首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Frequency-dependent rupture behavior of sub- duction zone interplate megathrust faults has been observed by back-projection method in different frequency bands (from 0.05 to 5 Hz). It has been suggested that the down-dip region of the Tohoku megathrust radiated strongly at high frequencies (〉10 Hz) compared with that of the up-dip region. By assuming the same source tirne function of each fault patch, we perform a synthetic sensitivity analysis to compare the energy received from the shallower parts (and further way from the receiver sites) with that frona the deeper parts (and closer to the receiver sites) of the rupture. Our results indicate that regional onshore recordings are probably not adequate to constrain the presence of far-off shore high frequency radiations because of the strong attenuation of this region.  相似文献   

2.
对大地震前的扰动现象的研究有助于认识地震孕育的动力学过程,震前重力扰动已成为关注的热点之一. 对大地震前的扰动现象的研究有助于认识地震孕育的动力学过程,震前重力扰动已成为关注的热点之一. 为检验日本Mw9.0级地震是否存在震前扰动现象,本研究利用全球超导重力仪记录到的地震前后7天内20组秒采样数据进行分析. 经潮汐、大气改正等处理去除仪器的漂移及残余潮汐效应,得到非潮汐重力变化曲线.结果表明大部分振幅大于30×10-8 m·s-2的曲线反映了全球Mw≥6级地震引起的高频波动信号,其中11组数据在3月9日Mw7.3级前震之前出现了扰动现象.震前扰动可分解为三个频段,其中,低于0.1 Hz和高于0.18 Hz的分量分别反映了地震波动信号及非构造信息,中间频段(0.118~0.18 Hz)信号能够较大程度地压制地震波动信号、并同时保留异常扰动信息.它的振幅在3月7日10时之前基本保持约1×10-8 m·s-2,之后开始逐渐增大,到3月9日7.3级前震前后达到最大,此后振荡衰减,振幅保持约(5~10)×10-8 m·s-2,直至主震发生.中间频段信号的变化特征与主震前的应力迁移过程以及实验记录到的地震成核过程有许多相似之处;不过,震前重力异常是否与主震前的应力加速积累有关,仍待进一步研究.  相似文献   

3.
强震震前(preseismic)动力学过程的研究对于地震预测具有十分重要的意义,但由于观测资料的限制,目前对强震前孕震区力学状态及其演化过程的认识还非常有限.2011年日本东北9.0特大地震(Tohoku-Oki)发生在GPS观测台站最为密集的地区,为研究特大地震震间(interseismic)与震前的变形状态提供了难得的机会.文中将利用日本东北大地震之前连续的GPS观测资料,分别计算震间与震前的速度场与变形场.通过对比分析发现,日本东北地区(Tohoku)震前的应变状态与震间的有很大的不同,震间的变形主要受到太平洋板块向日本海沟北西西向的俯冲挤压作用所控制,其主压应变以近东西向压缩为主,日本东北地区的运动方向与太平洋板块的运动方向大体一致.但是,临近地震前(震前)日本东北地区的运动方向发生了很大变化,震前30天的连续GPS观测结果显示,速度场的优势方向经常变换,间歇性地出现与太平洋板块运动方向相反的情况.这意味着震前孕震区的力学状态发生了很大的改变.这种变化可能与震前破裂成核或慢滑移及慢地震等过程有关,这些过程将加速或促进大地震的发生,从而为大地震的发生准备了力学条件.值得特别强调的是,这些现象都是可以通过直接观测能够发现的大地震之前的异常现象.由此可见,加密GPS站点进行连续观测,寻找震前变形异常区以及探索异常的物理机制对于地震预测预报有重要的科学意义.  相似文献   

4.
力学上,地震可以看作在应力场作用下由于断层带介质的突然损伤或软化导致的断层带失稳事件.本文基于这个地震动力学模型,利用一种可以模拟断层大位错的有限元方法,研究了2011年MW9.0东日本大地震(Tohoku-Oki)的动力学破裂过程.比较了无障碍体和具有不同刚度障碍体的断层带模型产生的断层位移、位错和应力降.主要结果表明,障碍体的存在并不明显地改变障碍体区域的初始构造应力场.对有障碍体情形,准静态结果显示断层上盘最大逆冲位移和最大剪切位错分别为51m和58m,均发生在海底表面海沟处,与无障碍体的结果(最大剪切位错约55m)相比差别不大;下盘最大倾向位移(-10m)并不与上盘最大值出现在同一位置,而是在障碍体处.障碍体处剪应力降(约11 MPa)大于周围非障碍体区域.障碍体处正应力降的最大值约为3 MPa.模拟结果似乎不支持海山是导致本次地震异乎寻常大位错的原因,而倾向于断层带剪切刚度在地震过程中极度损伤或软化.  相似文献   

