首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the theory of geo-economy, under the new situation of global economy, information network and China‘s entry into WTO, also with the holding of APEC (in 2001) and the International Exposition in the near future, the Changjiang (Yangtze) River Delta is striding toward the spectacular international multi-polar situation and becomes one of core regions with high-speed development. Facing the ocean and world all along, leading the progressive tides of the age and scintillating the splendor of the nation, she does advance with time. Through a long period of irrigation projects construction and intensive operation of lands in previous agricultural society, the artificial wetland ecosystem with a positive cycle had ever been formed in this region. At present, environmental pollution and urban expansion resulted from post-industrialization are being rectified. The delta will be the paradigm of industrial and agricultural modernization along the sustainable development road. With the rapid development of urbanization,she has been one of the regions with the highest density population and high urbanization level. Taking the Changjiang River estuary and the Hangzhou Bay as two parts, she is continuously strengthening and adjusting her interior structure, expanding mothball space and constructing the oriental modem ″logistics center“ to link the whole world. The butterfly-style urban system of the Changjiang River Delta is flying, probably engendering earthshaking “butterfly effect“.  相似文献   

2.
Climate changehasprofound impacts onhumanl-splratlon Intense,and Is unfavo毗Ie to crop’s growth,ty·Lllmale change and a series ofconsequences caused 帅s沏ds ic reducmn of crop yle恰.We什angjlangby It have been paid more and more attention In evew Delta Is one of*theari< most lmpoFtant grain-producingarearesearch held.Climatic warming In the future will have of China.Though the Chan用fang Delta provides largegreat Influence on the China’s agriculture.As the report amo…  相似文献   

3.
1 Introduction Economic development in any country or region entails a long process of structural change in production as GDP and income per capita rise. In addition, economic de- velopment requires a long period of structural transfor- mation in materials inputs through reallocating natural resources (Cipolla, 1962). Land, as a crucial element and a key factor of production, is always the best witness of such transformations. In China, one of the largest countries in the world, 13.5% of its…  相似文献   

4.
THEINVESTMENTCIRCUMSTANCESANDITSCLASSIFICATIONAPPRAISALOFCHANGJIANGRIVERDELTAXuGang(许刚)SheZhixiang(佘之祥)NanjingInstituteofGeog...  相似文献   

5.
This paper explains the meaning of investment circumstance, and analyses the overall feature of investment circumstances of the Changjiang River Delta zone and clears about its targets’ system. Then the authors use “polytarget comprehensive value evaluation rule” to make comprehensive classification appraisal of the investment circumstance of the five regions including Shanghai, Ning (Nanjing)-Zhen (Zhenjiang)-Yang(Yangzhou), Su(Suzhou)-Xi(Wuxi)-Chang(Changzhou)-Tong(Nantong), Hang(Hangzhou)-Jia(Jiaxing)-Hu(Huzhou), Ning(Ningbo)-Shao(Shaoxing)-Zhou(Zhoushan)etc., which have similar region feature and district join together due to the long-term development of society and economy among these regions.  相似文献   

6.
China is entering a critical and accelerating phase of urbanization.As one of the most urbanized regions in China,the Changjiang(Yangtze)River Delta has experienced dramatic urbanization and urban transformation.However,in the recent years,many changes have taken place in this region and there is limited attention to the regional urbanization path evolution,its problems and the way to solve these problems.Therefore,we should revisit the urbanization process in the Changjiang River Delta again.In this paper,we revisited urbanization paths of the Changjiang River Delta by data analysis,influence factors of urbanization by the Gray Relational Analysis,and major challenges to urbanization of the Changjiang River Delta by theoretical considerations.We found that the urbanization of the Changjiang River Delta had experienced several stages of large-scale spatial and urban system restructuring.Within the Changjiang River Delta,Shanghai,Zhejiang and Jiangshu had experienced different urbanization path with local characteristics.But with their development model gradually converging,their urbanization model is also converging.We also found that the major influence factors affecting the Changjiang River Delta urbanization were dynamic change and urbanization was driven by different key factors in different socio-economic development stages.Meanwhile,the Changjiang River Delta urbanization is facing many problems such as existing institutional arrangements,including the hukou(household registration)system and others which can not meet the needs of current socioeconomic development and urbanization.Therefore,it is imperative to promote institutional innovation and adopt a new urbanization development strategy for the sake of the orderly and sustainable urbanization development in the Changjiang River Delta.  相似文献   

