首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Compositional zoning patterns of the major elements and REEs in prograde-zoned garnets whose Mg/(Mg + Fe) atomic ratios increase rimward have been widely used to understand the metamorphic PT–t trajectories, and the diffusion-limited REE-uptake model is a promising way to interpret their growth rates and the REE diffusion kinetics in the low-temperature eclogite. In order to elucidate their growth kinetics with Skora et al.'s (2006) diffusion-limited REE uptake model for prograde-zoned garnets, we examine the trace-element zoning patterns of two prograde-zoned porphyroblastic garnets (~6 mm in size) in low-temperature eclogites from two different localities. Core-to-rim trace-element profiles in a garnet (prp5–9alm61–67sps1–3grs24–30) of a glaucophane-bearing epidote eclogite of Syros (Cyclades, Greece) are characterized by the presence of Y + HREE peaks in the mantle, which might be attributed to a continuous breakdown of the titanite to form rutile during the garnet growth. In contrast, those in a garnet (prp4–7alm61–68sps3–10grs23–24) extracted from a lawsonite-eclogite of the South Motagua Mélange (SMM) (Guatemala) have prominent central peaks of Y + HREEs. Although the REE profiles of both the garnets can be explained by the diffusion-limited uptake, their Mn profiles suggest that their growth-rate laws are different: i.e., diffusion-controlled (Syros) and interface-controlled (SMM). Prior to the model application, we optimize the number of the parameters as the garnet grows with the interface-controlled processes based on the growth Péclet number. In particular, we propose the ratio of the REE diffusivity in the eclogitic matrix to the garnet growth rate as the new parameter. Visualizing the values of the new parameters allows to readily understand the relationship between the REE profiles and the REE-diffusion/garnet-growth kinetics in low-T eclogite. Our model refinement leads to the simple quantitative characterization of core-to-rim REE profiles in garnet in low-temperature eclogites.  相似文献   

2.
Six pairs of coexisting garnets and clinopyroxenes were separated from the sheared and granular garnet lherzolite nodules in kimberlites and analyzed for rare earth elements (REE). The sheared and granular nodules can be distinguished in terms of REE pattern of both clinopyroxene and garnet. However, there are no significant differences in REE partitioning between clinopyroxene and garnet, indicating that the partitioning may be insensitive toP, T and composition. REE partition coefficients between garnet and liquid were estimated by using clinopyroxene-liquid partition coefficients found in the literature and clinopyroxene-garnet partitioning reported here. The estimated values agree with those reported by Philpotts et al. (1972). The estimated whole-rock REE pattern for the sheared nodules is similar to a chondritic pattern suggesting that the sheared nodules appear to be close to the primary mantle material. The REE data suggest that the granular nodules were originally garnet-free assemblages equilibrated with kimberlitic or nepheline-melilite basalt-like liquid, and later recrystallized as a garnet lherzolite assemblage.  相似文献   

3.
Mineral and whole-rock REE abundances in garnet lherzolite and megacrystalline nodules from The Thumb display broad correlations with major element compositions. Lherzolites with > 12 modal % clinopyroxene plus garnet (“high-CaAl lherzolites”) have relatively flat chondrite-normalized whole-rock REE patterns. Lherzolites poor in clinopyroxene and garnet (“low-CaAl lherzolites”) have lower HREE in clinopyroxenes and garnets and higher whole-rock LREE/HREE. It is concluded that the low-CaAl lherzolites may have undergone LREE metasomatism after depletion of the major element compositions by partial melting and that much of the garnet now present was originally dissolved in aluminous orthopyroxene. The high-CaAl lherzolites may be interpreted either as primordial mantle samples or as products of equilibration with very LREE-enriched liquids. The “megacrystalline” nodules are medium- to ultracoarse-grained intergrowths and megacrysts with mineral compositions similar to discrete nodule suites in kimberlites. The REE abundances of the megacrystalline minerals are consistent with an origin as cumulates from magma with extremely fractionated REE, similar to minette or kimberlite.The patterns of correlation of REE and major elements in this inclusion suite are similar to the patterns observed in the garnet lherzolite and discrete nodule suites of southern African kimberlites. Both of the subcontinental mantle provinces represented by these suites contain three distinct petrogenetic components: refractory garnet lherzolite enriched in LREE and depleted in HREE, fertile garnet lherzolite with generally chondritic REE abundances, and a suite of ultracoarse minerals precipitated from magma with extremely fractionated REE generally similar to the host magmas.  相似文献   

