首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aboveground production and tissue element composition of Spartina alterniflora were compared in bareier island marshes of different age off the Eastern Shore of Virginia. The marshes were also characterized by physical and chemical parameters of the substrate. The results suggest that sediment nutrient stock do not directly control the spatial pattern of element content or production of S. alterniflora between these marshes. Elevated salinity likely limits the nitrogen uptake capability of S. alterniflora in the high marsh, which, in turn, controls leaf tissue nitrogen content of plants within individual sites. Low substrate redox potential may control the spatial pattern of nitrogen uptake between the different-age marsh sites, loading to more favorable growing conditions at the low stations of the young marsh sites where values of tissue nitrogen and production are highest. Tissue phosphorus did not differ between, or within the marsh sites. The result of a fertilization experiment suggest that nitrogen, and not phosphorus, is the primary limiting nutrient in this sytem. This indicates that nutrient limitation and other stresses work in conjunction to control tissue element content and macrophyte production at these marsh sites. Spatial variability of factors that control leaf tissue nitrogen and production is likely related to topography and grain size of an individual marsh, which is a function of marsh age. Most studies in different-age marshes have compared transplanted marshes to older, natural marshes. This work is one of few studies comparing developing and mature natural, marshes on barrier islands.  相似文献   

2.
Total nitrogen, phosphorus and organic carbon were compared in natural and transplanted estuarine marsh soils (top 30 cm) to assess nutrient storage in transplanted marshes. Soils were sampled in five transplanted marshes ranging in age from 1 to 15 yr and in five nearby natural marshes along the North Carolina coast. Dry weight of macroorganic matter (MOM), soil bulk density, pH, humic matter, and extractable P also were measured. Nutrient pools increased with increasing marsh age and hydroperiod. Nitrogen, phosphorus and organic carbon pools were largest in soils of irregularly flooded natural marshes. The contribution of MOM to marsh nutrient reservoirs was 6–45%, 2–22%, and 1–7% of the carbon, nitrogen and phosphorus, respectively. Rates of nutrient accumulation in transplanted marshes ranged from 2.6–10.0, 0.03–1.10, and 84–218 kmol ha?1yr?1 of nitrogen, phosphorus and organic carbon, respectively. Accumulation rates were greater in the irregularly flooded marshes compared to the regularly flooded marshes. Approximately 11 to 12% and 20% of the net primary production of emergent vegetation was buried in sediments of the regularly flooded and irregularly flooded transplanted marshes, respectively. Macroorganic matter nutrient pools develop rapidly in transplanted marshes and may approximate natural marshes within 15 to 30 yr. However, development of soil carbon, nitrogen and phosphorus reservoirs takes considerably longer.  相似文献   

3.
Tidal freshwater marshes are diverse habitats that differ both within and between marshes in terms of plant community composition, sediment type, marsh elevation, and nutrient status. Because our knowledge of the nitrogen (N) biogeochemistry of tidal freshwater systems is limited, it is difficult to assess how these marshes will respond to long-term progressive nutrient loading due to watershed development and urbanization. We present a process-based mass balance model of N cycling in Sweet Hall marsh, a pristine (i.e., low nutrient)Peltandra virginica-Pontederia cordata dominated tidal freshwater marsh in the York River estuary, Virginia. The model, which was based on a combination of field and literature data, revealed that N cycling in the system was largely conservative. The mineralization of organic N to NH4 + provided almost twice as much inorganic N as was needed to support marsh macrophyte and benthic microalgal primary production. Efficient utilization of porewater NH4 + by nitrifiers and other microbes resulted in low rates of tidal NH4 + export from the marsh and little accumulation of NH4 + in marsh porewaters. Inputs of N from the estuary and atmosphere were not critical in supporting marsh primary production, and served to balance N losses due to denitrification and burial. A comparison of these results with the literature suggests that the relative importance of tidal freshwater marsh N cycling processes, including plant productivity, organic matter mineralization, microbial immobilization, and coupled nitrification-denitrification, are largely independent of small changes in water column N loading. Although very high (millimolar) concentrations of dissolved inorganic N can affect processes including denitrification and plant productivity, the factors that cause the switch from efficient N recycling to a more open N cycle have not yet been identified.  相似文献   