7.
Investigations from August, 1985 to July , 1986 showed that the high concentration area of PO4-P , SiO3-Si and NO3-N gradually reduced with the reduction of the area of the Changjiang River diluted water from summer, autumn to winter , and that the seasonal distributions and variations of the nutrients concentrations were mainly controlled by the river flow and were also related to the growth and decline of phytoplankton . The conservation of SiO3-Si and NO3-N in the estuary in the flood season was poorer than that in the dry season .. The behaviour of PO4-P in the estuary shows that aside from -biological removal, buffering of PCU-P is possible in the estuary . The highest monthly average concentrations and annual average concentrations in the river mouth were respectively 0.88 and 0.57 umol/L for PO4-P,191.5 and 96.2 umol/L for SiO3-Si, and 81.6 and 58.6 umol/L for NOs-N . The Changjiang's annual transports of PO4-P , SiO3-Si and NO3-N to the sea were about 1.4×104tons , 204.4×104 tons and 63.6×104  相似文献   

8.
黄河三角洲人类干扰活动强度变化及其景观格局响应   总被引:1,自引:0,他引:1  
本研究以湿地变化较为剧烈的黄河三角洲为研究对象,基于RS技术和GIS空间分析方法,利用人为干扰度模型,结合区域人工沟渠建设情况,从区域和局地两个尺度直观揭示人类干扰强度时空分异特征,并探究区域景观格局对人类干扰活动的响应,以期为黄河三角洲滨海湿地生态保护与人类活动调控提供决策支持。结果表明:① 1995-2015年现代黄河三角洲区域人为干扰度和人工沟渠密度均明显增加,空间分布呈现从西南部向东部、北部,自内陆向沿海的扩展趋势;② 随着人类活动强度增强,研究区自然湿地面积减少,区域景观多样性和空间异质性增加,景观整体连通性减弱,景观复杂性降低;③ 景观格局对人类干扰强度变化的响应关系呈现出地区和时间差异;人类干扰活动强度相对较低的保护区受人工沟渠建设的影响,也呈现出斑块团聚程度降低、景观多样性增加和景观复杂性降低的变化趋势;④ 人为干扰度指数和人工沟渠密度指标互为补充,互相印证,可以较为全面、客观地反映黄河三角洲地区人类干扰活动强度。  相似文献   

9.
(翁齐浩)THERELATIONSHIPBETWEENTHEENVIRONMENTALCHANGEOFTHEZHUJIANGRIVERDELTAINHOLOCENEANDITSCULTURALORIGINSANDPROPAGATION¥WengQih...  相似文献   

10.
Thethreatagainstthecoastallowlandcausedbysea-levelriseisoneofthefocusesoftheworid'sat-tention.Thebestestimatevalueofglobaltheoreticalsea-levelriseinthe2lstcenturyisO.66m(SCOR,l99l)byworldwideauthoritativeorganizationsuchasIPCC(IntergovernmentPanelofClimateChange)etal.ThecrustofChangiiangDeltaissubsiding.Theaveragesubsidencerateinthelast2OOOaisl.2mm/a(PANetal.,l985).TheislandsoftheChangiiangRivermouthareaccumulatinglowlandislandsandtheirnat-uralelevationisbelowthehightidallevelofsprin…  相似文献   

11.
The Chinese people began to research the main source of the Changjiang (Yangtze) River 2,400 years ago. Limited by the scientific level, they did not discover it. The Tuotuo River was determined as the main source of the Changjiang River in the 1970s. However, this was not correct, because when comparing the length of the Tuotuo River with the Dam River, the glacier length at the headwaters was added to the Tuotuo River, resulting in that the Tuotuo River is 1 km longer than the Dam River, keeping in mind that the glacier can not be regarded as part of the river. In the summer of 1986, we investigated the source of the Changjiang River, we accurately measured the length of both the Tuotuo and Dam rivers, we discovered that the Dam River was 353.1 km long, and the Tuotuo River was 346.3 km long, the Dam River thus being 6.8 km longer than the Tuotuo River. The discharge of the Dam River is 196.18 m3/sec., 2.6 times as large as that of the Tuotuo River, that of the Tuotuo River is 75.10 m3/ sec. The drainage area of the Dam River is 1.8 times as larger as that of the Tuotuo River; the drainage area of the Dam River is 30,715.7 km2, the Tuotuo River is 16,691.0 km2. Through synthetic analysis of the factors mentioned above, we came to the conclusion that the main source of the Changjiang River is the Dam River instead of the Tuotuo River.  相似文献   

