首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents relative secular variations of the total intensity of the geomagnetic field against a background of results of magnetic anomaly interpretation along seismic profile P4. Profile P4 crosses a Variscan folding zone in the Paleozoic Platform (PLZ), the Trans-European Suture Zone (TESZ), and the Polish part of the East European Craton (EEC). Secular geomagnetic field variations measured in 1966–2000 along a line adjacent to seismic profile P4 were analysed. The study of secular variations, reduced to the base recordings at the Belsk Magnetic Observatory, showed that the growth of geomagnetic field at the East European Craton was slower than in the Trans-European Suture Zone and the Paleozoic Platform.A 2D crustal magnetic model was interpreted as a result of magnetic modelling, in which seismic, geological and geothermal data were also used. The modelling showed that there were significant differences in the magnetic model for geotectonic units, which had been earlier determined based on deep seismic survey data. It should be noted that a fundamental change of trend of the relative secular variations was observed at the slope of the Precambrian Platform. After analysing the geomagnetic field observed along profile P4, the hypothesis that the contact between Phanerozoic and Precambrian Europe lies in Poland's territory can be proven.  相似文献   

2.
海原断裂带断层通道波观测与破碎带宽度   总被引:5,自引:0,他引:5  
断层通道波是低速断层破碎带与高速围岩之间的边界相干多重反射形成的,其振幅和频率强烈依赖于断层的几何形态和物理性质,故能用于探测断裂带的内部结构.在宁夏海原西安州附近海原断裂带上,横跨1920年海原8.6级地震地表破裂带布设2条测线,接收测线之间人工爆破激发的断层通道波.每条测线由1台3分量数字地震仪组成,靠近破裂带台间距30~40 m,远离破裂带台间距增大至230~250 m.对测线1的台站接收到的一炮垂直道地震波数据进行了0.1~4.0 Hz频段的滤波,结果表明在S波到时之后存在多组强振幅、低频率、长波链的断层通道波.由断层通道波揭示的海原断裂带在西安州附近的断裂破碎带宽度约为250 m.  相似文献   

3.
The role of the lateral structure of the lithospheric mantle in the seismotectonics and seismicity of the southern part of the Russian Far East has been investigated. The positions of the epicenters of all the major earthquakes in Sakhalin (M ≥ 6.0), as well as in the Amur region and the Primorye zones (M ≥ 5.0), are defined by the boundaries of the Anyui block of highly ferruginous mantle, which lies at the base of the Sikhote-Alin area. Three cycles of large earthquakes are recognized in the region: the end of the 19th-beginning of the 20th century, the mid-20th century, and end of the 20th-beginning of the 21st century. In the seismic zone of the Amur region (hereafter, the Amur seismic zone), the epicenters of the large earthquakes in each cycle migrate from the SW to NE along the Tan-Lu fault megasystem at a rate of 30–60 km/yr. The specific features of the seismicity of the region are explained by the repeated arrival of strain waves from the west. The waves propagate in the upper part of the mantle and provoke the activation of the deep structure of the region. The detailed analysis of the earthquakes in the Sikhote-Alin area (M ≥ 4.0) in 1973–2009 confirmed the clockwise tectonic rotation of the mantle block. The characteristics of the Primorye zone of deep-focus seismicity at the Russia-China boundary are stated. Since 1973, 13 earthquakes with M ≥ 6.0 have been recorded in the zone at a depth of 300–500 km. This number of earthquakes is at least twice as many as the number of large deep-focus earthquakes elsewhere in the Sea of Japan-Sea of Okhotsk transition zone. The unique genesis of the Primorye seismic zone is related to the additional compression in the seismofocal area due to the creeping of the Anyui mantle block onto the subduction zone during its rotation. The geodynamic implications of the seismotectonic analysis are examined, and the necessity of division of the Amur plate into three geodynamically independent lithospheric blocks is substantiated.  相似文献   

4.
Mead axisymmetric distortions in the geomagnetic field and uniform electrostatic field parallel to geomagnetic field have been assumed to derive an expression for the inhomogeneity parameter, αd. Consequent change in the pitch angle diffusion of charged particles has been obtained. Using these parameters, the variations in the precipitating electron influx with varying stand-off distances and parallel electrostatic fields have been computed.  相似文献   

