首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil erosion which occurs at spatially varying rate is a widespread threat to sustainable resource management at watershed scale. Thus estimation of soil loss and identification of critical area for implementation of best management practice is central to success of soil conservation programme. The present study focuses application of most widely used Universal Soil Loss Equation (USLE) to determine soil erosion and prioritization of micro-watersheds of Upper Damodar Valley Catchment (UDVC) of India. Annual average soil loss for the entire basin is 23.17 t/ha/yr; for micro-watersheds. High soil loss is observed in 345 micro-watersheds, medium in 159 micro-watersheds and low soil loss is observed in 201 micro-watersheds. It is found that, out of 705 micro-watersheds of UDVC, 453 micro-watersheds are in agreement with AISLUS suggested priority which is based on observed sediment yield, 116 micro-watersheds under predict and 136 micro-watersheds over predict the priority. Geographic Information System (GIS) is applied to prepare various layers of USLE parameters which interactively estimate soil erosion at micro-watershed level. The main advantage of the GIS methodology is in providing quick information on the estimated value of soil loss for any part of the investigated area.  相似文献   

2.
Sediment Yield Index (SYI) model and results of morphometric analysis have been used to prioritize watersheds and to locate sites for checkdam positioning in Tarafeni watershed in Midnapur district. West Bengal. Various thematic maps such as land use/land cover, slope, drainage, soil etc. were prepared from 1RS ID LISS III digital data, SOI toposheets of 1:50,000 scale and other reference maps. Morphometric parameters such as bifurcation ratio (Rb). drainage density (Dd), texture ratio (T), length of overland flow (Lo), stream frequency (Fu), compactness coefficient (Cc), circularity ratio (Rc), elongation ratio (Er), shape factor (Bs) and form factor (Rf) were computed. Automated demarcation of prioritization of micro-watersheds was done by using GIS overlaying technique by assigning weight factors to all the identified features in each thematic map and ranks were assigned to the morphometric parameters. Five categories of priority viz., very high, high, medium, low and very low, were given to all the watersheds in both the methods. Sixty-two micro-watersheds using SYI method and twenty-three micro-watersheds using morphometric have been prioritized as very high priority. Final priority map was prepared by considering the commonly occurred very high-prioritized micro-watersheds in both SYI model and morphometric analysis. Twenty-four suitable sites were identified for check dam construction in 21 highly prioritized watersheds. It is proved that integrated study of SYI model and morphometric analysis yield good result in prioritization of watersheds.  相似文献   

3.
Digital Elevation Models (DEMs) and their derivatives are routinely exploited for a wide range of planning and engineering applications such as land reclamation, calculation of cut-and-fill requirements for earth works or to determine other relevant geomorphological landscape parameters. The advent of computer (digital) manipulation of elevation data has opened up great possibilities for studying the geometry of our land surface in relation to physical factors such as climate, vegetation, soils and geology. This paper is concerned with the generation, testing and validation of DEM and its derived terrain parameters viz., contours, drainage pattern etc. using IRS-1C stereo pair over a part of Alwar district, Rajasthan, India. In particular, it reports on the results achieved using indigenously developed stereo - processing software along with standard GIS and terrain analysis package to derive DEM and associated terrain parameters of the study area. The results are encouraging when compared with Survey of India topographical maps at 1:50,000 scale in terms of point to point accuracy of DEM, data quality evaluation of orthoimage and higher order drainage delineation.  相似文献   

4.
Information on various agricultural resource parameters at various levels is essential for proper management and efficient resource allocation for sustainable agricultural development. Limitations in ground-based method have encouraged the use of satellite data coupled with geographical information system (GIS) in providing spatial as well as temporal information over large and inaccessible areas. In the present study, an attempt has been made to generate raster maps using remote sensing and GIS techniques to characterize the agroecosystem of South 24 Paraganas district of West Bengal, based on land utilization indices. Information on multi-season landcover derived from the analysis of the multi-temporal RADARSAT-1 SAR and IRS-ID LISS III data as well as other ancillary information in GIS environment are the basic inputs used in the study. The present analysis shows that northern and northwestern parts are more diverse in terms of agricultural intensification as compared to the southern and northeastern parts whereas the central parts show moderate density. In terms of carrying capacity, the high carrying capacity has been observed in the southern to northeastern parts whereas the northwestern and central parts show moderate and northern parts show low carrying capacity. Overall, the characterization of agroecosystem using land utilization indices can be identified as major input to formulate a management plan for sustainable agriculture with concerns for the environment.  相似文献   

