首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了获取青藏高原东北缘至鄂尔多斯地块的壳幔电性结构,研究祁连造山带、鄂尔多斯地块及六盘山构造带的构造变形,布设一条甘肃陇西至陕西黄陵的近东西向大地电磁测深剖面,获取了91个大地电磁测深点的响应.经过对全剖面观测资料的数据处理、分析及二维反演,获得了剖面壳幔电性结构模型.研究结果表明:剖面横向可划分为三个区块,分别对应祁连造山带、六盘山构造带与鄂尔多斯地块;祁连造山带东段可能残存沟弧盆体系的构造格架,青藏高原北东向生长可能是在这一先存格架上的叠加与改造;六盘山构造带壳幔结构复杂,以中地壳拆离断层为界,上地壳发育拆离断层系统而下地壳挤压缩短增厚;鄂尔多斯地块成层性较好,地块总体较为稳定,但局部经历了与地幔上涌相关的物质与结构再造.  相似文献   

2.
依据穿过巴颜喀拉地块的北部、秦岭地块、祁连地块、海原弧形构造区和鄂尔多斯地块的玛沁-兰州-靖边人工地震剖面的P波、S波的速度结构和泊松比结构,对青藏高原东北缘的地壳组成进行研究,并探讨其动力学过程. 首先,系统地归纳总结出一套将地震测深得到的原位P波速度校正到实验室温压条件下波速的具体可行的方法,利用大地热流值求取地壳不同深度的温度是该方法的关键. 然后,将上述剖面的原位P波速度校正到600 MPa和室温条件下,结合泊松比与相同温压条件下的实验室岩石波速测量结果进行对比,确定研究区的岩性组成. 结果表明,青藏高原东北缘地壳平均P波校正波速为6.43 km/s,地壳整体像上地壳一样呈酸性. 巴颜喀拉地块和秦岭地块南部的下地壳底部缺失校正速度Vp>6.9 km/s的基性岩,下地壳中酸性互层,下地壳整体呈酸性. 其他地块下地壳底部有2~10 km厚的校正速度Vp>6.9 km/s的基性岩,下地壳整体呈中性. 最后,根据青藏高原东北缘地壳结构和组成的研究成果,支持地壳增厚主要发生在下地壳的观点;提出巴颜喀拉地块和秦岭地块南部曾发生过下地壳拆沉作用,并导致高原的加速隆升.  相似文献   

3.
巴颜喀拉块体地壳结构多样性探测   总被引:3,自引:2,他引:1       下载免费PDF全文
青藏高原内部地壳岩性的改造、岩性随深度变化及形变构造是探索研究地壳增厚、物质运动问题的关键.巴颜喀拉块体位于青藏高原中北部,地域广袤,通过对块体内中、东部不同区域的深地震广角反射/折射震相的综合分析,利用反射率理论地震图方法对不同性质震相走时及振幅特征进行细致的模拟计算,进一步研究巴颜喀拉块体内部不同区域地壳精细结构.结果显示:巴颜喀拉块体地壳厚度50~60 km、整体向西逐渐增厚,结晶地壳平均速度6.07~6.18 km·s~(-1)、岩层速度大幅降低,壳内多强反射界面结构、但不同区域差异明显;东部若尔盖盆地地壳介质速度整体低速、壳幔边界较为清晰;中部玉树一玛多段下部地壳发现约6.8 km·s~(-1)的"高速度"介质结构,壳幔边界不清、被改造为2~4 km厚的高速度梯度层,显示了巴颜喀拉块体内部地壳增厚、介质岩性结构被改造的差异性.地壳内部多组强反射、低视速度走时震相揭示了介质岩性的低速破碎、弱化蠕变以及可能的壳内解耦构造.局部地区下地壳的高视速度震相特征显示了青藏高原地壳改造增厚大背景下可能存在稳定的"原始地壳"结构残留或是与上地幔物质的浸入交流.巴颜喀拉块体内不同区域地壳增厚、岩性结构、结晶基底及壳幔边界性质被改造的多样性为深入认识青藏高原地壳形变及动力学过程带来新的启迪.  相似文献   