4.
Abstract Recent geological investigations of the Isua Supracrustal Belt (3.8 Ga), southern West Greenland, have suggested that it is the oldest accretionary complex on earth, defined by an oceanic plate‐type stratigraphy and a duplex structure. Plate history from mid‐oceanic ridge through plume magmatism to subduction zone has been postulated from analysis of the reconstructed oceanic plate stratigraphy in the accretionary complex. Comparison between field occurrence of greenstones in modern and ancient accretionary complexes reveals that two types of tholeiitic basalt from different tectonic settings, mid‐oceanic ridge basalt (MORB) and oceanic island basalt (OIB), occur. This work presents major, trace and rare earth element (REE) compositions of greenstones derived from Isua MORB and OIB, and of extremely rare relict igneous clinopyroxene in Isua MORB. The Isua clinopyroxenes (Cpx) have compositional variations equivalent to those of Cpx in modern MORB; in particular, low TiO2 and Na2O contents. The Isua Cpx show slightly light (L)REE‐depleted REE patterns, and the calculated REE pattern of the host magma is in agreement with that of Isua MORB. Analyses of 49 least‐altered greenstones carefully selected from approximately 1200 samples indicate that Isua MORB are enriched in Al2O3, and depleted in TiO2, FeO*, Y and Zr at the given MgO content, compared with Isua OIB. In addition, Isua MORB show an LREE‐depleted pattern, whereas Isua OIB forms a flat REE pattern. Such differences suggest that the Early Archean mantle had already become heterogeneous, depending on the tectonic environment. Isua MORB are enriched in FeO compared with modern MORB. Comparison of Isua MORB with recent melting experiments shows that the source mantle had 85–87 in Mg? and was enriched in FeO. Potential mantle temperature is estimated to be approximately 1480°C, indicating that the Early Archean mantle was hotter by at most approximately 150°C than the modern mantle.  相似文献   

5.
H. Tabata  S. Maruyama  & Z. Shi 《Island Arc》1998,7(1-2):142-158
The ultrahigh- and high-pressure (UHP–HP) metamorphic belt of the Dabie Mountains, central China, formed by the Triassic continental subduction and collision, is divided into four metamorphic zones; from south to north, the greenschist facies zone, epidote amphibolite to amphibolite facies zone, quartz eclogite zone, and coesite eclogite zone, based on metabasite mineral assemblages. Most of the coesite-bearing eclogites consist mainly of garnet and omphacite with homogeneous compositions and have partially undergone hydration reactions to form clinopyroxene + plagioclase + calcic amphibole symplectites during amphibolite facies overprinting. However, the least altered eclogites sometimes contain garnet and omphacite that preserve compositional zoning patterns which may have originated during their growth at peak temperature conditions of ∼ 750 °C, suggesting a short duration of UHP metamorphic conditions and/or consequent rapid cooling during exhumation. Systematic investigation on peak metamorphic temperatures of coesite eclogite have revealed that, contrary to the general trend of metamorphic grade in the southern Dabie unit, the coesite eclogite zone shows rather flat thermal structure (T = 600 ± 50 °C) with the highest temperature reaching up to 850 °C and no northward increase in metamorphic temperature, which is opposed to the previous interpretations. This feature, along with the preservation of compositional zonation, implies complicated differential movement of each eclogite mass during UHP metamorphism and the return from the deeper subduction zone at mantle depths to the surface.  相似文献   

6.
Although trace element modeling has been used to great advantage for petrogenetic interpretations of basaltic systems, similar studies on igneous rocks of granitic composition have been fewer. In general the mineral/melt distribution coefficients for rare earth elements (REE) in granitic melts are equal to or greater than those for similar minerals in the basaltic system. Thus the effects of these minerals on the REE patterns of granitic melts during partial melting or differentiation are exaggerated as compared to basaltic systems, making detection of residual phases easier. For the K/Rb ratio, if neither a K-feldspar component nor biotitephlogopite is present in the residue, it is difficult to reduce the K/Rb ratio of the melt relative to the parent by a factor of two by either differentiation or partial melting.The petrogenesis of four distinctly different rocks are received: (1) an Archean tonalite presumably derived by partial melting of an Archean tholeiite at mantle depths, leaving a garnet plus clinopyroxene residue; (2) an Archean quartz monzonite presumably derived by partial melting of a short-lived graywacke-argillite sequence at crustal depths; (3) a dacite from Saipan presumably derived by differentiation from a basaltic parent; and (4) a trachyte from Ross Island, Antarctica, presumably derived by differentiation from a basanitoid parent and contaminated by continental crustal components.  相似文献   