5.
The recent geodynamics of Sakhalin Island is best described by the convergence of the Eurasian and North American (Sea of Okhotsk) lithospheric plates, which is manifested in the high seismic activity of the island. In North Sakhalin, the plate boundary is thought to correspond to a system of roughly N-S-trending faults, which belong to the North Sakhalin deep fault, and the Upper-Piltun fault; the latter was ruptured by the 1995 M 7.2 Neftegorsk earthquake. This study first confirmed that the stationary motion of the Sea of Okhotsk plate is retarded on this fault to form with time a series of drag folds and stress field anomalies. The latter are released during the subsequent (in a 400⦒o 1000-year period) strong earthquakes by seismic sliding on the flanks of the Upper Piltun fault. The 2003–2006 GPS observations revealed the free state of this fault zone with relative slip rates of 5–6 mm/yr.  相似文献   

6.
A geophysical survey was undertaken at Wiri area of the Andong in southeastern Korea to delineate subsurface structure and to detect the fault zone, which affected the 1997 mountain–hill subsidence and subsequent road heaving initiated by the intense rainfall. Electrical resistivity methods of dipole–dipole array profiling and Schlumberger array sounding and seismic methods of refraction and reflection profiling were used to map a clay zone, which was regarded as the major factor for the landslide. The clay zone was identified in electrical resistivity and seismic sections as having low electrical resistivity (<100 Ωm) and low seismic velocity (<400 m/s), respectively. The clay zone detected by using geophysical methods is well correlated with its distribution from the trench and drill-core data. The results of the electrical and seismic surveys showed that slope subsidence was associated with the sliding of saturated clay along a fault plane trending NNW–SSE and dipping 10°–20° SW. However, the road heaving was caused by the slope movement of the saturated clay along a sub-vertical NNE-trending fault.  相似文献   

7.
河套地震带的震源机制类型时空分布特征   总被引:3,自引:0,他引:3  
基于地质构造背景分析,收集2000年以来发生在河套地震带的ML≥2.8级地震作为研究对象,综合运用基于P波初动的振幅比方法(APAS)和基于波形拟合的CAP反演方法求出256次地震事件的震源机制解。以断层节面滑动角作为判定指标,分区域给出了河套地震带的震源机制类型空间和时间分布图像,从断层滑动角度呈现河套地震带应力场时空变化过程。结果显示:临河盆地断层节面滑动角主要在水平±20°方向存在优势分布,走滑型特征显著;具体来讲,狼山-色尔腾山山前断裂带、临河断裂、乌拉山山前断裂等主要以纯走滑型地震为主,巴彦乌拉山断裂与磴口-本井断裂之间的区域多分布正走滑型地震。呼包盆地断层节面解虽然也呈现出走滑型为主的特征,但滑动角分布较为离散,优势分布方向不明显;呼包盆地西侧的包头至西山咀凸起一带表现出以走滑为主的小范围震源应力场特征,呼包盆地内部及东侧由于显著的区域垂直差异运动,正断层和逆冲型地震所占比例较大,震源机制类型整体呈现出与构造相依的分布特点。分析认为,2000年以来,河套地震带的应力场存在一定的时空非均匀性变化,研究结果更多表现了河套地震带的震源应力场变化过程,而研究资料时间不够长和震级不够大是引起这种应力场非均匀性暂态特征的主要因素。  相似文献   

8.
据重力场特征分析,将地质划分的金城关—砂金坪断裂,推断分解为金城关断裂与雁滩南—柳沟店隐伏断裂,这是两条平行斜列展布的断裂。其中以密集重力梯级带反映金城关断裂特征最明显,进而利用重力水平一阶导数、二阶导数和垂直一阶导数求解断层接触带总体产状。结合区域应力场特征及盆山耦合动力学模式,推断断裂在深部是北倾的逆断裂,与地震波速场反映断裂产状吻合。  相似文献   