4.
Sponsored by National Science & Technology Committee, the cooperation between China Academy of Geoscience and Institute of Geophysics and Tectonics, University Joseph, France conducted a lithospherical experiment using 40 Minititan 3-component and 13 CEIS 1-component seismometers along the road from Gonghe to Yushu in Qinghai Province during 5 months after June, 1998. The interested area is on the north of Bangong- Nujiang fault, the east of Qaidam basin, the south of Center Qilian fault and the west of Longmenshan fault. And the profile across most tectonic parts of Eastern Tibet such as Southern Qilian, Eastern Kunlun fault, Bayan Har terrane, Jinshajiang suture (Figure 1), which is the first seismological profile across Eastern Tibet (Qinghai-Tibet) and will be beneficial on the comparison with the results of its center parts, especially on the understanding of the effect of the thousands-kilometer-faraway collision between Eurasia Plate and Indian Plate on the uplifting of south and north part of Eastern Kunlun fault, and on the thickening of crust and the feature of deep structure of Qilian mountain on the north of Tibet Plateau.  相似文献   

5.
A teleseismic profile consisting of 26 stations was deployed along 30°N latitude in the eastern Tibetan Plateau. By use of the inversion of P-wave receiver function, the S-wave velocity structures at depth from surface to 80 km beneath the profile have been determined. The inversion results reveal that there is significant lateral variation of the crustal structure between the tectonic blocks on the profile. From Linzhi north of the eastern Himalayan Syntaxis, the crust is gradually thickened in NE direction; the crustal thickness reaches to the maximum value (∼72 km) at the Bangong-Nujiang suture, and then decreased to 65 km in the Qiangtang block, to 57–64 km in the Bayan Har block, and to 40–45 km in the Sichuan Basin. The eastern segment of the teleseismic profile (to the east of Batang) coincides geographically with the Zhubalong-Zizhong deep seismic sounding profile carried out in 2000, and the S-wave velocity structure determined from receiver functions is consistent with the P-wave velocity structure obtained by deep seismic sounding in respect of the depths of Moho and major crustal interfaces. In the Qiangtang and the Bayan Har blocks, the lower velocity layer is widespread in the lower crust (at depth of 30–60 km) along the profile, while there is a normal velocity distribution in lower crust in the Sichuan Basin. On an average, the crustal velocity ratio (Poisson ratio) in tectonic blocks on the profile is 1.73 (σ = 0.247) in the Lhasa block, 1.78 (σ = 0.269) in the Banggong-Nujiang suture, 1.80 (σ = 0.275) in the Qiangtang block, 1.86 (σ = 0.294) in the Bayan Har blocks, and 1.77 (σ = 0.265) in the Yangtze block, respectively. The Qiangtang and the Bayan Har blocks are characterized by lower S-wave velocity anomaly in lower crust, complicated Moho transition, and higher crustal Poisson ratio, indicating that there is a hot and weak medium in lower crust. These are considered as the deep environment of lower crustal flow in the eastern Tibetan Plateau. Flowage of the ductile material in lower crust may be attributable to the variation of the gravitational potential energy in upper crust from higher on the plateau to lower off plateau. Supported by the National Natural Science Foundation of China (Grants No. 40334041 and 40774037) and the International Cooperation Program of the Ministry of Science and Technology of China (Grant No. 2003DF000011)  相似文献   

6.
基于青藏高原东北缘及邻区流动密集地震台阵——喜马拉雅二期2013年12月至2015年8月期间的三分量连续波形数据,采用背景噪声成像方法获得了Rayleigh波周期为6~30 s和Love波6~25 s的二维相速度.6~12 s Rayleigh和Love波相速度在鄂尔多斯盆地及银川—河套地堑呈现明显的低速异常,而在西秦岭造山带和中亚造山带则显示高速异常.16~25 s的相速度同时受中下地壳及上地幔顶部速度结构和地壳厚度影响.此周期范围内,位于青藏高原的祁连地块和松潘甘孜地块北部呈现大范围相速度低速异常,青藏高原周边的鄂尔多斯和西秦岭造山带表现为高速异常.青藏高原与周边块体相速度的横向不均匀性,可能反映了构造活动或者地壳厚度的差异.此外,中亚造山带在周期16~20 s时,Rayleigh波相速度高低相间,但Love波大范围高速异常,两者差异可能反映了径向各向异性的影响.  相似文献   