7.
Latest Oligocene and Early Miocene volcanic rocks occur on the Northland Peninsula, New Zealand, and record the inception of Cenozoic subduction-related volcanism in the North Island that eventually evolved to its present manifestation in the Taupo Volcanic Zone. This NW-striking Northland Arc is continuous with the Reinga Ridge and comprises two parallel belts of volcanic centres ca. 60 km apart. A plethora of tectonic models have been proposed for its origins. We acquired new trace element and Sr–Nd isotope data to better constrain such models. All Northland Arc rocks carry an arc-type trace element signature, however distinct differences exist between rocks of the eastern and western belt. Eastern belt rocks are typically andesites and dacites and have relatively evolved isotope ratios indicating assimilated crustal material, and commonly contain hornblende. Additionally some eastern belt rocks with highly evolved isotope compositions show fractionated REE compositions consistent with residual garnet, and some contain garnetiferous inclusions in addition to schistose crustal fragments. In contrast, western belt rocks are mostly basalts or basaltic andesites with relatively primitive Sr–Nd isotope compositions, do not contain hornblende and show no rare earth element evidence for cryptic amphibole fractionation. Eastern and western belt rocks contain comparable slab-derived fractions of fluid-mobile trace elements and invariably possess an arc signature. Therefore the difference between the belts may be best explained as due to variation in crustal thickness across the Northland Peninsula, where western belt centres erupted onto a thinner crustal section than eastern belt rocks.The consistent arc signature throughout the Northland arc favours an origin in response to an actual, if short-lived subduction event, rather than slab detachment as proposed in some models. No Northland Arc rocks possess a convincing adakite-like composition that might reflect the subduction of very young oceanic lithosphere such as that of the Oligocene South Fiji Basin. Therefore we favour a model in which subduction of old (Cretaceous) lithosphere drove subduction.  相似文献   

8.
High-pressure and high temperature experiments at 20 GPa on (Mg,Fe)SiO3 have revealed stability fields of two types of aluminium-free ferromagnesian garnets; non-cubic garnet and cubic garnet (majorite). Majorite garnet is stable only within a limited compositional variation, 0.2 < Fe/(Mg + Fe)< 0.4, and in the narrow temperature interval of 200°C around 2000°C, while the stability of non-cubic garnet with more iron-deficient compositions persists up to higher temperatures. These two garnets show fractional melting into iron-deficient garnet and iron-rich liquid, and the crystallization field of cubic garnet extends over Fe/(Mg + Fe)= 0.5. The assemblage silicate spinel and stishovite is a low-temperature phase, which also occurs in the iron-rich portion of the MgSiO3—FeSiO3 system. The sequence as given by the Fe/(Mg + Fe) value for the coexisting phases with the two garnets at 2000°C and 20 GPa is: silicate modified spinel aluminium-free garnets silicate spinel.Natural majorite in shock-metamorphosed chondrites is clarified to be produced at pressures above 20 GPa and temperatures around 2000°C. Similar shock events may cause the occurrence of non-cubic garnet in iron-deficient meteorites. Non-cubic garnet could be a stable phase in the Earth's mantle if a sufficiently low concentration of aluminium is present in the layer corresponding to the stable pressure range of non-cubic garnet. The chemical differentiation by melting in the deep mantle is also discussed on the basis of the present experimental results and the observed coexistence of majorite garnet with magnesiowüstite in chondrites.  相似文献   