5.
杨博  占伟  梁洪宝  张风霜  杨国华 《地震》2019,39(2):88-96
实际监测与理论研究均表明, 2011年东日本大地震对中国东北地区地壳变形产生了显著的影响。 然而, 对震后影响的持续时间却存在着不同的看法, 有的学者依据所掌握的资料认为即使受影响最大的东北地区其持续时间截止于2013年上半年等。 针对这一问题, 本文对中国地壳运动观测网络2016年前的多期复测资料进行了处理与分析, 结果表明: 这种影响不仅存在, 而且仍是目前东北地区时段性地壳变形的主体成分, 仅是随着时间的推移呈现逐渐减弱的态势。 因此, 推测震后影响至少在今后数年内仍将存在。  相似文献   

6.
陈伟  刘泰  佘雅文  付广裕 《地震》2021,41(4):121-135
基于黏弹性球体位错理论,联合陆地和海底同震GPS数据以及日本本岛330个陆地GPS站点5~10年的震后数据,反演了日本Mw9.0地震的断层滑动模型,提升了断层滑动分布在细节上的合理性.首先,基于日本本岛330个陆地GPS站点震前2年和震后10年的连续观测数据,获取了日本Mw9.0地震震后5~10年的年平均位移,该时段的...  相似文献   

7.

本文利用较为完备的球体位错理论,结合4.5年的震后位移数据,优化了2011年日本MW9.0地震震源区岩石圈弹性层厚度与地幔黏滞性因子,更新了该强震断层余滑时空演化过程.首先,基于日本列岛215个均匀分布的GPS连续观测站震前2年与震后4.5年的观测数据,提取了2011年日本MW9.0地震引起的震后位移时空变化;接着,依据断层余滑衰减相对较快的特点,利用黏弹性球体位错理论对震后3~4.5年的GPS观测数据进行反复拟合,确定2011年日本MW9.0地震震源区地幔黏滞性系数和岩石圈弹性层厚度的最优解分别为6×1018 Pa·s和30 km;然后,从震后3年内GPS观测数据中剔除地幔黏滞性松弛效应,获取了断层余滑对应的震后位移场;最后,利用基于球体位错理论的反演算法,反演了2011年日本MW9.0地震断层余滑的时空演化过程.结果表明,2011年日本MW9.0地震引起的断层余滑在震后半年内变化显著,震后2年主震区域余滑基本停止,断层的两端存在一定的余滑效应,断层余滑的累计矩震级达到8.59;地震后4年,地幔黏滞性松弛效应对震后位移场的贡献在总体上超过断层余滑的贡献.

  相似文献   

8.
Yabuki & Matsu'ura反演方法是利用ABIC最佳模型参数选取方法和平滑的滑动分布作为约束条件,由形变观测数据计算发震断层滑动分布.本文基于日本列岛同震GPS观测数据和发震断层曲面构造模型,利用Yabuki & Matsu'ura反演方法计算2011年日本东北地区太平洋海域Mw9.0级地震的发震断层同震滑动分布.反演结果表明,断层面上的最大滑动量为35 m,较大滑动分布在浅于30 km的震源中心上部,最大破裂集中在20 km深度的地方.其地震矩约为3.63×1022N·m,对应的矩震级为Mw9.0.模拟结果显示Yabuki & Matsu'ura反演方法更适用于倾角低于40°的断层模型反演.最后,本文基于上述方法获得的发震断层滑动模型,利用地球体位错理论正演计算该地震在中国及其邻区产生的远场形变,正演计算结果基本可以解释由中国GPS陆态网络观测到的同震形变.  相似文献   