4.
Anammox bacteria are widespread in the marine environment, but studies of anammox in marshes and other wetlands are still scarce. In this study, the role of anammox in nitrogen removal from marsh sediments was surveyed in four vegetation types characteristic of New England marshes and in unvegetated tidal creeks. The sites spanned a salinity gradient from 0 to 20 psu. The impact of nitrogen loading on the role of anammox in marsh sediments was studied in a marsh fertilization experiment and in marshes with high nitrogen loading entering through ground water. In all locations, nitrogen removal through anammox was low compared to denitrification, with anammox accounting for less than 3% of the total N2 production. The highest relative importance of anammox was found in the sediments of freshwater-dominated marshes, where anammox approached 3%, whereas anammox was of lesser importance in saline marsh sediments. Increased nitrogen loading, in the form of nitrate from natural or artificial sources, did not impact the relative importance of anammox, which remained low in all the nitrogen enriched locations (<1%).  相似文献   

5.
During the past 50 years, the amount of agricultural fertilizer used in Northern China increased from about 7.5 kg ha?1 in the 1950s to approximately 348 kg ha?1 in the 1990s. Given that little is known about the effects of nitrogen fertilization on soil labile carbon fraction in Northern China, this paper evaluated such effects in terms of microbial biomass and dissolved organic carbon in the Sanjiang Plain located in Northeast China. Soils with different cultivation time and undisturbed marsh with Deyeuxia angustifolia were selected to study the effects of nitrogen fertilization on the soil labile organic fractions microbial C (biomass C, microbial quotient, and basal respiration) and to estimate the contributions of nitrogen input on the dynamics of soil labile carbon. Continuous nitrogen application decreased total organic and dissolved organic carbon concentrations significantly, leading to the lack of carbon source for microbes. Therefore, continuous nitrogen fertilizer application induced negative effects on measured soil microbiological properties. However, a moderate nitrogen application rate (60 kg N ha?1) stimulated soil microbial activity in the short term (about 2 months), whereas a high nitrogen application rate (150 kg N ha?1) inhibited measured soil microbiological properties in the same period.  相似文献   

6.
Coastal upwelling zones support some of the highest rates of primary production in the oceans. The settling and subsequent decomposition of this organic matter promotes oxygen depletion. In the Eastern tropical North and South Pacific and the Arabian Sea, large tracts of anoxic water develop, where intensive N2 production through denitrification and anammox accounts for about 1/3 of the total loss of fixed nitrogen in the marine realm. It is curious that despite extensive denitrification in these waters, complete nitrate removal and the onset of sulfate reduction is extremely rare. A simple box model is constructed here to reproduce the dynamics of carbon, oxygen and nutrient cycling in coastal upwelling zones. The model is constructed with five boxes, where water is exchanged between the boxes by vertical and horizontal mixing and advection. These primary physical drivers control the dynamics of the system. The model demonstrates that in the absence of nitrogen fixation, the anoxic waters in a coastal upwelling system will not become nitrate free. This is because nitrate is the limiting nutrient controlling primary production, and if nitrate concentration becomes too low, primary production rate drops and this reduces rates of nitrate removal through N2 production. With nitrogen fixation, however, complete nitrate depletion can occur and sulfate reduction will ensue. This situation is extremely rare in coastal upwelling zones, probably because nitrogen-fixing bacteria do not prosper in the high nutrient, turbid waters as typically in these areas. Finally, it is predicted here that the chemistry of the upwelling system will develop in a similar matter regardless whether N2 production is dominated by anaerobic ammonium oxidation (anammox) or canonical heterotrophic denitrification.  相似文献   

7.
长江口盐沼滩面发育对有机碳深度分布的制约   总被引:1,自引:0,他引:1  
通过对长江口崇明东滩高潮滩、中潮滩以及光滩柱状样的有机碳含量与碳稳定同位素组成(δ13C)、粒度组成等的测定,研究盐沼有机碳深度分布特征与形成机制。结果表明,盐沼土壤颗粒有机碳(POC)主要赋存于粒径小于0.016 mm的颗粒中,POC含量对粒径在0.002~0.004 mm区间的颗粒含量变化最敏感,说明盐沼POC主要来自长江径流悬移质,这与有机碳稳定同位素结果一致。土壤POC含量与不同粒径区间颗粒含量相关关系表明,高潮滩与中潮滩柱样的泥沙级配较为接近;光滩柱样POC含量与不同粒径区间颗粒含量相关关系特征与高、中潮滩柱样的基本类似,主要不同表现在粒径大于0.016 mm的粗颗粒,这很可能受控于盐沼不同高程部位动力沉积过程。盐沼植被对高、中潮滩柱样POC的贡献相当可观,个别层段高达55.6%;植被对土壤POC的贡献受到滩面过程的明显制约。滩面动力沉积过程形成盐沼垂向上独特的沙、泥纹层构造,其优良的封堵效能显著影响土壤有机碳的垂向分布。盐沼滩面动力沉积过程是塑造有机碳深度分布特征的关键因素。  相似文献   