12.
1 INTRODUCTIONInrecentyearstheecoenvironmentoftheChangjiangRiverbasinsufferedfromseveredestruction,sedimentcontentintheriverwatergreatlyincreased,thedownstreamcoursewasseriouslysiltedupandfloodcontrolcapacitywasweakened.Thesimilarsituationalsooccu…  相似文献   

13.
I.GRAINSIZEOFLOAD1.GrainSizeofLoadfromtheHuangheRiverThesuspendedloadsampledfromtheHuangheRivermainlycomprisessiltwhoseconten...  相似文献   

14.
According to the analysis of grain size, mineral composition and inclusion in quartz grain of the suspended and bed load sampled from the Changjiang (Yangtze) River and the Huanghe (Yellow) River, the authors reveal the differentiation of loads between the two rivers. In the Huanghe River the size of suspended load is coarser than that in the Changjiang River, while the bed load is on the contrary. Through heavy mineral analysis, the biotite content of the Huanghe River loads is much higher than that of the Changjiang River, and the monomorillonite content of the former is about two times higher than the latter. All those may be attributed to the effects of different material sources and hydraulic conditions on load. The analysis of inclusion in quartz grain definitely illustrates the environmental difference of material sources between the two rivers. In the meantime, it provides a new method in seeking source of river load. Subsidized by the National Natural Science Foundation. This paper is attributed to careful guidance from Prof. Wang Ying & Prof. Shi Yunliang.  相似文献   

15.
With the implementation of the GEOTRACES program, the biogeochemical cycle and distribution of tellurium (Te) in marine environments are becoming increasing environmental concerns. In this study, the concentration of dissolved Te in the Changjiang (Yangtze) River estuary and nearby waters was determined in May 2009 by hydride-generation atomic fluorescence spectrometry to elucidate the abundance, dominant species, distribution, and relationship with environmental factors. Results show that: (1) dissolved Te was low owing to its low abundance in the Earth's crust, high insolubility in water, and strong affinity to particulate matter; (2) Te(IV) and Te(VI) predominated in surface water. Te(VI) was the dominant species in bottom water, and Te(IV) was the minor species; (3) Horizontally, resulting from low phytoplankton metabolism and the weak reduction from Te(VI) to Te(IV) in the shore, Te(IV) was concentrated in the central zone instead of the coastal region. However, Te(VI) was abundant near the mouth of the Changjiang River where the Changjiang water is diluted and in the area to the south where the Taiwan Warm Current invaded. In the adsorption-desorption process, Te(IV) was negatively related to suspended paniculate matter (SPM), indicating that it was adsorbed by particulate matter. While for Te(VI), the positive correlation with SPM suggested that it was desorbed from the solid phase. In the estuary, dissolved Te had a negative correlation to salinity. However, it deviated from the dilution line in high-salinity regions due to the invasion of the Taiwan Warm Current and the mineralization of organic matter. The relationship between Te(IV) and SPM nutrients indicated that it was more bioavailable and more related to phosphorus than to nitrogen. Progress in the field is slow and more research is needed to quantify the input of Te to the estuary and evaluate the biochemical role of organisms.  相似文献   