9.
On March 11, 2011, a MW9.0 earthquake occurred in the Japan Trench, causing tremendous casualties, and attracting extensive concern. Based on the results of related research, this paper analyzes the observations, phenomena and understandings of the earthquake from varied aspects, and obtains four main conclusions. (1) The earthquake, occurring in the subduction zone in the Japan Trench located in the northwest boundary of the pacific plate has two zones of concentrated coseismic slip at different depths, and the slip in the deep zone is relatively small. Though there have been many M7.0 historical earthquakes, slips in the shallow zone are large, but there have been few historical strong earthquakes. (2) Constrained by GPS data, the study of fault movement shows that fault movement in the Japan Trench has a background of widely distributed stability and locking (the locking zone is equivalent that of coseismic rupture zone). Perturbation occurred after the 2008 M8.0 Hokkaido earthquake, several M7.0 events had after slips larger than the coseismic slip, and two obvious slow slip events were recorded in 2008 and 2011. Eventually, the March 9, 2011 M7.0 foreshock and the March 11, 2011 MW9.0 mainshock occurred. The pre-earthquake changing of the fault movement in the Japan Trench is quite clear. (3) Traditional precursory observation show no obvious anomaly, possibly due to monitoring reason. Anomaly before earthquake consists of high stress state in focal zone reflected by some seismic activity parameters, short period anomaly in regional ground motion, etc. (4) The analysis of physical property in focal zone aroused more scientific issues, for example, is there obvious difference between physical property in focal zone and its vicinity? Does frictional property of fault determine seismogenic ability and rupture process? Whether pre-earthquake fault movement include pre-slips? Could deep fluid affect fault movement in focal zone? Experience is the best teacher, and authors hope this paper could be a modest spur to induce others in basic research in earthquake forecast and prediction.  相似文献   

10.
邵志刚  王芃  李海艳 《地震》2016,36(4):1-21
2011年3月11日, 日本海沟发生的9级地震造成重大人员伤亡, 受到社会普遍关注, 本文基于此次日本9级地震相关研究结果, 尝试从不同侧面分析此次地震的观测、 现象和认识, 主要包括如下几点: ① 此次地震发生在太平洋板块西北边界上日本海沟俯冲带上, 同震破裂可能存在深浅两个位错集中区, 较深的位错集中区位错量相对较小, 但历史上7级地震多发; 而较浅的位错集中区位错较大, 但历史上强震活动相对较弱; ② 基于GPS观测资料为约束的相关断层运动研究结果表明, 日本海沟断层运动背景以大范围稳定闭锁为主(闭锁区空间尺度与同震破裂尺度相当), 自2003年日本北海道8级地震后日本海沟地区断层运动开始出现扰动, 2008年以后有几次7级左右地震震后余滑分布明显比主震位错量要大, 之后分别于2008年和2011年观测到显著慢滑移事件, 最后分别于2011年3月9日和3月11日发生7级前震和9级主震, 震前日本海沟俯冲带断层运动变化过程比较清楚; ③ 可能是由于监测的原因, 传统上的前兆观测并未出现显著异常, 其震前异常主要为: 部分地震活动参数表明强震震源区震前应力状态相对较高、 区域地表运动速率的短期异常等; ④ 对于震源区物理性质的分析引起了更多的科学问题, 例如, 震源区介质物性是否与周边存在显著差异、 断层摩擦性质是否决定了发震能力和破裂过程、 震前断层运动是否存在预滑、 震前深部流体是否影响到震源区断层运动等。 他山之石可以攻玉, 希望本文对地震预测预报基础研究工作能起到抛砖引玉的作用。  相似文献   

11.

于2011年3月11日发生在日本东北部的MW9.0级逆冲型板间地震是日本有地震记录以来震级最大的一次地震.本研究基于NIED F-net矩张量解目录中的震源机制解,选取两个长轴相互垂直的矩形区域进行应力场2D反演,获取了日本海沟俯冲带地区应力场的空间及时间分布图像.结果表明:主震前,俯冲带地区应力状态在空间上大体趋于一致,即应力轴(P轴、σ1轴及SHmax轴)系统性地倾向板块汇聚方向,P轴、σ1轴倾角整体偏缓(< 30°),且远离震源区及日本海沟东侧区域内的应力轴倾角普遍大于主震震源区内应力轴倾角;主震前,受2003年5月26日在宫城县北部发生的MW7.0地震影响,位于MW9.0地震震源区西北侧的应力场出现明显扰动,σ1轴倾向顺时针偏转150°~180°,并于之后大体恢复至震前状态,同期其他地区没有明显变化,这种情况可能和主震断层局部(深部)的前兆性滑动有关;主震后,距离震源区较远处应力场变化不大,主震震源区内应力场发生显著改变,P轴及σ1轴均以大角度(>60°)倾伏于板块汇聚方向,SHmax轴顺时针偏转60°~90°且在日本海沟附近普遍平行于海沟轴.这项研究以时空图像的方式展示了大地震前应力场变化的特点,反映了大地震孕震过程中构造与地震的相互作用,对于理解大地震孕震过程有重要意义.