5.
太湖流域洪涝灾害评估模型   总被引:3,自引:1,他引:3  
在地理信息系统支持下建立了太湖流域DEM模型,并建立了全流域12类共24种土地利用类型、2194个圩区、1012个乡镇和94个报汛站点的空间数据库及属性数据库。在此基础上,根据实时报汛资料,通过插值得到各乡汛期圩外水位和降雨量。圩区采用排涝计算圩内内涝水量再与DEM叠加,非圩区用乡最高水位与DEM叠加,可获得全流域淹没水深栅格数据。统计不同乡镇、不同土地类型、不同淹没水深的淹没面积,并根据当年的社会经济数据,建立了太湖流域洪涝灾害损失评估模型。对1999年太湖流域洪涝灾害评估结果表明,模型具有一定的精度,可为流域防洪减灾决策提供依据。  相似文献   

6.
Hydrologic analysis of microwatersheds is essential for water resources planning at large scale. Space based input for decentralized planning at panchayat level use high resolution DEM. Drainage and slope play important role in planning and Digital Elevations Models (DEM) are widely being used for estimation of hydrologic parameters which are useful as input for hydrologic models. The estimates vary as per resolution and type of DEM. This paper evaluates the suitability of DEM derived through Cartosat-1 satellite stereo data(CartoDEM) for hydrologic parameter estimation of microwatersheds and compares the results with Airborne Laser Terrain Mapper (ALTM) based DEM data. Comparison is based on the hydrologic parameters delineated in Geographical Information System. Microwatersheds are delineated and drainage length extracted using two different cell sizes for both DEMs. Correctness Index, Figure of Merit, visual comparison, Percent within buffer and Junction comparison method, compared extracted river network. Average watershed slope is calculated using three different methods. CartoDEM derived drainage is comparable with ALTM derived drainage. There is high correlation between Carto5 and Caro10 DEMs in terms of drainage delineation and slope calculation. Average watershed slope vary as per calculation methods but average channel slope value (S3) although less, is comparable across DEMs.  相似文献   

7.
DEM在丘陵地区土地整理项目中的应用研究   总被引:2,自引:0,他引:2  
陈勇  陶锐 《测绘科学》2008,33(1):170-172
本文选取巴中市巴州区某镇土地整理项目作为研究对象,首先利用一个典型区域的数字化等高线插值生成规则格网DEM,然后利用DEM进行土地平整土方量的计算、道路和渠系的纵断面提取以及由DEM自动提取水系等。由DEM进行以上信息的提取时,主要利用MapGIS软件的DTM分析模块和ArcGIS水文分析工具。本文将DEM与土地整理项目有机结合,在计算精度和计算效率上比以前的方法均有所提高,但由于受原始地形图精度和软件的影响,DEM的精度尚需提高,计算方法尚需进一步的改进。  相似文献   

8.
In this study, an attempt has been made to suggest crop diversification based on soil and weather requirements of different crops. State level spatial databases of various agro-physical parameters such as rainfall, soil texture, physiography and problem soil along with the agricultural area derived from remote sensing data were integrated using GIS. A raster based modelling approach was followed to arrive at suitable zones for practicing different cropping systems. The results showed that the south-western Punjab is suitable for low water requiring crops such as desi cotton, pearl millet, gram etc., where as north-eastern Punjab with high rainfall and excess drainage should practice maize based cropping system. Rice can be substituted by maize and other crops in Central Punjab, where water table is going down fast. Using this approach the area of rice based cropping system can be reduced from present 24.7 lakh ha to 19.6 lakh ha, thereby reducing the degradation of valuable land and water resources.  相似文献   