16.
We established a budget model of nitrogen (N) inputs and outputs between watersheds and waterbodies to determine the sources of riverine N in the Changjiang (Yangtze) River drainage area. Nitrogen inputs in the budget included N from synthetic fertilizer, biological fixation by leguminous and other crops, wet/dry atmospheric deposition, excreta from humans and animals, and crop residues. The total N input was estimated to be 17.6 Tg, of which 20% or 3.5 Tg N was transported into waterbodies. Of the total N transported into waterbodies, the largest proportion was N from animal waste (26%), followed by N from atmospheric wet/dry deposition (25%), synthetic fertilizer N (17%), N in sewage wastes (17%), N in human waste from rural areas (6%) and industrial wastewater N (9%). We studied the spatial patterns of N inputs and outputs by dividing the Changjiang River drainage area into four sub-basins, from upstream to downstream: the Tongtian River drainage area (TTD, the headwater drainage area, 138 000 km 2 , less disturbed by human activities); the Jinsha River drainage area (JSD, 347 000 km 2 , less disturbed by human activities, approx. 3 500 km upstream of the Changjiang estuary); the Pingshan-Yichang drainage area (PYD, 520 500 km 2 , large-scale human disturbance, about 2 000 km upstream of the Changjiang estuary); and the Yichang-Datong drainage area (YDD, 699 900 km 2 , large-scale human disturbance, approx. 620 km upstream of the Changjiang estuary). The average N input into waterbodies was 2.3, 7.3, 24.1, and 28.2 kg N/ha in the TTD, JSD, PYD, and YDD sub-basins, respectively, suggesting an increase of N-components of more than 10 times from upstream to downstream areas.  相似文献   

17.
According to historical records, there are 264 drought and flood years, occurred in the upper and middle reaches of the Changjiang (Yangtze) River during last 1020 years from 961 to 1980. The evolutionary law and developing trend of drought and flood years are studied. The distribution of drought and flood years are non-uniform and the dry and flood seasons in a year are concentrated. At the angle of monsoon circulation, at present the climate in the upper and middle reaches of the Changjiang River is just in the late stage of frequent drought period and the early stage of least flood period. In addition, the cycle of drought and flood and the feature of drought and flood occurred in the upper, middle and lower reaches of the Changjiang River are analyzed. It shows that the short period less than 10 years is in the majority, and the drought and flood occurred most frequently in the middle and lower reaches of the Changjiang River.  相似文献   

18.
Using field hydrological data, the relationship between the mixing of salt water and fresh water and the tidal range/ high tidal level in the Changjiang (Yangtze) River estuary is discussed, and the transporting and concentrating of suspended sediment in the estuary were also analysed in respect to the circulation, flocculation and stratified interface resulting from mixing.The calculation results by two-dimentional box model have confirmed the effects of the circulation on the concentrating of suspended sediment in the estuary. The conclusions derived from this work have deepened the understanding on the mixing in the Changjiang River estuary and are of significance in bo'th theory and practice.  相似文献   

19.
The main reasons for the high content of inorganic N and its increase by several times in the Changjiang River and its mouth during the last 40 years were analysed in this work. The inorganic N in precipitation in the Changjiang River catchment mainly comes from gaseous loss of fertilizer N, N resulting from the increases of population and livestock, and from high temperature combustions of fossil fuels. N from precipitation is the first N source in the Changjiang River water and the only direct cause of high content of inorganic N in the Changjiang River and its mouth. The lost N in gaseous form and from agriculture non-point sources fertilizer comprised about 60% of annual consumption of fertilizer N in the Changjiang River catchment and were key factors controlling the high content of inorganic N in the Changjiang River mouth. The fate of the N in precipitation and other N sources in the Changjiang River catchment are also discussed in this paper.  相似文献   

20.
The circulations off the Changjiang mouth in May and November were simulatedby a three dimension numerical model with monthly averaged parameters of dynamic factors in this paper. The area covers the East China Sea (ECS), Yellow Sea and Bohai Sea. Simulated results show that the circulation off the Changjiang mouth in spring and autumn is mainly the Changjiang runoff and Taiwan Warm Current (TWC). The Changjlang discharge is much larger in May than in November, and the wind is westward in May, and southward in November offthe Changjiang mouth. The runoff in May branches in three parts, one eastward flows, the other two flow northward and southward along the Subei and Zhejiang coast respectively. The Changjiang diluted water expands eastward off the mouth, and forms a strong salinity front near the mouth. Surface circulation in autumn is similar to that in winter, the runoff southward flows along the coast, and the northward flowing TWC becomes weaker compared to that in spring and summer. The bottom circulations in May and November are mainly the runoff near the mouth and the TWC off the mouth, and the runoff and TWC are greater in May than in November.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号