9.
Mapping and understanding distributed deformation is a major challenge for the structural interpretation of seismic data. However, volumes of seismic signal disturbance with low signal/noise ratio are systematically observed within 3D seismic datasets around fault systems. These seismic disturbance zones (SDZ) are commonly characterized by complex perturbations of the signal and occur at the sub-seismic (10 s m) to seismic scale (100 s m). They may store important information on deformation distributed around those larger scale structures that may be readily interpreted in conventional amplitude displays of seismic data. We introduce a method to detect fault-related disturbance zones and to discriminate between this and other noise sources such as those associated with the seismic acquisition (footprint noise). Two case studies from the Taranaki basin and deep-water Niger delta are presented. These resolve SDZs using tensor and semblance attributes along with conventional seismic mapping. The tensor attribute is more efficient in tracking volumes containing structural displacements while structurally-oriented semblance coherency is commonly disturbed by small waveform variations around the fault throw. We propose a workflow to map and cross-plot seismic waveform signal properties extracted from the seismic disturbance zone as a tool to investigate the seismic signature and explore seismic facies of a SDZ.  相似文献   

10.
We delineate shallow structures of the Mozumi–Sukenobu fault, central Japan, using fault zone waves generated by near-surface explosions and detected by a seismometer array. Two explosive sources, S1 and S2, were placed at a distance of about 2 km from the array, and the other two, S3 and S4, were at a distance of about 4 km. Fault zone head waves and fault zone trapped waves following direct P wave arrivals were clearly identified in the seismograms recorded by a linear seismometer array deployed across the fault in a research tunnel at a depth of 300 m. Synthetic waveforms generated by a 3-D finite-difference (3-D FD) method were compared with observed fault zone waves up to 25 Hz. The best fitting model indicates a 200-m-wide low-velocity zone extending at least to shot site S1 located 2 km east of the seismic array with a 20% decrease in the P wave velocity relative to the wall rock. The width of the low-velocity zone is consistent with the fault zone defined by direct geological observation in the research tunnel. However, the low-velocity zone should disappear just to the east of the site S1 to explain the observed fault zone waves for shot S3 and S4 located 4 km east of the seismometer array. Yet the observation and the simulation show notable trapped wave excitation even though shots S3 and S4 are outside the fault zone. These results indicate that (1) the effective waveguide for seismic waves along the fault does not exist east of source site S1 although the surface traces of the fault are observed in this region, and (2) considerable trapped waves can be excited by sources well outside the fault zone. These results highlight the along-strike variability in fault zone structure.  相似文献   

11.
利用最新处理完成的轮古东300 km2叠前深度偏移地震资料,多手段识别出轮古东气田发育3期4组断裂。断裂控制了裂缝走向与裂缝发育密度,裂缝主要为高角度(45°~75°)构造窄裂缝,沿裂缝存在溶蚀,走向主要为NESW。纵向上,一间房组裂缝发育密度最大(14条/100 m),其次为鹰山组(6条/100 m)和良里塔格组(4条/100 m);平面上,裂缝主要分布在主干断裂周边1 km范围内,随着距断裂距离增大,裂缝发育强度(裂缝线密度)呈指数降低。在此基础上,综合考虑主干断裂及伴生裂缝发育特征,将轮古东断裂破碎带平面上划分为"羽状破碎带、转换破碎带、斜列破碎带、复合破碎带"4种结构,羽状破碎带分布面积最广,是油气最富集的区域,是目前高效井的集中分布区,围绕羽状破碎带的钻探为走滑断裂控储控藏研究和寻找新的油气富集区域提供了新思路。  相似文献   

12.
 Magnetostratigraphic analyses of five sediment cores recovered from the Kolbeinsey Ridge area revealed consistent records of several geomagnetic events linked with low relative palaeointensities within the past 300 ka. Interpretation of various rock magnetic parameters clearly rule out the possibility that the recorded non-normal polarity directions are linked to a deviating magnetomineralogical fraction or a distorted magnetic fabric. Therefore, these directions are interpreted as true recordings of geomagnetic field variations. Hysteresis parameters and thermomagnetic measurements revealed pure pseudo single-domain (PSD) magnetite with Curie temperatures of 580  °C as the dominant remanence carrier mineral. Due to the homogeneity of the rock magnetic parameters, the sediments are also suitable for relative palaeointensity determinations. Oxygen-isotope stratigraphies for two of the cores provided a time frame to estimate the age ranges for the recorded geomagnetic field variations. The obtained record of ten events of up to 12 ka duration during the past 300 ka and the related record of relative palaeointensity indicate a fairly dynamic character of the Earth's magnetic field, which is in clear contrast to published polarity time scales. Received: 2 July 1998 / Accepted: 5 February 1999  相似文献   