7.
The MW7.4 Maduo earthquake occurred on 22 May 2021 at 02:04 CST with a large-expansion surface rupture. This earthquake was located in the Bayan Har block at the eastern Tibetan Plateau, where eight earthquakes of MS >7.0 have occurred in the past 25 years. Here, we combined interferometric synthetic aperture radar, GPS, and teleseismic data to study the coseismic slip distribution, fault geometry, and dynamic source rupture process of the Maduo earthquake. We found that the overall coseismic deformation field of the Maduo earthquake is distributed in the NWW-SEE direction along 285°. There was slight bending at the western end and two branches at the eastern end. The maximum slip is located near the eastern bending area on the northern branch of the fault system. The rupture nucleated on the Jiangcuo fault and propagated approximately 160 km along-strike in both the NWW and SEE directions. The characteristic source rupture process of the Maduo earthquake is similar to that of the 2010 MW6.8 Yushu earthquake, indicating that similar earthquakes with large-expansion surface ruptures and small shallow slip deficits can occur on both the internal fault and boundary fault of the Bayan Har block.  相似文献   

8.
大别造山带是全球最大的碰撞造山带之一,三叠纪时期,扬子板块深俯冲至地幔的200km处,经历了超高压变质作用。白垩纪早期,该造山带发生了强烈的伸展和垮塌,以及大规模的后造山地幔源岩浆侵入和火山活动。本研究收集了大别造山带及其邻区(29°~34°N、114°~119°E)的震相资料,采用双差层析成像技术,对大别造山带地壳结构进行反演,研究地壳结构与后造山地幔源岩浆侵入和火山活动之间的关系。结果显示,大别造山带中上地壳存在低速结构,该低速结构可能是熔融的幔源侵入物质,由于俯冲板片断裂,或下地壳/岩石圈发生拆沉,导致软流圈物质上涌至地壳底部、侵入地壳中,形成大别造山带地壳中的低速结构;同时,合肥盆地显示为低速区,可能是受浅部沉积层影响。研究中横切大别山的4条剖面显示,该地区下方存在北向倾斜高速结构,该高速结构可能是襄樊-广济断层,或者是扬子板块向华北板块下方俯冲的遗迹。  相似文献   

9.
为了揭示巴颜喀拉地块东缘及邻区的壳幔速度结构差异,获取2017年九寨沟MS7.0地震的深部构造背景,本文收集了2009年5月至2016年8月期间四川及邻区数字测震台网的203个地震台站所记录到的远震P波走时数据,应用有限频体波走时层析成像方法,反演得到了巴颜喀拉地块东缘及邻区50—600 km深度范围内的三维壳幔P波速度结构。反演结果表明:巴颜喀拉地块东缘及邻区的壳幔速度结构具有明显的横向不均匀性和分区特征,松潘—甘孜地槽褶皱系、西秦岭和祁连山褶皱系的整体速度异常较低,研究区东部具有克拉通性质的四川盆地西北缘和鄂尔多斯地块南缘则呈明显的高速异常。上地幔P波速度结构特征差异表明松潘—甘孜地块的抬升可能与地幔上涌有关,巴颜喀拉地块东缘九寨沟震区及周边50—250 km深度范围内的上地幔存在低速异常,在400—600 km地幔过渡带深度范围内表现为明显的高速异常特征。巴颜喀拉地块向东南方向运移受到东部高速、高强度的扬子克拉通地块对青藏高原物质东向挤出的强烈阻挡,而九寨沟震区处于松潘—甘孜地块重要的北东边界断裂交会处附近,应力容易在此集中,这些因素均可能是东昆仑断裂塔藏段与岷江断裂北段交会处附近发生九寨沟MS7.0地震的深部动力学背景。   相似文献   

10.
2017年8月8日四川发生九寨沟M7.0地震,是继2008年汶川M8.0地震后发生在巴颜喀拉块体东部的又一强震.现今GPS速度观测数据显示,2008年汶川地震前后的1999-2007年和2011-2016年两个时间段内巴颜喀拉块体东部地表速度场存在明显的差异.本文以实际GPS速度观测资料为约束,构建三维有限元地球动力学模型,分别计算分析了两个时段内震源区及周边现今地壳形变、弹性应变能和应力积累特征,进一步探讨汶川地震的发生对九寨沟地区变形及应力的影响.数值模拟结果显示,汶川地震之后(2011-2016年)巴颜喀拉块体东部的地壳形变、弹性应变能积累及应力积累速率均明显大于震前,增加量值达1.5-3倍;九寨沟地震发震断裂上库仑应力增长率在1999-2007年约为0.7 kPa·a~(-1),2011-2016年间增至1.2 kPa·a~(-1).上述结果表明,现今巴颜喀拉块体东部地壳应力积累过程有利于左旋走滑型九寨沟地震的发生,汶川地震的发生调整了区域应力状态,加速了九寨沟地震的孕育过程.  相似文献   