8.
Salt marshes, which provide a transition between the marine and terrestrial environments around much of the temperature world, will be the first ecosystem to feel the effects of an increased rate of sea level rise. This study examined the metabolic responses of a high salt marsh to increased inundation and wrack deposition associated with sea level rise. We measured changes in ecosystem and soil photosynthesis and respiration by analyzing carbon dioxide fluxes in the light and dark. Data from seasonal flux measurements were combined with continuously measured light and temperature data to develop a model that estimated annual production and respiration. Results suggested that increased inundation will reduce respiration rates to a greater extent than production, yielding a moderate net loss of organic carbon from the high marsh. The model also predicted a substantial loss of organic carbon from wrack-affected areas. This decreased organic carbon input may play an important role in the ability of the marsh to maintain elevation relative to sea level rise.  相似文献   

9.
In the salt marshes of Tomales Bay, California, where grazing by cattle increases the input of nitrogen to the marsh (either directly or indirectly as runoff from within the salt marsh watershed), high salt marsh vegetation is dominated byDistichlis spicata and is less diverse than marshes without excess nutrients. Using a field experiment, I investigated the role of soil fertility on the plant community of the high salt marsh. I hypothesized that when soil fertility is increased by nitrogen addition plant productivity will increase, as indicated by height, biomass, and cover, and competitive exclusion, byD. spicata, will lead to a reduction in species richness and evenness, especially where the initial density ofDistichlis is high (from transplanting). After two growing seasons, biweekly nitrogen addition to the high salt marsh led to increased plant biomass and cover. Diversity was not reduced, and space preemption byDistichlis-transplants did not confer a competitive advantage. Although the dominant species thrived (e.g.,Salicornia virginica, D. spicata, Triglochin concinna) they did not displace subdominant species and decrease diversity. The vegetation response in this high salt marsh system does not support the hypothesis that as biomass and cover (indicators of productivity) increase in response to increased nitrogen, competitive exclusion will occur and diversity will decrease.  相似文献   

10.
Nitrogen inputs restructure ecosystems and can interact with other agents of ecological change and potentially intensify them. To examine the effects of nitrogen combined with those of elevation and competition, in 2005 we mapped vegetation and elevation within experimental plots that have been fertilized since 1970 in Great Sippewissett salt marsh, Cape Cod, MA, USA and compared the resulting effects on marsh vegetation. Decadal-scale chronic nutrient enrichment forced changes in cover and spatial distribution of different species. With increasing enrichment, there was a shift in species cover primarily involving loss of Spartina alterniflora and an increase in Distichlis spicata. Percent cover of near monocultures increased with nitrogen fertilization, owing mainly to the proliferation of D. spicata. The experimental fertilization prompted a shift from the short form of S. alterniflora to taller forms, hence increasing above-ground biomass, where this species managed to remain. Chronic enrichment increased upper and lower limits of the elevation range within which certain species occurred. The shift to increased cover of D. spicata was also associated with faster accretion of the marsh surface where this species was dominant, but not where S. alterniflora was dominant. Interactions among nutrient supply, elevation, and competition altered the direction of competitive success among different species of marsh plants, and forced changes in the spatial distribution and composition of the salt marsh plant communities. The results imply that there will be parallel changes in New England salt marshes owing to the widespread eutrophication of coastal waters and the increasing sea level rise. Knowing the mechanisms structuring marsh vegetative cover, and their role in modification of salt marsh accretion, may provide background with which to manage maintenance of affected coastal wetlands.  相似文献   