9.
Traditionally, stream and sub‐watershed characterization in GIS has been accom‐ plished using a DEM‐based terrain analysis approach; however, there is a large amount of existing vector hydrographic data difficult to accurately reproduce using DEMs. WaterNet is a GIS/hydrologic application for the integration and analysis of stream and sub‐watershed networks in vector format. Even with vector data, hydrologic inconsistencies between streams and sub‐watersheds do exist, and are revealed in the form of streams crossing drainage divides and sub‐watersheds with more than one outlet. WaterNet rectifies these inconsistencies and couples the two datasets. Most algorithms involving traces of dendritic networks employ a form of tree traversal which requires topologic information to be organized into specialized data structures. On the contrary, WaterNet develops topologic relationships from GIS attribute tables, which, in combination with sorting and querying algorithms, make the calculation process efficient and easy to implement. With the topologic relationships of the streams and sub‐watersheds, WaterNet can perform traces to calculate cumulative network parameters, such as flow lengths and drainage areas. WaterNet was applied to the catchment of the Texas Gulf coast for a total of 100 cataloging units (411,603 km2) and 60,145 stream lines (183,228 km).  相似文献   

10.
The paper deals with the application of Remote Sensing and Geographical Information System (GIS) technique for a watershed development program. For this study, the WRJ-2 watershed falling under Narkhed and Katol Tahsils of Nagpur district, Maharashtra, India is investigated. Various thematic maps (i.e. drainage, geology, soil, geomorphology and land use/ land cover) have been prepared using the remote sensing and GIS techniques. Initially, differential weightage values are assigned to all the thematic maps as per their runoff characteristics. Subsequently, the maps are integrated in GIS environment to identify potential sites for water conservation measures like gully plugs, earthen check dams, continuous contour trenches, percolation tanks, cement bandhara, afforestration and farm ponds, etc. The study depicts that the GIS technique facilitates integration of thematic maps and thereby helps in an identification of micro-zones each with unique characters in-terms of hydrogeology, thus amenable to specific water conservation techniques. It is therefore concluded that, the GIS technique is suitable for an identification of water conservation structures.  相似文献   

11.
Soil erosion modeling using MMF model -A remote sensing and GIS perspective   总被引:1,自引:0,他引:1  
Hardly any part of the world has remained unchanged since the arrival of the speciesHomo sapiens including the mountain ecosystems. Himalayan physiographic unit of India in due course has become populated and is tolerating all kinds of human interventions. Soil erosion in this region has been identified as a major problem due to both natural and anthropogenic factors. Remote sensing and Geographical Information system (GIS) techniques hold great promises in the assessment and conservation of natural resources including the surface soil. The major objective of the present study was to apply a process based model to quantify soil erosion and to prioritize the sub-watershed on this basis. The sub-watershed located at Jakhan rao area of Western Dun in lower Himalayan belt was taken as the test site for the study at 1: 50,000 scale. Deforestation, unscientific agricultural practices, terrace farming, cattle grazing and land degradation in the sub-watershed are some of the anthropogenic factors causing soil erosion in the area. Here, MMF model was used for estimation of soil erosion by incorporating layers derived from both remote sensing and ancillary data. IRS 1C LISS III satellite data was used for the preparation of land use map that was used to derive RD map, BD map and K map. Digital Elevation Model (DEM) provided slope map, an intermediate layer used in equation 6 to generate G map, and soil map provided MS map, BD map and K map. The above intermediate layers generated were then integrated in GIS domain to estimate the amount of soil erosion in the sub-watershed area. Results show high values 4572.333 kg/m2 for G map, which depicted transport capacity of overland flow. Comparatively lower values 13.15, and 7.98 kg/m2were observed for F map, which depicted soil detachment by raindrop impact. The subtracted image of the aforesaid layers produced the real picture, where in the highest value 3.770 kg/m2 was found in the midland region of the site. The crossed erosion map was then classified into different erosion classes for sub-watershed area. This study illustrates the applications of remote sensing and GIS techniques for soil erosion modeling.  相似文献   