  相似文献   

12.
The Tohoku megathrust earthquake, which occurred on March 11, 2011 and had an epicenter that was 70 km east of Tohoku, Japan, resulted in an estimated ten's of billions of dollars in damage and a death toll of more than 15 thousand lives, yet few studies have documented key spatio-temporal seismogenic characteristics. Specifically, the temporal decay of aftershock activity, the number of strong aftershocks (with magnitudes greater than or equal to 7.0), the magnitude of the greatest aftershock, and area of possible aftershocks. Forecasted results from this study are based on Gutenberg-Richter's relation, Bath's law, Omori's law, and Well's relation of rupture scale utilizing the magnitude and statistical parameters of earthquakes in USA and China (Landers, Northridge, Hector Mine, San Simeon and Wenchuan earthquakes). The number of strong aftershocks, the parameters of Gutenberg-Richter's relation, and the modified form of Omori's law are confirmed based on the aftershock sequence data from the MW9.0 Tohoku earthquake. Moreover, for a large earthquake, the seismogenic structure could be a fault, a fault system, or an intersection of several faults. The seismogenic structure of the earthquake suggests that the event occurred on a thrust fault near the Japan trench within the overriding plate that subsequently triggered three or more active faults producing large aftershocks.  相似文献   

13.
强震发生前震源系统可能处于不稳定状态,在这种情况下,震中附近地区的地震活动或许会对微小的应力变化敏感.地球自转会在震源断层面上引起应力,地球自转速率变化也会在震源断层面上引起应力变化.由于地球自转速率变化非常微小,在震源断层面上引起应力变化也非常微弱,如果震源区处于极不稳定状态,这种微弱的应力变化或许会激发一些地震活动.这些被激发的地震活动将会表现出与地球自转速率变化的显著相关性.为了考察2011年3月11日日本本州9.1地震发生前震中附近地区是否存在与地球自转速率变化显著相关的地震活动,选取2000年1月-2011年2月M≥5.0地震集中活动区域为研究区域,根据USGS发布的1991年1月-2011年2月的地震目录,利用舒斯特(Schuster)统计检验方法,研究了地球自转与本州M_W9.1地震前发生的地震活动之间的相关性.检验结果用P值来评估,P值越低表示相关性越显著.结果如下:在研究区内5.4≤M≤6.9地震的P值的时间变化显示本州M_W9.1地震前从2009年6月-2010年1月存在低于0.5%的P值.当P值达最低值时,约82%的5.4≤M≤6.9地震发生在地球自转速率季节性变化的加速期,显示出了地震活动与地球自转速率加速之间的显著相关性.取3°×3°的空间窗,以0.1°的步长沿经度和纬度滑动对P值进行空间扫描,可以得到P值的空间分布.扫描区域远大于研究区,经纬度范围为(33°N-43°N,138°E-147°E).在P值的空间分布图上,可发现在P值处于最低值期间,低于0.5%的P值集中分布在研究区的北部,本州M_W9.1地震震中位于这个低P值区的边缘.因此,本州M_W9.1地震前在其破裂区内存在显著的与地球自转相关的地震活动现象,说明破裂区内存在非常不稳定的地区.  相似文献   

14.
利用归一化速率变化方法(NVRM)分析处理了芦山MS 6.1地震震中距450 km范围内的成都地震基准台、冕宁地震台、红格地震台、甘孜地震台等4个台站的地电阻率观测数据,结果显示:红格地震台NS、EW测道及甘孜地震台NE测道原始数据震前出现年变趋势性下降,下降幅度为1%—3%;红格地震台NVRM曲线震前出现正异常,冕宁地震台、甘孜地震台出现负异常,曲线转折下降过程中发生芦山MS 6.1地震。虽然整体而言提取出的地电阻率震前异常在时间上与此次地震对应关系较好,但甘孜地震台、红格地震台与此次地震震中间距离均大于300 km,提取出的异常是否为此次地震异常,还需进一步探究。  相似文献   

15.
利用青海区域地震台网数字地震波资料,计算2010—2016年研究区域184个ML≥2.5地震及2016年门源地震序列150个ML≥2.0地震的震源动力学参数,分析视应力时空变化。结果显示:视应力与震级呈正相关,随震级增大而升高;门源6.4级地震前中小震视应力存在起伏变化,可能反映了区域应力场的增强;门源ML 5.0强余震前小震视应力呈升高趋势。  相似文献   