11.
In this article, we review the general characteristics of seismicity in and around China and the overall statistics of earthquake damage in 2021, focusing on several significant events and related scientific topics. Among them, the largest event is the MS 7.4 Madoi earthquake in Qinghai Province, northwest China. The event marks another MS ?≥ ?7 earthquake occurring near the boundary of the Bayan Har Block that has ended a remarkable quiescence of the MS ?≥ ?7 earthquakes within the Chinese mainland. In addition, the MS 6.4 Yangbi earthquake in Yunnan Province, southwest China draws the most attention because of its abundant foreshocks, which are well recorded by the densely distributed seismic stations in the surrounding regions. Regarding this event, we review several recent publications focusing on the Gutenberg-Richter b-value change and the physical mechanism of foreshocks associated with this sequence. The MS 6.0 Luxian earthquake in Sichuan Province, southwest China has caused serious damage with a relatively low magnitude, partly because the focal depth of the mainshock is relatively shallow (3.5 ?km). It is another strong earthquake occurring within the southeast Sichuan basin with low historical seismicity yet has increased significantly since 2015, probably due to shale gas development and associated hydraulic fracturing.  相似文献   

12.
Summary Records obtained at the permanent stations of the Swedish seismograph network from explosions carried out in Scandinavian waters in June 1969 are evaluated. The study includes determination of velocities for all crustal phases observed, furthermore of layer thicknesses, Poisson ratios and amplitude ratios. The purpose of the study is partly to provide a first approximation to the crustal structure in Sweden, partly to provide regional data for location of earthquakes and explosions in the area in the future. Average velocities (km/sec) are forPn 7.88±0.05,Pg1 6.25±0.08,Pg2 5.70,Sn 4.58±0.04,S * 3.70±0.04,Sg1 (Lg1) 3.58±0.03,Sg2 (Sg) 3.40±0.03,Rg 3.02±0.07. The average thickness is 12 km for the granitic layer, and 23 km for the basaltic layer, thus making the average crustal thickness equal to 35 km. Relative amplitudes plotted versus distance complete the dynamical side of the study and they are useful for identification of waves. A regional travel-time table is presented for the distance range 0°–10° with entries for each 0.1° and including all crustal phases read.  相似文献   

13.
On May 22, 2021, the MS 7.4 earthquake occurred in Madoi County, Qinghai Province; it was another strong event that occurred within the Bayan Har block after the Dari MS 7.7 earthquake in 1947. An earthquake is bound to cast stress to the surrounding faults, thus affecting the regional seismic hazard. To understand these issues, a three-dimensional viscoelastic finite element model of the eastern Bayan Har block and its adjacent areas was constructed. Based on the co-seismic rupture model of the Madoi earthquake, we analyzed the co- and post-seismic Coulomb stress change caused by the Madoi earthquake on the surrounding major faults. The results show that the Madoi earthquake caused significant co-seismic stress increases in the Tuosuo Lake and Maqin-Maqu segments of the East Kunlun fault (>10 ?kPa), which exceeded the proposed threshold of stress triggering. By integrating the accumulation rate of the inter-seismic tectonic stress, we conclude that the Madoi earthquake caused future strong earthquakes in the Tuosuo Lake and Maqin-Maqu segments of the East Kunlun fault to advance by 55.6-623 and 24.7-123 ?a, respectively. Combined with the influence of the Madoi earthquake and the elapsed time of the last strong earthquake, these two segments have approached or even exceeded the recurrence interval of the fault prescribed by previous research. In the future, it is necessary to focus greater attention on the seismic hazard of the Maqin-Maqu and Tuosuo Lake segments. This study provides a mechanical reference to understand the seismic hazard of the East Kunlun fault in the future, particularly to determine the seismic potential region.  相似文献   