12.
Runoff modelling of a small watershed using satellite data and GIS   总被引:1,自引:0,他引:1  
This study was conducted for the Nagwan watershed of the Damodar Valley Corporation (DVC), Hazaribagh, Bihar, India. Geographic Information System (GIS) was used to extract the hydrological parameters of the watershed from the remote sensing and field data. The Digital Elevation Model (DEM) was prepared using contour map (Survey of India, 1:50000 scale) of the watershed. The EASI/PACE GIS software was used to extract the topographic features and to delineate watershed and overland flow-paths from the DEM. Land use classification were generated from data of Indian Remote Sensing Satellite (IRS-1B—LISS—II) to compute runoff Curve Number (CN). Data extracted from contour map, soil map and satellite imagery, viz. drainage basin area, basin shape, average slope of the watershed, main stream channel slope, land use, hydrological soil groups and CN were used for developing an empirical model for surface runoff prediction. It was found that the model can predict runoff reasonably well and is well suited for the Nagwan watershed. Design of conservation structures can be done and their effects on direct runoff can be evaluated using the model. In broader sense it could be concluded that model can be applied for estimating runoff and evaluating its effect on structures of the Nagwan watershed.  相似文献   

13.
In 1964, E.H. Hammond proposed criteria for classifying and mapping physiographic regions of the United States. Hammond produced a map entitled “Classes of Land Surface Form in the Forty‐Eight States, USA”, which is regarded as a pioneering and rigorous treatment of regional physiography. Several researchers automated Hammond?s model in GIS. However, these were local or regional in application, and resulted in inadequate characterization of tablelands. We used a global 250 m DEM to produce a new characterization of global Hammond landform regions. The improved algorithm we developed for the regional landform modeling: (1) incorporated a profile parameter for the delineation of tablelands; (2) accommodated negative elevation data values; (3) allowed neighborhood analysis window (NAW) size to vary between parameters; (4) more accurately bounded plains regions; and (5) mapped landform regions as opposed to discrete landform features. The new global Hammond landform regions product builds on an existing global Hammond landform features product developed by the U.S. Geological Survey, which, while globally comprehensive, did not include tablelands, used a fixed NAW size, and essentially classified pixels rather than regions. Our algorithm also permits the disaggregation of “mixed” Hammond types (e.g. plains with high mountains) into their component parts.  相似文献   

14.
In the present study, an attempt has been made to characterize the biophysical land units in Kanholi bara river basin of sub-humid tropical ecosystem of central India using remotely sensed data, field surveys and GIS based multi-criteria overlay analysis. The geo-spatial database on elevation, slope, landforms, soil depth, soil erosion, land use/land cover and hydrogeomorphological parameters has been generated using IRS-ID LISS-III satellite data coupled with soil survey data in GIS. The methodology followed in characterization of biophysical land units in GIS includes assigning scores for different classes of the layers and weighatges for different layers based on their characteristics and degree of influence on desired output. GIS based ‘multi criteria overlay’ analysis reveals seventeen distinct biophysical land units in the river basin. Severe (50.5-59.5) to very severe (59.5) biophysical stress units are found in plateau spurs, isolated mounds, linear ridges, dissected plateau and escarpments. These zones are associated with severe to very severe erosion, steep to very steep, extremely shallow soils, poor to very poor groundwater prospects, wastelands and scrublands. The characterization of biophysical land units helps in analysis of their potentials, problems and stress environment to plan and execute site-specific landscape management practices and maximize the productivity from each biophysical land unit. The present study demonstrates that generation of geo-spatial database based on remotely sensed data and field surveys in GIS and their analysis helps great extent in characterization of biophysical land units and analysis of their stress environment for management.  相似文献   

15.
The present study demonstrates the use of gridded bathymetry in the form of a Digital Elevation Model (DEM) in a geographic information system (GIS) in geomorphic characterization of the seafloor in the Western Indian offshore around Bombay High region and presents the salient findings. The variography of bathymetry and its derivatives and their spatial correlation provides a technique to measure the presence of seafloor features and provides an insight into the processes involved. The current study utilizes tools available within a GIS for processing of a DEM and its derivatives involving spatial techniques like spatial correlation and variography studies for geomorphic characterization. A broad regional analysis for the study area comprising the near shore coast to the deep waters is discussed, followed up by a detailed study limiting to the coastal region around Bombay High.  相似文献   