16.
视应力和b值都可以反映地壳应力变化。当应力增加时,视应力会增加,而b值降低。因此,应力变化将导致视应力和b值之间呈负相关关系,即,根据视应力和b值之间的负相关关系可以研究地壳构造应力的变化。本文利用2000年1月—2019年12月长宁MS6.0地震破裂区内3.0≤ML≤3.6地震的视应力和2.0≤ML≤4.3地震目录,研究了视应力和b值随时间的变化,发现:2013年2月—2017年3月间,视应力呈趋势上升变化,历时约4年,在震前两年时间内,视应力仍维持在较高水平。在视应力呈趋势上升变化期间,b值则呈趋势下降变化。当视应力维持在较高水平时,b值则维持在较低水平。即,长宁MS6.0地震发生前,破裂区内视应力增加,同时b值下降。这表明,2019年长宁MS6.0地震发生前破裂区内存在明显的构造应力增加过程,对地震孕育过程的认识和地震预测研究都具有启示意义。   相似文献   

17.
Introduction An earthquake could be caused by the failure of focal material or fast slip on the pre-existed faults under the tectonic stress based on the understanding of the occurrence process of earth-quakes in which the stress change could play a key role. Therefore to examine the stress change is beneficial to understanding the physic process actually occurring in the source region deeply. The apparent stress is defined as the product of seismic efficiency and the average stress on the foc…  相似文献   

18.
通过对2011年日本9.0级地震前后不同时段震源机制解进行分析,利用FMSI震源机制反演法求解,得到此次地震前后内陆地区的应力场。研究发现,此次地震发生前,应力场比较均衡稳定,挤压应力接近水平向,而拉张应力比较复杂,方向不确定,表明该地区的地震以逆断层和走滑为主。地震发生后,日本东北地区东南部应力场变得不太稳定,该地区地震以正断层为主,最小挤压应力由垂向转变为水平向。此研究结果可以用来分析该地区地震地质背景和断层形成条件,对地球动力环境研究具有一定参考意义。  相似文献   

19.
On July 29, 2021, a large earthquake of MW8.2 occurred south of the Alaska Peninsula. To investigate the spatial-temporal changes of crustal stress in the earthquake-stricken area before this event, we selected 159 earthquakes of 4.7 ≤ MW ≤ 6.9 that occurred in the epicentral region and its surroundings between January 1980 and June 2021 to study the temporal variation and spatial distribution of their apparent stress. In addition, we analyzed the correlation between seismic activities and Earth’s rotation and explored the seismogenic process of this earthquake. The crustal stress rose from January 2008 to December 2016. This period was followed by a sub-instability stage from January 2017 until the occurrence of the MW8.2 earthquake. The average rate of apparent stress change in the first five years of the stress increase period was roughly 2.3 times that in the last four years. The lateral distribution of the apparent stress shows that the areas with apparent stress greater than 1.0 MPa exhibited an expanding trend during the seismogenic process. The maximum apparent stress was located at the earthquake epicenter during the last four years. The distribution of the apparent stress in the E-W vertical cross section revealed that an apparent stress gap formed around the hypocenter during the first five years of the stress increase period, surrounded by areas of relatively high apparent stress. After the Alaska earthquake, most parts of this gap were filled in by aftershocks. The seismic activities during the sub-instability stage exhibited a significant correlation with Earth’s rotation.  相似文献   

20.
Based on the spherical earth dislocation theory and a fault slip model of the Tohoku-Oki MW9.0 earthquake, the co-seismic Coulomb failure stress changes (ΔCFS) on the northern Tanlu fault zone at depths of 0–40 km are calculated. By comparing two sets of results from the spherical earth dislocation theory and the semi-infinite space one, the effect of earth curvature on the calculation results is analyzed quantitatively. First, we systematically summarize previous researches related to the northern Tanlu fault zone, divide the fault zone as detailed as possible, give the geometric parameters of each segment, and establish a segmented structural model of the northern Tanlu fault zone. Second, we calculate the Coulomb stress changes on the northern Tanlu fault zone by using the spherical earth dislocation theory. The result shows the Coulomb stress changes are no more than 0.003 MPa, which proves the great earthquake did not significantly change the stress state of the fault zone. Finally, we quantitatively analyze the disparities between the results of semi-infinite space dislocation theory and the spherical earth one. The average disparity between them is about 7.7% on the northern Tanlu fault zone and is 16.8% on the Fangzheng graben, the maximum disparity on this graben reaches up to 25.5%. It indicates that the effect of earth curvature can not be ignored. So it’s necessary to use the spherical earth dislocation theory instead of the semi-infinite space one to study the Coulomb stress change in the far field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号