14.
Teleseismic P-wave receiver functions at 20 broadband seismic stations in the Longmenshan fault zone (LMFZ) and its vicinity were extracted, and the crustal thickness and the P- and S-wave velocity ratio were calculated by use of the H-k stacking algorithm. With the results as constraints, the S-wave velocity structures beneath each station were determined by the inversion of receiver functions. The crustal structure of the Rear-range zone is similar to that of the Songpan-Garze Block, whereas the velocity structure of the Fore-range zone resembles that of Sichuan Basin, implying that the Central Principal Fault of LMFZ is the boundary between the eastern Tibetan Plateau and the Yangtze Block. Lower velocity zone exists in lower crust of the Songpan-Garze Block and the central-southern segment of the Rear-range zone, which facilitates the detachment of the material in upper and middle crust. Joint analysis of the receiver functions and the Bouguer gravity anomalies supports the thesis on the detachment-thrust mode of the LMFZ. A double-detachment pattern is suggested to the tectonic setting in the Songpan-Garze Block. The upper detachment occurs at the depth of 10-15 km, and represents a high-temperature ductile shear zone. There is a lower detachment at the depth of about 30 km, below which the lower crust flow exists in the eastern Tibetan Plateau. Interpretation of the Bouguer gravity anomalies indicates that the Sichuan Basin is of higher density in upper and middle crust in comparison with that of the Songpan-Garze Block. The LMFZ with higher density is the result from the thrusting of the Songpan-Garze Block over the Sichuan Basin. In the lower crust, higher P velocity and higher density in the Sichuan Basin are related to more rigid material, while lower S velocity and lower density in the Songpan-Garze Block are related to the softened and weakened material. The higher density block beneath the Sichuan Basin obstructs the eastward flow of lower crustal material from the Tibetan Plateau, which is driven by the compression of northward movement of Indian Plate. The eastward movement of upper and middle crustal material is also obstructed by the rigid Yangtze Block, resulting in the stress concentrated and accumulated along the LMFZ. When the stress releases sharply, the Wenchuan M s8.0 earthquake occurs. Supported by the National Natural Science Foundation of China (Grant Nos. 40334041, 40774037) and Joint Foundation of Earthquake Science (Grant No. 1040062)  相似文献   

15.
Regional body-wave magnitude scalings are essential for quantification of small and moderate-size earthquakes that are observed only up to regional distances. Crustally-guided shear waves, Lg, develop stably at regional distances in continental crusts and are minimally influenced by the source radiation patterns. Lg body-wave magnitude scalings, mb(Lg),m_b(Lg), are widely used for assessment of sizes of regional crustal events. The mb(Lg)m_b(Lg) scaling has rarely been tested in continental margins where Lg waves are significantly attenuated due to abrupt lateral variation of crustal structures. We test the applicability of mb(Lg)m_b(Lg) scaling to the eastern margin of the Eurasian plate around the Korean Peninsula and Japanese islands. Both third-peak and root-mean-square (rms) amplitudes of Lg vary significantly according to the crustal structures along raypaths, causing apparent underestimation of mb(Lg).m_b(Lg). Implementation of raypath-dependent quality factors (Q) allows accurate estimation of mb(Lg),m_b(Lg), retaining the transportability of mb(Lg)m_b(Lg) in the continental margin around Korea and Japan. The calibration constants for an rms-amplitude-based mb(Lg)m_b(Lg) scaling are not determined to vary by region in the continental margin due to complicated crustal structures. The calibration constants are determined to be distance-dependent. Both the third-peak-amplitude-based and rms-amplitude-based mb(Lg)m_b(Lg) scalings yield accurate magnitude estimates when raypath-dependent quality factors are implemented.  相似文献   