9.
Abyssal peridotites collected along the highly oblique-spreading Lena Trough north of Greenland and Spitsbergen have mineral compositions that are similar to residual abyssal peridotites, except for high sodium concentrations in clinopyroxene (cpx). Most samples are lherzolites with light rare earth element (REE)-depleted cpx trace element patterns, but significantly fractionated middle to heavy REE ratios at relatively high heavy REE concentrations. Such characteristics can only be explained by initial melting of a garnet peridotite followed by low degrees of melting in the stability field of spinel peridotite. The residual garnet signature requires either a high potential temperature of the upwelling mantle, or elevated solidus-lowering water contents. The limited spinel field melting suggests a deep cessation of melt extraction, possibly because of the presence of a thick lithospheric cap. This is consistent with the extremely low effective spreading rate and the vicinity to a passive continental margin, which allow conductive cooling to reach deeper levels than commonly estimated for faster mid-ocean ridges. High sodium concentrations in cpx are neither explainable by melt refertilization, nor by a simple diffusion mechanism. The efficient fractionation of sodium from the light REE requires post-melting metasomatism, which is typically restricted to the subcontinental lithosphere. This might imply that the Lena Trough peridotites represent unroofed subcontinental mantle, from which no melt was extracted during the opening of the Lena Trough. It is more likely that sodic metasomatism occurred after partial melting underneath the Lena Trough, and that such an enrichment process is responsible for elevated sodium concentrations in abyssal peridotites elsewhere. Sodium in cpx of residual peridotites can therefore not serve as an indicator of partial melting or melt refertilization.  相似文献   

10.
An extensive study of a big number of gneiss specimens with various shock features from the suevite allowed unravelling of the shock behavior of almandite garnets.Almandites in shocked metamorphic rocks show with increasing dynamic pressures strong irregular fracturing. differently oriented sets of planar fractures or elements, brown turbidity and nucleation of minute crystals of an unknown phase in solid garnets. At higher peak pressures garnet was found to break down to (1) orthopyroxene + spinel + glass, and to (2) spinel + glass due to fast shock-melting.Extensive quantitative electron microprobe studies of almandite garnets and their breakdown products were carried out. The breakdown products within the original grain boundaries of the garnets consist of an alumina-rich orthopyroxene (with up to 10 wt. % Al2O3), hercynite to pleonaste spinels and a silica and calcium-rich glass matrix. The chemical zonation of magnesium and manganese of the former garnets is inherited in the composition of the newly formed orthopyroxenes.Petrographic evidence and chemical composition suggest a fast breakdown of the almandite garnets after passing of shock waves at rapidly falling pressures and very high post-shock temperatures within the ejected gneissic rock material.  相似文献   

11.
Characteristic geochemical features of the ophiolite suite from the Bay of Islands Complex have been determined by major and trace element analyses of 13 rocks. Based on elements, such as rare earth elements (REE), whose abundances are relatively immobile during alteration and metamorphism, we find that (1) the pillow lavas and diabases are relatively depleted in light REE similar to most tholeiites occurring along spreading oceanic ridges, in back-arc basins and comprising the early phases of volcanism in island arcs; (2) the gabbros, composed of cumulate plagioclase and olivine with poikilitic clinopyroxene, have REE contents consistent with formation as cumulates precipitated from magmas represented by the overlying pillow lavas and diabases; (3) as in most harzburgites from ophiolites, the Bay of Islands harzburgite and dunite have relative REE abundances inconsistent with a genetic relationship to the overlying basic rocks — this inconsistency may be primary or it may result from late-stage alteration, contamination and/or metamorphism; (4) some Bay of Islands lherzolites have major and trace element abundances expected in the mantle source of the overlying basic rocks. Overall, the geochemical features of this Bay of Islands ophiolite suite are similar to those from Troodos and Vourinos, but these data are not sufficient to distinguish between different tectonic environments such as deep ocean ridge, small ocean basin or young island arc.  相似文献   