13.
A double-planed structure of deep seismic zone has been found over a wide area more then 300 km × 200 km in the Tohoku District, the northeastern part of Honshu, Japan. This prominent feature of the configuration of the deep seismic zone has been ascertained through a precise determination of the microearthquake hypocenters by using the data from the seismic network of Tohoku University. The two planes are nearly parallel to each other, the distance between the two planes being from 30 to 40 km.Composite focal mechanism solutions are derived from the superposition of the distribution of first motions of P waves, and the different fault types are obtained for the two groups of earthquakes; the earthquakes which occurred in the upper plane are characterized by reverse faulting, some of them by down-dip compressional stresses, and those in the lower plane by down-dip extensional stresses. The evidence obtained here provides valuable information for the definition of the type of mechanism producing the plate motion beneath the island arc.  相似文献   

14.
Using the data of amplitude scintillations recorded at 244 MHz from the geostationary satellite, FLEETSAT (73‡E) at a low latitude station, Waltair (17.7‡N, 83.3‡E, 20‡N dip), during the increasing sunspot activity period of 1997–2000, the effect of the geomagnetic storms on the occurrence of ionospheric scintillations has been studied. A total of 60 SC storms studied during this period, following the Aarons’ criterion, reveals that the local time of onset of the recovery phase of the geomagnetic storms play an important role in the generation or inhibition of the ionospheric irregularities. Out of the 60 storms studied, nearly 60 to 70% satisfied the categories I, II and III of Aarons’ criteria. However, in the remaining 30 to 40% of the cases, no consistent results were observed. Thus, there is a necessity for further investigation of the effect of geomagnetic storms on ionospheric irregularities, particularly with reference to the altitude variations of the F-layer (h’F) relating to the changes in the local electric fields.  相似文献   

15.
The cause for prolific seismicity in the Koyna region is a geological enigma. Attempts have been made to link occurrence of these earthquakes with tectonic strain as well as the nearby reservoirs. With a view to providing reliable seismological database for studying the earth structure and the earthquake process in the Koyna region, a state of the art digital seismic network was deployed for twenty months during 1996–97. We present preliminary results from this experiment covering an area of 60 × 80 km2 with twenty seismic stations. Hypocentral locations of more than 400 earthquakes confined to 11×25 km2 reveal fragmentation in the seismicity pattern — a NE — SW segment has a dip towards NW at approximately 45°, whilst the other two segments show a near vertical trend. These seismic segments have a close linkage with the Western Ghat escarpment and the Warna fault. Ninety per cent of the seismicity is confined within the depth range of 3–10 km. The depth distribution of earthquakes delimits the seismogenic zone with its base at 10 km indicating a transition from an unstable to stable frictional sliding regime. The lack of shallow seismicity between 0 and 3 km indicates a mature fault system with well-developed gouge zones, which inhibit shallow earthquake nucleation. Local earthquake travel time inversion for P- and S-waves show ≈ 2% higher velocity in the seismogenic crust (0–10 km) beneath the epicentral tract relative to a lower velocity (2–3%) in the adjoining region. The high P- and S-wave velocity in the seismogenic crust argues against the presence of high pressure fluid zones and suggests its possible linkage with denser lithology. The zone of high velocity has been traced to deeper depths (≈ 70 km) through teleseismic tomography. The results reveal segmented and matured seismogenic fault systems in the Koyna region where seismicity is possibly controlled by strain build up due to competent lithology in the seismic zone with a deep crustal root.  相似文献   