16.
The transitional area between the northeastern margin of the Qinghai-Tibetan Plateau, Ordos Block and Alxa Block,also being the northern segment of the North-South Seismic Belt, is characterized by considerably high seismicity level and high risk of strong earthquakes. In view of the special tectonic environment and deep tectonic setting in this area, this study used two seismic wide-angle reflection/refraction cross profiles for double constraining, so as to more reliably obtain the fine-scale velocity structure characteristics in both the shallow and deep crust of individual blocks and their boundaries in the study area,and further discuss the seismogenic environment in seismic zones with strong historical earthquakes. In this paper, the P-wave data from the two profiles are processed and interpreted, and two-dimensional crustal velocity structure models along the two profiles are constructed by travel time forward modeling. The results show that there are great differences in velocity structure,shape of intra-crustal interfaces and crustal thickness among different blocks sampled by the two seismic profiles. The crustal thickness along the Lanzhou-Huianbu-Yulin seismic sounding profile(L1) increases from ~43 km in the western margin of Ordos Block to ~56 km in the Qilian Block to the west. In the Ordos Block, the velocity contours vary gently, and the average velocity of the crust is about 6.30 km s-1; On the other hand, the velocity structures in the crust of the Qilian Block and the arclike tectonic zone vary dramatically, and the average crustal velocities in these areas are about 0.10 km s-1 lower than that of the Ordos Block. In addition, discontinuous low-velocity bodies(LVZ1 and LVZ2) are identified in the crust of the Qilian Block and the arc-like tectonic zone, the velocity of which is 0.10–0.20 km s-1 lower than that of the surroundings. The average crustal thickness of the Ordos Block is consistently estimated to be around 43 km along both Profile L2(Tongchuan-Huianbu-Alashan left banner seismic sounding profile) and Profile L1. In contrast to the gently varying intra-crustal interfaces and velocity contours in the Ordos Block along Profile L1, which is a typical structure characteristic of stable cratons, the crustal structure in the Ordos Block along Profile L2 exhibits rather complex variations. This indicates the presence of significant structural differences in the crust within the Ordos Block. The crustal structure of the Helan Mountain Qilian Block and the Yinchuan Basin is featured by "uplift and depression" undulations, showing the characteristics of localized compressional deformation.Moreover, there are low-velocity zones with alternative high and low velocities in the middle and lower crust beneath the Helan Mountain, where the velocity is about 0.15–0.25 km s-1 lower than that of the surrounding areas. The crustal thickness of the Alxa Block is about 49 km, and the velocity contours in the upper and middle-lower crust of the block vary significantly. The complex crustal velocity structure images along the two seismic sounding profiles L1 and L2 reveal considerable structural differences among different tectonic blocks, their coupling relationships and velocity structural features in the seismic zones where strong historical earthquakes occurred. The imaging result of this study provides fine-scale crustal structure information for further understanding the seismogenic environment and mechanism in the study area.  相似文献   

17.
基于SIO(Scripps Institute of Oceanography)最新全球重力和高程模型,计算了巴颜喀拉地块东部及邻区的布格重力异常、均衡重力异常、岩石圈有效弹性厚度及荷载比.结合大地热流、地震速度结构、地震活动和断裂构造分布等,分析了地壳均衡状态和岩石圈有效弹性厚度、地质构造单元间的差异及与地震活动的相关性特征.研究结果表明,该区域布格重力变化范围约为-500~0mGal(1mGal=10~(-5)m·s~(-2),下同),在巴颜喀拉块体东部区域形成弧形重力梯度带,近年来的中强地震活动频发于该梯度带不同部位,应与其应力依次释放有关;均衡重力异常结果表明,其变化范围约为-80~+100mGal,且大部分区域处于±20mGal以内的被认为处于重力均衡的状态,重力非均衡(正或负)多出现于块体边界带附近,地震多发生在靠近块体边界的均衡重力异常(正或负,主要为正)区域内;巴颜喀拉地块东部及邻区岩石圈有效弹性厚度(T_e)为10~65km,不同构造单元之间T_e空间分布差异明显,较低的T_e值出现在龙门山构造带附近,T_e值为20km左右,岩石圈荷载加载比为0.5~0.8,表明现今的岩石圈挠曲状态主要由莫霍面加载形成.进一步分析表明,巴颜喀拉地块东部挤压增生与横向流动同时发生,是造成该区域地震发生与重力均衡异常高值重合、岩石圈有效弹性厚度和大地热流值较低的主要原因.本文获得的地壳均衡特征及岩石圈有效弹性强度结果,加深了对巴颜喀拉东部及邻区岩石圈构造演化过程的认识.  相似文献   