11.
我国不同区域农田养分平衡对土壤肥力时空演变的影响   总被引:20,自引:0,他引:20  
区域农田养分盈亏是驱动农田土壤肥力时空变化的主要因素。对我国6个农业生态试验站(海伦、沈阳、 栾城、长武、常熟、鹰潭)站区农田土壤肥力在近年来时空演变的研究表明,除了海伦站黑土和常熟站水稻土的有机质和全氮平均含量下降外,其他站区均呈现增加趋势,主要原因是黑土和乌栅土有机质和全氮含量较高,目前农田有机C和N投入水平无法维持其平衡;6个站区土壤速效磷有增有减,而土壤速效钾除了栾城和鹰潭站区域外均呈降低趋势。从站区农田养分的年平衡与土壤养分的年变化量关系看,农田氮、磷、钾的盈亏量决定了土壤养分的变化方向。土壤有机碳和全氮的初始含量过高(分别超过15.1 g/kg和1.60 g/kg)时,也会导致其年际间的变化方向从增加变为降低。农田氮素盈亏量与土壤全氮变化量之间相关不显著,主要是由于化肥投入和作物籽粒输出的农田氮平衡不能完全代表土壤氮素的真实盈亏情况;而农田磷素和钾素的盈亏量与土壤速效磷和速效钾的年变化量的显著相关。  相似文献   

12.
In this paper we present an elemental and isotopic investigation of carbon and nitrogen in the soil-plant system. Plants grown in an unamended soil were compared to plants grown in a soil amended with natural and NH4+-enriched zeolitites. The aim was to verify that zeolitites at natural state increase the chemical fertilization efficiency and the nitrogen transfer from NH4+-enriched zeolitites to plants. Results showed that plants grown on plots amended with zeolitites have generally a δ15N approaching that of chemical fertilizers, suggesting an enhanced nitrogen uptake from this specific N source with respect to the unamended plot. The δ15N of plants grown on NH4+-enriched zeolitites was strongly influenced by pig-slurry δ15N (employed for the enrichment process), confirming the nitrogen transfer from zeolitites to plants. The different agricultural practices are also reflected in the plant physiology as recorded by the carbon discrimination factor, which generally increases in plots amended with natural zeolitites, indicating better water/nutrient conditions.  相似文献   

13.
Tidal freshwater wetlands (TFW) are situated in the upper estuary in a zone bordered upstream by the nontidal river and downstream by the oligohaline region. Here, discharge of freshwater from the river and the daily tidal pulse from the sea combine to create conditions where TFW develop. TFW are often located where human population density is high, which has led to wetland degradation or destruction. Globally, TFW are largely restricted to the temperate zone where the magnitude of annual river discharge prevents saline waters from penetrating too far inland. The constant input of river water delivers high loads of sediments, dissolved nutrients, and other suspended matter leading to high sedimentation rates and high nutrient levels. Prominent biogeochemical processes include the transformation of nitrogen by bacteria and immobilization of phosphate. A diverse, characteristic vegetation community develops which supports a rich fauna. Biotic diversity is highest in the high marsh areas and decreases in the lower levels where tidal inundation is greatest. Benthic fauna is rather poor in diversity but high in biomass compared to other regions of the estuary. Global climate change is a threat for this system directly by sea level rise, which will cause brackish water to intrude into the fresh system, and indirectly during droughts, which reduce river discharge. Salinity will affect the presence of flora and fauna and facilitates sulfate reduction of organic matter in the soil. Increased decomposition of organic matter following saltwater intrusion can result in a lowering of wetland surface elevation. The papers assembled in this issue focus on how these tidal freshwater wetlands have changed over recent time and how they may respond to new impacts in the future.  相似文献   