16.
Multiresolution Terrian Model in GIS   总被引:1,自引:0,他引:1  
DEM, which becomes a major component of geographic information processing in earth and engineering sciences, has been studied in the GIS literature for a long time. We use DEM to represent the terrain in GIS. The more data are available, the better representations of a terrain can be built. But not all tasks in the framework of a given application necessarily require the same accuracy, and even a single task may need different levels of accuracy in different areas of the domain. Multiresolution models, such as LOD, offer the possibility of representing and analyzing a terrain at a range of different levels of detail. In this paper, some key issues in multiresolution DEM model are studied. Three main models are focused on Hierarchical TIN(HTIN), multiresolution terrain model based Delaunay and Hierarchical Dynamic Simplification. The advantages and disadvantages of these methods are analyzed. The technology of tile to tile edge match is studied to maintain the consistency between adjacent edges and tile edges in HTIN model. And the Hypergraph based Objected oriented Model(HOOM) is presented to divide and code spatial area and describe the terrain feature in adding and deleting points based on Delaunay rule retriangulating. The conclusions have been drawn in the end.  相似文献   

17.
The present study attempts to delineate different groundwater potential units using remote sensing and geographic information system (GIS) in Khallikote block of Ganjam disrict, Orissa. Thematic maps of geology, geomorphology, land use and land cover, drainage density, lineament density, slope and DEM (digital elevation model) were prepared using the Landsat Thematic Mapper data in 3 spectral bands, band 7 (mid-infrared light), band 4 (near-infrared light), Band 2 (visible green light). Relationship of each layer to the groundwater regime has been evaluated through detailed analysis of the individual hydrological parameters. The SMCE (Spatial Multi-Criteria Evaluation) module in ILWIS (Integrated Land and Water Information System) supports the decision-making process for evaluating the ground water potential zones in the area. The study shows that more than 70% of the block is covered by medium to excellent category having good ground water potential.  相似文献   

18.
Delineation of Banikdih Agricultural watershed in Eastern India was carried out and various watershed parameters were extracted using Geographic Information System (GIS) and Remote Sensing. Digital Elevation Model (DEM) was developed with a contour interval of 10 m in the scale of 1:25000 using ARC/INFO modules. Sub watershed, drainage, slope, aspect, flow direction, soil series, soil texture, and soil class maps were independently generated and they were properly registered and integrated for analysis. The watershed was digitally delineated using AVSWAT model that couples hydrological model and GIS with appropriate threshold value of cell size. Subsequently, stream characteristics through the interface were generated. Indian Remote Sensing Satellite IRS-1D LISS-III data pertaining to the period of October 29, 1998 and October 23, 2000 was used to develop land use/land cover thematic map using ERDAS- 8.4 version image processing software. Eight major land use/land cover classes namely water body, lowland paddy, upland paddy, fallow land, upland crop (non-paddy crops), settlement, open mixed forest, and wasteland were segregated through digital image processing techniques using maximum likelihood algorithm. The information generated would be of immense help in hydrological modeling of watershed for prediction of runoff and sediment yield, thereby providing necessary inputs for developing suitable developmental management plans with sound scientific basis.  相似文献   

19.
基于栅格DEM的地形特征提取与分析   总被引:7,自引:3,他引:4  
以陕北延安地区燕儿沟流域为实验样区,运用比较分析法和数理统计法进行基于栅格DEM的地形特征提取和分析,以及DEM分辨率对地形特征的影响,并计算和比较了地形特征的空间统计分布。研究表明:一个相对真实的DEM能够通过修改生成DEM的基本材料,以及对DEM进行再加工而获得。由于DEM分辨率的不同,由此得到的地形特征值(如坡度、地形指数、河网密度等)在统计特性上也会随之变化。随着DEM分辨率的降低,坡度减小,地形坦化,地形指数均值变大,流域总面积变大,子流域数量减少,河流总长度减小,河网密度降低。  相似文献   

20.
以福建九龙江口海岸带DEM数据构建为实例,介绍了基于ArcGIS软件综合陆域、海域以及海陆交界处干出滩数据,构建海岸带DEM并进行精度评估的方法。精度评估结果显示所构建的数字高程模型是满足国家DEM构建相关标准精度要求,从而为GIS在海岸带资源信息化综合管理中应用提供了技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号