12.
Deeply subducted carbonate rocks from the Kokchetav massif (Northern Kazakhstan) recrystallised within the diamond stability field (P = 4.5–6.0 GPa; T  1000 °C) and preserve evidence for ultra high-pressure carbonate and silicate melts. The carbonate rocks consist of garnet and K-bearing clinopyroxene embedded in a dolomite or magnesian calcite matrix. Polycrystalline magnesian calcite and polyphase carbonate–silicate inclusions occurring in garnet and clinopyroxene show textural features of former melt inclusions. The trace element composition of such carbonate inclusions is enriched in Ba and light rare earth elements and depleted in heavy rare earth elements with respect to the matrix carbonates providing further evidence that the inclusions represent trapped carbonate melt. Polyphase inclusions in garnet and clinopyroxene within a magnesian calcite marble, consisting mainly of a tight intergrowth of biotite + K-feldspar and biotite + zoisite + titanite, are interpreted to represent two different types of K-rich silicate melts. Both melt types show high contents of large ion lithophile elements but contrasting contents of rare earth elements. The Ca-rich inclusions display high REE contents similar to the carbonate inclusions and show a general trace element characteristic compatible with a hydrous granitic origin. Low SiO2 content in the silicate melts indicates that they represent residual melts after extensive interaction with carbonates. These observations suggest that hydrous granitic melts derived from the adjacent metapelites reacted with dolomite at ultra high-pressure conditions to form garnet, clinopyroxene – a hydrous carbonate melt – and residual silicate melts. Silicate and carbonate melt inclusions contain diamond, providing evidence that such an interaction promotes diamond growth. The finding of carbonate melts in deeply subducted crust might have important consequences for recycling of trace elements and especially C from the slab to the mantle wedge.  相似文献   

13.
Adakites are increasingly being recognized worldwide in a variety of tectonic settings. Models on the formation of this geochemically distinct class of volcanic rocks have evolved from partial melting of subducted young, hot oceanic slabs to magmatism resulting from oblique subduction, low‐angle or flat subduction, or even slab‐tearing. Some workers have also pointed to the partial melting of thickened crust to explain the generation of adakitic melts. Rare earth element ratios from adakites and adakitic rocks in the Philippines were used in this study to obtain approximations of the levels where they were generated. These were tied to available geophysical data that defines the crustal thickness of the areas where the samples were collected. High Sm/Yb and La/Yb ratios denote the involvement of amphiboles, and in some cases garnet, in the generation of adakites and adakitic magmas. The presence of amphibole and garnet as residual phases suggests high pressures corresponding to thicker crust (~30 to 45 km). Adakites and adakitic rocks formed through processes other than melting of subducted young oceanic crust would need ≥30 km to account for the heavy rare earth element signatures. If mantle fractionation is not the process involved, crustal thickness is critical to generate adakites and adakitic rocks.  相似文献   

14.
The rheological properties of upper mantle rocks play an important role in controlling the dynamics of the lithosphere and mantle convection. Experimental studies and microstructures in naturally deformed mantle rocks usually imply that olivine controls the upper mantle rheology. Here we show for the first time evidence from the geometry of folded compositional layers in mantle rocks from Western Norway that garnet-rich rocks can have lower solid-state viscosities than olivine-rich rocks. Modeling of melt-free and dry rheology of garnet and olivine confirms that the reversed viscosity contrast between garnet-rich and olivine-rich layers for this folding event can be achieved over a relatively wide range of temperatures at low stress conditions when the fine-grained garnet deforms by diffusion creep while the coarse-grained olivine deforms by dislocation creep and/or diffusion creep.In general, modeling of the fold viscosity contrast shows that in the stable subcontinental lithospheric mantle or convecting mantle such a reversed viscosity contrast can be formed due to diffusion creep processes in fine-grained garnets in a dry mantle environment or at conditions where the garnet-pyroxene layer is partially molten, i.e. close to solidus–liquidus conditions in the upper mantle. Alternatively in cold plate tectonic settings, e.g. in subduction zones, some water-weakening is a feasible mechanism to create the reversed viscosity contrast between garnet and olivine.  相似文献   

15.
Trace element abundances in Ivory Coast normal microtektites and Australasian bottle-green microtektites confirm that microtektites are genetically related to tektites in the associated strewn field. Although major and compatible trace element abundances imply that bottle-green microtektites are members of a fractional crystallization sequence, the similar rare earth element distributions in Australasian normal and bottle-green microtektites and tektites cannot be explained by a simple fractionation model. The similar REE abundances in tektites and microtektites of widely different major element composition also preclude simple models calling for sedimentary rock precursors.  相似文献   

16.
Major and trace element characteristics of dacites and rhyolites overlying and intruding basement rocks in northwestern Nigeria most closely resemble those of intracontinental orogenic volcanic associations. REE patterns point to a deep-seated source for the magmas, perhaps involving garnet fractionation at mantle depths and low-pressure plagioclase fractionation. The occurrence of calc-alkaline volcanics, small basic-ultrabasic complexes and major transcurrent faulting, is consistent with the presence of a Pan-African suture zone in northwestern Nigeria.  相似文献   