14.
We synthesize and update the science supporting the Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force 2001) with a focus on the spatial and temporal discharge and patterns of nutrient and organic carbon delivery to the northern Gulf of Mexico, including data through 2006. The discharge of the Mississippi River watershed over 200 years varies but is not demonstrably increasing or decreasing. About 30% of the Mississippi River was shunted westward to form the Atchafalaya River, which redistributed water and nutrient loads on the shelf. Data on nitrogen concentrations from the early 1900s demonstrate that the seasonal and annual concentrations in the lower river have increased considerably since then, including a higher spring loading, following the increase in fertilizer applications after World WarII. The loading of total nitrogen (TN) fell from 1990 to 2006, but the loading of total phosphorus (TP) has risen slightly, resulting in a decline in the TN:TP ratios. The present TN:TP ratios hover around an average indicative of potential nitrogen limitation on phytoplankton growth, or balanced growth limitation, but not phosphorus limitation. The dissolved nitrogen:dissolved silicate ratios are near the Redfield ratio indicative of growth limitations on diatoms. Although nutrient concentrations are relatively high compared to those in many other large rivers, the water quality in the Mississippi River is not unique in that nutrient loads can be described by a variety of land-use models. There is no net removal of nitrogen from water flowing through the Atchafalaya basin, but the concentrations of TP and suspended sediments are lower at the exit point (Morgan City, Louisiana) than in the water entering the Atchafalaya basin. The removal of nutrients entering offshore waters through diversion of river water into wetlands is presently less than 1% of the total loadings going directly offshore, and would be less than 8% if the 10,093 km2 of coastal wetlands were successfully engineered for that purpose. Wetland loss is an insignificant contribution to the carbon loading offshore, compared to in situ marine production. The science-based conclusions in the Action Plan about nutrient loads and sources to the hypoxic zone off Louisiana are sustained by research and monitoring occurring in the subsequent 10 years.  相似文献   

15.
The supply of nutrients from surface and subsurface water flow into the root zone was measured in a developing barrier island marsh in Virginia. We hypothesize that high production of tall-formSpartina alterniflora in the lower intertidal zone is due to a greater nitrogen input supplied by a larger subsurface flux. Individual nitrogen inputs to the tall-form and short-formS. alterniflora root zones were calculated from water flow rates into the root zone and the nutrient concentration corresponding to the source of the flow. Total dissolved inorganic nitrogen (DIN) input (as ammonium and nitrate) was then calculated using a summation of the hourly nutrient inputs to the root zone over the entire tidal cycle based on hydrologic and nutrient data collected throughout the growing season (April–August) of 1993 and 1994. Additionally, horizontal water flow into the lower intertidal marsh was reduced experimentally to determine its effects on nutrient input and plant growth. Total ammonium (NH4 +) input to the tall-formS. alterniflora root zone (168 μmoles 6 h?1) was significantly greater relative to the short-form (45 μmoles 6 h?1) during flood tide. Total NH4 + input was not significantly different between growth forms during ebb tide, and total nitrate (NO3 ?) and total DIN input were not significantly different between growth forms during either tidal stage. During tidal flooding, vertical flow from below the root zone accounted for 71% and horizontal flow from the adjacent mudflat accounted for 19% of the total NH4 + input to the tall-formS. alterniflora root zone. Infiltration of flooding water accounted for 15% more of the total NO3 ? input relative to the total NH4 + input at both zones on flood tide. During ebb tide, vertical flow from below the root zone still accounted for the majority of NH4 + and NO3 ? input to both growth forms. After vertical flow, horizontal subsurface flow from upgradient accounted for the next largest percentages of NH4 + and NO3 ? input to both growth forms during ebb tide. After 2 yr of interrupted subsurface horizontal flow to the tall-formS. alterniflora root zone, height and nitrogen content of leaf tissue of treatment plants were only slightly, but significantly, lower than control plants. The results suggest that a dynamic supply of DIN (as influenced by subsurface water flows) is a more accurate depiction of nutrient supply to macrophytes in this developing marsh, relative to standing stock nutrient concentrations. The dynamic subsurface supply of DIN may play a role in spatial patterns of abovegroundS. alterniflora production, but determination of additional nitrogen inputs and the role of belowground production on nitrogen demand need to also be considered.  相似文献   

16.
Methods were developed for determining rates of denitrification in coastal marine sediments by measuring the production of N2 from undisturbed cores incubated in gas-tight chambers. Denitrification rates at summer temperatures (23°C) in sediment cores from Narragansett Bay, Rhode Island, were about 50μmol N2m?2 hr?1. This nitrogen flux is equal to approximately one-half of the NH+4flux from the sediments at this temperature and is of the magnitude necessary to account for the anomalously low N/P and anomalously high O/N ratios often reported for benthic nutrient fluxes. The loss of fixed nitrogen as N2 during the benthic remineralization of organic matter, coupled with the importance of benthic remineralization processes in shallow coastal waters may help to explain why the availability of fixed nitrogen is a major factor limiting primary production in these areas. Narragansett Bay sediments are also a source of N2O, but the amount of nitrogen involved was only about 0.2 μmol m?2 hr?1 at 23°C.  相似文献   