18.
李平恩  廖力  奉建州  刘盼 《地球物理学报》2019,62(11):4170-4188
以巴颜喀拉块体为研究对象,考虑区域地质构造差异,主要活动断裂带,活动块体和边界断裂带的划分结果,引入深部三维速度结构,建立能反映地表起伏和岩石圈分层结构的青藏高原地区三维黏弹性有限元模型.以地壳水平运动速率观测值和最大主压应力方向测量值为约束条件重建研究区现今构造背景应力场.在此基础上模拟了自1900年以来巴颜喀拉块体周缘的7级以上强震序列,从库仑破裂应力角度研究了应力演化与强震的关系、强震之间的相互作用关系以及长期构造加载对强震的影响.研究结果表明,巴颜喀拉块体周缘强震的发生可能与震源区总应力的增加有关.2008年汶川地震导致龙门山断裂带南段应力增加,表明汶川地震对2013年芦山地震有促进作用.鲜水河断裂带上的7级以上强震序列对发生在邻近龙门山断裂带上的2008年汶川地震和2013年芦山地震有延迟作用.  相似文献   

19.
Guo-Can  Wang  Robert P.  Wintsch  John I.  Garver  Mary  Roden-Tice  She-Fa  Chen  Ke-Xin  Zhang  Qi-Xiang  Lin  Yun-Hai  Zhu  Shu-Yuan  Xiang  De-Wei  Li 《Island Arc》2009,18(3):444-466
Triassic turbidites dominate the Songpan–Ganzi–Bayan Har (SGBH) terrane of the northern Tibetan Plateau. U‐Pb dating on single detrital zircon grains from the Triassic Bayan Har Group turbidites yield peaks at 400–500 m.y., 900–1000 m.y., 1800–1900 m.y., and 2400–2500 m.y., These results are consistent with recently published U‐Pb zircon ages of pre‐Triassic bedrock in the East Kunlun, Altyn, Qaidam, Qilian and Alaxa areas to the north, suggesting that provenance of the Bayan Har Group may include these rocks. The similarities in the compositions of the lithic arkosic sandstones of the Bayan Har Group with the sandstones of the Lower‐Middle Triassic formations in the East Kunlun terrane to the north also suggests a common northern provenance for both. A well exposed angular unconformity between the Carboniferous–Middle Permian mélange sequences and the overlying Upper Permian or Triassic strata indicates that regional deformation occurred between the Middle and Late Permian. This deformation may have been the result of a soft collision between the Qiangtang terrane and the North China Plate and the closure of the Paleo‐Tethyan oceanic basin. The Bayan Har Group turbidites were then deposited in a re‐opened marine basin on a shelf environment. Fission‐track dating of detrital zircons from the Bayan Har Group sandstones revealed pre‐ and post‐depositional age components, suggesting that the temperatures did not reach the temperatures necessary to anneal retentive zircon fission tracks (250–300°C). A 282–292 m.y. peak age defined by low U concentration, retentive zircons likely reflects a northern granitic source. Euhedral zircons from two lithic arkoses with abundant volcanic fragments in the southern area yielded a ~237 m.y. zircon fission track (ZFT) peak age, likely recording the maximum age of deposition. A dominant post‐depositional 170–185 m.y. ZFT peak age suggests peak temperatures were reached in the Early Jurassic. Some samples appear to record a younger thermal event at ~140 m.y., a short lived event that apparently affected only the least retentive zircons.  相似文献   

20.
The short-period seismic phases known as P and Lg are often recorded at distances of 200–1000 km on long-range refraction profiles and are usually the largest-amplitude features on record sections for this distance range. P and Lg propagate as multiply reflected compressional and shear waves in a crustal waveguide whose principal boundaries are the Moho and the free surface. Equivalently, they can be interpreted as the interference pattern produced by a superposition of higher-mode P, SV and SH waves propagating in a leaky waveguide. For compressional waves, the waveguide efficiency is a strong function of frequency and depends on the presence or absence of low-velocity layers within a few kilometers of the surface, such as deep sedimentary sections commonly found in active tectonic areas. Such low-velocity surface layers create constructive interference effects for upcoming P waves incident at near grazing angles at the free surface and lead to efficient P propagation. Several good examples of strong P phases can be found on long-range refraction profiles for the tectonically active western United States; the 550 km profile eastward from SHOAL to Delta, UT is analyzed here. We have used a modified reflectivity-method computer program to model crustal phases for the SHOAL-Delta profile. The reflectivity technique accounts for all body and surface waves contributing to the short-period seismograms. It is found that the synthetic waveforms realistically model the observed P characteristics. In this case, the decay of P amplitudes with distance appears to be dominated by surface-reflection leakage from the waveguide rather than by anelastic attenuation due to Q of crustal rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号