17.
PeterD.  Clift & Jongman  Lee 《Island Arc》1998,7(3):496-512
The sedimentary sequences that accumulate around volcanic arcs may be used to reconstruct the history of volcanism provided the degree of along-margin sediment transport is modest, and that reworking of old sedimentary or volcanic sequences does not contribute substantially to the sediment record. In the Mariana arc, the rare earth and trace element compositions of ash layers sampled by Deep Sea Drilling Project (DSDP) site 451 on the West Mariana Ridge, and sites 458 and 459 on the Mariana Forearc, were used to reconstruct the evolution of the arc volcanic front during rifting of the Mariana Trough. Ion microprobe analysis of individual glass shards from the sediments shows that the glasses have slightly light rare earth element (LREE)-enriched compositions, and trace element compositions typical of arc tholeiites. The B/Be ratio is a measure of the involvement of subducted sediment in petrogenesis, and is unaffected by fractional crystallization. This ratio is variable over the period of rifting, increasing up-section at site 451 and reaching a maximum in sediments dated at 3–4 Ma, ∼ 3–4 million years after rifting began. This may reflect increased sediment subduction during early rifting and roll-back of the Pacific lithosphere. Parallel trends are not seen in the enrichment of incompatible high field strength (HFSE), large ion lithophile (LILE) or rare earth elements (REE), suggesting that flux from the subducting slab alone does not control the degree of melting. Re-establishment of arc volcanism on the trench side of the basin at ca 3 Ma resulted in volcanism with relative enrichment in incompatible REE, HFSE and LILE, although these became more depleted with time, possibly due to melt extraction from the mantle source as it passed under the developing back-arc spreading axis, prior to melting under the volcanic front.  相似文献   

18.
Mahshar  Raza  MohdShamim  Khan  MohdSafdare  Azam 《Island Arc》2007,16(4):536-552
Abstract   The northern part of the Aravalli mountain belt of northwestern Indian shield is broadly composed of three Proterozoic volcano-sedimentary domains, i.e. the Bayana, the Alwar and the Khetri basins, comprising collectively the north Delhi fold belt. Major, trace and rare earth element concentrations of mafic volcanic rocks of the three basins exhibit considerable diversity. Bayana and Alwar volcanics are typical tholeiites showing close similarity with low Ti–continental flood basalts (CFB) with the difference that the former shows enriched and the latter flat incompatible trace element and rare earth element (REE) patterns. However, the Khetri volcanics exhibit a transitional composition between tholeiite and calc-alkaline basalts. It appears that the melts of Bayana and Alwar tholeiites were generated by partial melting of a common source within the spinel stability field possibly in the presence of mantle plume. During ascent to the surface the Bayana tholeiites suffered crustal contamination but the Alwar tholeiites erupted unaffected. Geochemically, the Khetri volcanics are arc-like basalts which were generated in a segment of mantle overlying a Proterozoic subduction zone. It is suggested that at about 1800 Ma the continental lithosphere in northeastern Rajasthan stretched, attenuated and fractured in response to a rising plume. The produced rifts have undergone variable degrees of crustal extension. The extension and attenuation of the crust facilitated shallowing of the asthenosphere which suffered variable degree of melting to produce tholeiitic melts – different batches of which underwent different degrees of lithospheric contamination depending upon the thickness of the crust in different rifted basins. The occurrence of subduction-related basaltic rocks of Khetri Belt suggests that a basin on the western margin of the craton developed into a mature oceanic basin.  相似文献   