17.
The accumulation of selected plant nutrients and heavy metals in a rapidly accreting Louisiana salt marsh was examined. Sedimentation processes were shown to be supplying large amounts of plant nutrients to the marsh. Accumulation of heavy metals was low and appeared to be associated with the natural heavy metal content of incoming sediment rather than from a pollution source. A large portion of organic carbon from primary production remained in the marsh, contributing to the aggradation process of vertical marsh accretion. Nitrogen accumulated in the marsh at rates as great as 21 g per m2 per yr.  相似文献   

18.
Increased nitrogen (N) input to ecosystems could alter soil organic carbon (C) dynamics, but the effect still remains uncertain. To better understand the effect of N addition on soil organic C in wetland ecosystems, a field experiment was conducted in a seasonally inundated freshwater marsh, the Sanjiang Plain, Northeast China. In this study, litter production, soil total organic C (TOC) concentration, microbial biomass C (MBC), organic C mineralization, metabolic quotient (qCO2) and mineralization quotient (qmC) in 0–15 cm depth were investigated after four consecutive years of N addition at four rates (CK, 0 g N m?2 year?1; low, 6 g N m?2 year?1; moderate, 12 g N m?2 year?1; high, 24 g N m?2 year?1). Four-year N addition increased litter production, and decreased soil organic C mineralization. In addition, soil TOC concentration and MBC generally increased at low and moderate N addition levels, but declined at high N addition level, whereas soil qCO2 and qmC showed a reverse trend. These results suggest that short-term N addition alters soil organic C dynamics in seasonally inundated freshwater marshes of Northeast China, and the effects vary with N fertilization rates.  相似文献   

19.
Plants alter biomass allocation to optimize resource capture. Plant strategy for resource capture may have important implications in intertidal marshes, where soil nitrogen (N) levels and atmospheric carbon dioxide (CO2) are changing. We conducted a factorial manipulation of atmospheric CO2 (ambient and ambient?+?340?ppm) and soil N (ambient and ambient?+?25?g?m?2?year?1) in an intertidal marsh composed of common North Atlantic C3 and C4 species. Estimation of C3 stem turnover was used to adjust aboveground C3 productivity, and fine root productivity was partitioned into C3?CC4 functional groups by isotopic analysis. The results suggest that the plants follow resource capture theory. The C3 species increased aboveground productivity under the added N and elevated CO2 treatment (P?<?0.0001), but did not under either added N or elevated CO2 alone. C3 fine root production decreased with added N (P?<?0.0001), but fine roots increased under elevated CO2 (P?=?0.0481). The C4 species increased growth under high N availability both above- and belowground, but that stimulation was diminished under elevated CO2. The results suggest that the marsh vegetation allocates biomass according to resource capture at the individual plant level rather than for optimal ecosystem viability in regards to biomass influence over the processes that maintain soil surface elevation in equilibrium with sea level.  相似文献   

20.
The conversion of undisturbed coastal regions to commercial and suburban developments may pose a threat to surface and groundwater quality by introducing nitrate-nitrogen (NO3 ?-N) from runoff of land-applied wastewater and fertilizers. Microbial denitrification is an important NO3 ?-N removal mechanism in coastal sediments. The objective of this study was to compare denitrification and nitrate conversion rates in coastal sediments from a golf course, suburban site, undeveloped marsh, and nonmarsh area near rapidly developing Hilton Head Island, South Carolina. Nitrous oxide was measured using gas chromatography and nitrate and ammonium concentrations were measured using a flow injection autoanalyzer in microcosms spiked, with 50 μg NO3 ?-N gdw?1. The two marsh sites had the greatest ammonium production, which was correlated with fine sediment particle size and higher background sediment nitrate and surface water sulfate concentrations. The golf course swale had greatest denitrification rates, which were correlated with higher total carbon and organic nitrogen in sediments. Nitrate was consumed in golf course sediments to a greater extent than in the undeveloped marsh and upland freshwater sites, suggesting that the undeveloped sites and receiving estuaries may be more susceptible to nitrate contamination than the golf course swale and marsh under nonstorm conditions. Construction of swales and vegetated buffers using sediments with high organic carbon content as best management practices may aid in removing nitrate and other contaminants from runoff prior to its transport to the receiving marsh and estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号