16.
已有的地质和地球物理方法无法对年、月、旬等现今时间尺度上的断层活动变化进行有效预测。运用基于地震活动定量指数运算程序的地理信息技术可以解决这个问题。这种方法被应用于贝加尔裂谷系(BRS)及邻区的研究当中。研究发现,断层活动变化发生在以几年为周期的时间尺度上,这无法用区域应力场的变化进行合理解释。沿着穿越贝加尔裂谷系的剖面编制了活动断层图以及地震活动定量指数曲线。提出的这种方法可以根据地震活动定量指数对活动断层进行仔细的分类,从而为解决地震中期预报相关问题开辟了重要途径。这种方法还被用来研究断层现今活动的时空变化和形成机制。研究发现,在实时尺度上断层活动具有高频发生的特征,这种现象可能是由于脆性岩石圈板内和块体内部运动产生的慢变形波的干扰导致的。利用变形波的通过速度可以对活动断层进行分组,各组具有不同的地质和地球物理特征参数,同时还可以对变形波波前的方向以及某一区域内主要断层在实时间隔内(地质上的瞬间)的活动情况进行预测。  相似文献   

17.
The coefficient of normal rigidity of different-order fault zones was evaluated from seismic data. The crust tectonic faults were shown to be dynamic systems and nonstatic. Specifically, this is manifested in the variability of their rigidity with time. The value of the rigidity of fault zones varies in time with periods of 13–15 days, 27–32 days, and around 1 year. Here, the coefficient of normal rigidity of different-order fault zones can vary by 1.3 (semimonthly variations) 1.5 (monthly variations), and 2.5 times (annual variations), respectively. These variations are most likely governed by the rate and intensity of the transformation of matter of fault zones and, as a consequence, the variations in their mechanical properties under tidal conditions. Dynamic effects like seismoexplosive waves lead to a reduction in the rigidity of fault zones by 5–50% depending on the amplitude of the compression wave.  相似文献   

18.
Repeated measurements of the total geomagnetic field on the five profiles have revealed a picture of stress-induced tectonomagnetic effect in the form of secular variation of the total geomagnetic field in the tectonically and seismically active area of Jabalpur and adjoining areas of the Narmada-Son lineament (NSL), central India. For this experiment, a reference base station was established within the study area at Jabalpur. Using proton precession magnetometers with a sensitivity of 0.1 nT, simultaneous measurements of total geomagnetic field were made annually at the base and all field stations. Five cycles of repeated observations have been performed between 2003 and 2007. For data analysis, a difference method has been applied and the residuals have been calculated as secular variations of the total geomagnetic field with values ranging from ±0.1nT to about ±14.6nT/yr over the different stations. The anomalies in secular variation of the total geomagnetic field may be related to anomalous accumulation of tectonic stresses and tensions on the deep fault zones and crustal blocks due to recent geodynamic processes and active geological inhomogeneities in the NSL.  相似文献   

19.
5.12汶川特大地震后,为了监测地震的发展趋势,探讨大范围的构造应力场作用,在龙门山断裂带上及时布设临时数字地震台网。数字台网由11个数字地震台组成,遍布龙门山断裂带的北东缘和南西端。为了分析WFSD数字地震台网监测能力及其动态范围,随机抽取一定数量台站观测数据,通过傅立叶变换和功率谱密度分析,获得台基地动噪声均值,进而分析观测系统的动态范围和台网监测能力。根据计算结果与记录的大量微震对比研究,表明在龙门山断裂带上,WFSD数字地震台网具有监测ML 1.5级微地震的能力,且与中国地震局台网中心发布的地震结果基本吻合。因此,WFSD数字地震台网可为龙门山断裂带变形机制研究提供基础的观测资料。   相似文献   

20.
文章以地质地貌与地震遗迹野外调查获得的第一手资料为基础,重点介绍了实皆断裂的活动习性、2012年地震产生的建筑物破坏与地震地表破裂带特征.实皆断裂是一条规模宏大,以右旋走滑为主的全新世活动断裂,其水平滑动速率为18~20 mm/a.历史上沿实皆断裂曾发生10余次7级以上强震,迄今保留有1839年曼德勒因瓦M 8、193...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号