19.
High precision trace element data obtained by inductively coupled plasma mass spectrometry and Sr–Nd isotope analyses are presented for mafic volcanic rocks from Gough Island, South Atlantic. The new data reveal negative Ce anomalies, with Ce/Ce? values in Gough lavas extending down to ~ 0.92. Ce is only fractionated from other rare earth elements (REE) due to formation of Ce4+ under oxidizing conditions of near-surface environments while other REE remain trivalent. Ce anomalies in convergent margin magmas have been shown to indicate a contribution of a subducted sediment component. In contrast, Ce anomalies in intra-plate basalts have been attributed to weathering processes, but can be excluded here based on element–element systematics indicating magmatic trends rather than weathering-induced element mobility. Shallow-level contamination by local marine sediments with negative Ce anomaly inherited from seawater can be excluded because Gough lavas with increasingly negative Ce anomalies do not trend towards low Ce/Pb ratios characterizing such sediments. Rather, it is argued that the negative Ce anomalies in Gough Island lavas are consistent with variable amounts of a sediment component in the mantle plume source. Mixtures between estimates of subducting sediment columns with negative Ce anomaly and mantle capable of giving rise to Gough Island magmas without Ce anomalies reproduce the Gough compositional array with the exception of highly fluid-mobile elements. The calculated trace element composition of the deeply recycled sediment in the Gough plume source is depleted in fluid-mobile elements such as Ba and Pb relative to the composition of some present-day subducting sediments. This loss is attributed to the dehydration or flushing of sediment in the subduction factory, consistent with constraints from arc magmas.  相似文献   

20.
W. G. Ernst 《Island Arc》1999,8(2):125-153
The Dabie-Sulu belt of east-central China, the Kokchetav Complex of northern Kazakhstan, the Maksyutov Complex of the South Urals, the Dora Maira Massif of the Western Alps, and the Western Gneiss Region of southwestern Norway lie astride intracontinental suture zones. All represent collisional mountain belts. Adjoining Eurasian regions exhibit little or no evidence of a coeval calc-alkaline arc. Each metamorphic complex contains mineralogic and textural relics of the presence or former existence of coesite ± diamond. Other ultrahigh-P, moderate-T metamorphic phases, including K-rich clinopyroxene, Mg-rich garnet, ellenbergerite, lawsonite, Al-rutile, glaucophane, high-Si phengite, and associations such as coesite + dolomite, magnesite + diopside, and talc + kyanite, diopside, jadeite, or phengite also testify to pressures approaching or exceeding 2.8 GPa. Each of the five well-studied Eurasian ultrahigh-pressure complexes consists chiefly of old, cool continental crust. Deep-seated recrystallization took place during the Phanerozoic. Subduction zones constitute the only known plate-tectonic environment where such high-P, low-T conditions exist. A model involving underflow of a salient of continental crust imbedded in oceanic crust-capped lithosphere explains the ultrahigh- pressure metamorphism. Partly exhumed ultrahigh-pressure terranes consist of relatively thin sheets 7 ± 5 km thick. During early stages of plate descent, hydration of relatively anhydrous units occurs, and volatiles are expelled from hydrous rocks. If present, aqueous fluids markedly catalyze reactions. Experimental studies on MORB bulk compositions demonstrate that, for common subduction-zone P–T trajectories, amphibole (the major hydrous phase in metabasaltic rocks) dehydrates at less than ~ 2.0 GPa; accordingly, mafic blueschists and amphibolites expel H2O at great depth and, except for some coarse-grained, dry metagabbros, tend to recrystallize to eclogite. Serpentinized mantle beneath the oceanic crust devolatilizes at comparable pressures. In contrast, phengite and biotite remain stable to pressures exceeding 3.5 GPa in associated quartzofeldspathic rocks. So, under ultrahigh-pressure conditions, the micaceous lithologies that dominate the continental crust fail to evolve significant H2O, and may transform incompletely to eclogitic assemblages. Although hydrous rocks expel volatiles during compaction and shallow burial, very deep underflow of partly hydrated oceanic crust + mantle generates most of the volatile flux along and above a subduction zone prior to continental collision. As large masses of sialic crust enter the convergent plate junction, fluid evolution at deep levels severely diminishes, and both convergence and dehydration terminate. After cessation of ultrahigh-pressure recrystallization, tectonic slices of sialic massifs return to shallow depths along the subduction channel, propelled by buoyancy; collisional sheets that retain ultrahigh-pressure effects lose heat efficiently across both upper (extensional, normal fault) and lower (subduction, reverse fault) tectonic contacts. These sheets ascend to midcrustal levels rapidly at average exhumation rates of 2–12 mm/year. Surviving ultrahigh-pressure relics occur as micro-inclusions encased in dense, strong, impermeable, unreactive mineralogic hosts, and are shielded during return towards conditions characteristic of midcrustal levels. Rehydration attending decompression is incomplete; its limited extent reflects the coarse grain size and relative impermeability of the rocks undergoing retrogression, as well as declining temperature and lack of aqueous fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号