80 species collected only one time. Data from control streams showed that as elevation increased, total richness (p = 0.008) and EPT richness (p = 0.050) decreased whereas Diptera richness increased (p = 0.002). NMS ordination indicated significant differences in macroinvertebrate assemblages when control streams from low and high elevations were contrasted. Hand collections also revealed significant differences between control and impact streams for total richness, EPT richness and % Diptera, but not for % EPT, % EPT richness, or % Diptera richness. The majority of the deployed leaf packs were successfully retrieved and contained many macroinvertebrates (Avg. = 141 individuals per pack). There were 98 unique taxa (family level or higher) identified from the leaf packs by the trained conservation workers. Fourteen of 15 macroinvertebrate community metrics (at the family level) were able to detect significant differences between control and impact sites. All of the family level metrics responded similarly across the elevation gradient except total richness, EPT richness, EPT count, and % Hydropsychids. Both the Costa Rica and the Virginia Save Our Stream Indexes were able to differentiate control from impacted streams using leaf pack data. Although the diversity of macroinvertebrates was higher for hand collections relative to leaf packs (due to greater habitats sampled and higher taxonomic resolution), leaf pack samples were better able to distinguish control from impacted streams. Specifically, leaf packs were able to discern impacts in streams at low elevation better than those at high elevation. Generally, macroinvertebrates indicated impact from urbanization to be worse than impacts from other human activities (i.e., gold mining and agriculture). Overall, hand collections will serve as an important reference of species diversity going forward while leaf packs processed by trained conservation workers are a viable method to monitor stream water quality in Peru and perhaps elsewhere. 相似文献
16.
《水文科学杂志》2013,58(6):1068-1078
Abstract The study aims to set and implement environmentally relevant limits for the exploitation of mountain streams in the Kura River basin of Azerbaijan. Such streams represent the preferred spawning grounds for valuable sturgeon of the Caspian Sea, but experience continuously increasing exploitation in the form of water withdrawals for industry and irrigation. Since no detailed environmental flow assessments have been conducted on any of the Kura basin streams, an interim approach is suggested based on minimum flow, referred to as “base environmental minimum”. The latter may be estimated from the unregulated parts of observed or simulated daily flow records. Environmental flow requirements for individual months of an individual year may be calculated using correction factors related to monthly rainfall. Simple relationships are suggested for base environmental flow estimation at ungauged sites, and the implications of river pollution for monthly environmental requirements are examined. Further, definition of environmentally critical periods in a stream is proposed based on a ratio of observed to “environmental” flow as an indicator of environmental stress. It is illustrated that the conjunctive use of several closely located streams for water supply may significantly reduce the duration of, or completely eliminate, environmentally critical periods. The idea of environmentally acceptable areal water withdrawal is formulated, so that the overall approach may be applied for environmentally sustainable water withdrawal management in other small streams. 相似文献
17.
The number of international agreements on transboundary water bodies and streams was found to increase rapidly in the late XX and early XXI century. The institutional and regulatory conditions required for solving the problems of international rivers and lakes are discussed. A system of governmental bodies in Russia, dealing with the use and protection of transboundary water bodies and streams is described. The international cooperation of Russia in the management of transboundary water bodies and streams is shown. 相似文献
18.
Documenting the processes that control the variations in stream geochemistry at different streamflows is important for being able to use chemical tracers to understand catchment functioning. The concentrations of most solutes, including reactive cations (e.g., Na, Ca, K, and Mg) and anions that are primarily derived from precipitation (Cl and Br), in five headwater streams from southeast Australia vary little with streamflow and are close to being chemostatic. By contrast, NO3 and SO4 concentrations are higher at high streamflows. There is also a systematic increase of 3H activities from as low as 1.1 to as high as 2.6 TU with increasing streamflow. The changes in geochemistry cannot be explained solely by increased mineral dissolution at high streamflows or enhanced baseflow driven by hydraulic loading. They are best explained by an increased baseflow input augmented by water mobilized from shallower stores as the catchments wet up. The mean transit times of the water sustaining streamflow varies from 35 to 70 years at low streamflows to <7 years at high streamflows. The use of a range of geochemical tracers, including radioactive isotopes, allows the different possible causes of chemostatic behaviour to be assessed and improves our understanding of catchment functioning. 相似文献
19.
In the analysis of streamflow depletion, the Hunt (1999) solution has an important advantage because it considers a partially penetrating stream. By extending the Hunt drawdown solution, this paper presents semianalytical solutions for gaining streams that evaluate the induced stream infiltration and base flow reduction separately. Simulation results show that for a given deltah (the initial hydraulic head difference between stream and aquifer beneath the channel), the base flow reduction is in direct proportion to the product of streambed leakage (lambda) and the distance between pumping well and stream (L), and the induced stream infiltration is in inverse proportion to lambdaL. Deltah has a significant effect on the ratio of stream infiltration to base flow reduction. The results from the semianalytical solutions agree well with those from MODFLOW simulations. The semianalytical solutions are useful in the verification of numerical simulations and in the analysis of stream-aquifer interactions where water quantity or quality is concerned. 相似文献
20.
The high dynamism and complexity of braided networks poses a series of open questions, significant for river restoration and management. The present work is aimed at the characterization of the morphology of braided streams, in order to assess whether the system reaches a steady state under constant flow conditions and, in that case, to determine how it can be described and on which parameters it depends. A series of 14 experimental runs were performed in a laboratory physical model with uniform sand, varying the discharge and the longitudinal slope. Planimetric and altimetric configurations were monitored in order to assess the occurrence of a steady state. A set of parameters was considered, such as the braid‐plain width and the number and typology of branches and nodes. Results point out that a relationship exists between braiding morphology and two dimensionless parameters, related to total water discharge and stream power. We found that network complexity increases at higher values of water discharge and a larger portion of branches exhibits morphological activity. Results are then compared to the outputs of a simple one‐dimensional model, that allows to easily predict the average network complexity, once the bed topography is known. Model computations permit also the investigation of the effect of water discharge variations and to compare different width definitions. The at‐a‐station variability of planimetric parameters shows a peculiar behaviour, both regarding number of branches and wetted width. In particular, the analysis of the relationship between width and discharge highlighted relevant differences in comparison to single thread channel. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献