首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Thermal and compositional evolution of magmas after emplacement of basalt into continental crust has been investigated by means of fluid dynamic experiments using a cold solid mixture with eutectic composition and a hot liquid with higher salinity in the NH4Cl–H2O binary eutectic system. The experiments were designed to simulate cases where crystallization of a basalt magma is accompanied by melting at both the roof and floor of a crustal magma chamber. The results show that thermal and compositional convection occur simultaneously in the solution; the thermal convection is driven by cooling at the roof and the compositional convection is driven by melting and crystallization at the floor. The roof was rapidly melted by the convective heat flux, which resulted in formation of a separate eutectic melt layer (the upper liquid layer) with negligible mixing of the underlying liquid (the lower liquid layer). On the other hand, a mushy layer formed at the floor. The compositional convection at the floor carried a low heat flux, so that the heat transfer at the floor was basically explained by simple heat conduction. The thermal boundary layer in the lower liquid layer at the interface with the upper liquid layer became thicker with time and subsequently temperature decreased upward throughout the lower liquid layer. Compositional gradient with NH4Cl content decreasing upward formed by compositional convection in the lower liquid layer. The formation of these gradients resulted in formation of double-diffusive convecting layers in the lower liquid layer. The upward heat transfer was suppressed when compared with the case where the liquid region is homogenized by vigorous convection.These experimental results imply that, when a basalt magma is emplaced in continental crust, floor melting does not always enhance the cooling of the magma, but it may even reduce the total heat loss from the magma to the crusts due to suppression of convection by formation of a stabilizing compositional gradient.  相似文献   

2.
The trachytic Tanetomi lava from Rishiri Volcano, northern Japan, provides useful information concerning how a replenished mafic magma mixes with a compositionally zoned felsic magma in a magma chamber. The Tanetomi lava was erupted in the order of Lower lava 1 (LL1, 59.2-59.8 wt.% in SiO2), Lower lava 2 (LL2, 58.4-59.1 wt.%), and Upper lava (UL, 59.9-65.1 wt.%). Evidence for mixing with a mafic magma is observed only in the LL2, in which a greater amount of crystals derived from the mafic magma occurs in rocks with higher SiO2 content. The whole-rock compositional trend of the Tanetomi lavas is fairly smooth except for the LL2 lava composition, which scatter along the main composition trend. There is no reasonable composition of basaltic magma on the extrapolation of the LL2 composition trend, and the trend cannot be explained by a simple two-component magma mixing. Before the replenishment, the felsic magma was zoned in composition (58-65 wt.% in SiO2) and temperature (1030-920°C) in the magma chamber located at the pressure of ~2 kbar. The compositional variation of the main felsic magma was produced by extraction of a fractionated interstitial melt from mush zones along the chamber walls and its subsequent mixing with the main magma (boundary layer fractionation). The LL1 magma tapped the magma chamber soon after the replenishment, before the mafic magma mixed with the overall felsic magma. Then the basalt magma mixed heterogeneously with the upper part of the felsic magma by forced convection as a fountain during injection. The mixing of the basalt magma with compositionally zoned felsic magma resulted in the characteristic composition trend of the LL2. The fraction of basaltic magma in the LL2 magma is estimated to be at most 10%. Despite such a small proportion, the basalt magma was mixed completely with the felsic magma, probably because the crystallinity of undercooled basalt magma was low enough to behave as a liquid.  相似文献   

3.
The 1998 eruption of Volcán Cerro Azul in the Galápagos Islands produced two intra-caldera vents and a flank vent that erupted more than 1.0×108 m3 of lava. Lava compositions changed notably during the 5-week eruption, and contemporaneous eruptions in the caldera and on the flank produced different compositions. Lavas erupted from the flank vent range from 6.3 to 14.1% MgO, nearly the entire range of MgO contents previously reported from the volcano. On-site monitoring of eruptive activity is linked with petrogenetic processes such that geochemical variations are evaluated in a temporal context. Lavas from the 1998 eruption record two petrogenetic stages characterized by progressively more mafic lavas as the eruption proceeded. Crystal compositions, whole rock major and trace element compositions, and isotope ratios indicate that early lavas are the product of mixing between 1998 magma and remnant magma of the 1979 eruption. Intra-caldera lavas and later lavas have no 1979 signature, but were produced by the 1998 magma incorporating olivine and clinopyroxene xenocrysts. Thus, early magma petrogenesis is characterized by mixing with the 1979 magma, followed by the magma progressively entraining wehrlite cumulate mush.Editorial Responsibility: M.R. Carroll  相似文献   

4.
The Puu Oo eruption in the middle of Kilauea volcano's east rift zone provides an excellent opportunity to utilize petrologic constraints to interpret rift-zone processes. Emplacement of a dike began 24 hours before the start of the eruption on 3 January 1983. Seismic and geodetic evidence indicates that the dike collided with a magma body in the rift zone. Most of the lava produced during the initial episode of the Puu Oo eruption is of hybrid composition, with petrographic and geochemical evidence of mixing magmas of highly evllved and more mafic compositions. Some olivine and plagioclase grains in the hybrid lavas show reverse zoning. Whole-rock compositional variations are linear even for normally compatible elements like Ni and Cr. Leastsquares mixing calculations yield good residuals for major and trace element analyses for magma mixing. Crystal fractionation calculations yield unsatisfactory residuals. The highly evolved magma is similar in composition to the lava from the 1977 eruption and, at one point, vents for these two eruptions are only 200 m apart. Possibly both the 1977 lava and the highly evolved component of the episode 1 Puu Oo lava were derived from a common body of rift-zone-stored magma. The more mafic mixing component may be represented by the most mafic lava from the January 1983 eruption; it shows no evidence of magma mixing. The dike that was intruded just prior to the start of the Puu Oo eruption may have acted as a hydraulic plunger causing mixing of the two rift-zone-stored magmas.  相似文献   

5.
A small explosive eruption of Kilauea Volcano, Hawaii, occurred in May 1924. The eruption was preceded by rapid draining of a lava lake and transfer of a large volume of magma from the summit reservoir to the east rift zone. This lowered the magma column, which reduced hydrostatic pressure beneath Halemaumau and allowed groundwater to flow rapidly into areas of hot rock, producing a phreatic eruption. A comparison with other events at Kilauea shows that the transfer of a large volume of magma out of the summit reservoir is not sufficient to produce a phreatic eruption. For example, the volume transferred at the beginning of explosive activity in May 1924 was less than the volumes transferred in March 1955 and January–February 1960, when no explosive activity occurred. Likewise, draining of a lava lake and deepening of the floor of Halemaumau, which occurred in May 1922 and August 1923, were not sufficient to produce explosive activity. A phreatic eruption of Kilauea requires both the transfer of a large volume of magma from the summit reservoir and the rapid removal of magma from near the surface, where the surrounding rocks have been heated to a sufficient temperature to produce steam explosions when suddenly contacted by groundwater.  相似文献   

6.
During a 52-day eruption in 1256 A.D., 0.5 km3 of alkali-olivine basalt was extruded from a 2.25-km-long fissure at the north end of the Harrat Rahat lava field, Saudi Arabia. The eruption produced 6 scoria cones and a lava flow 23 km long that approached the ancient and holy city of Madinah to within 8 km. Three chemical types of basalt are defined by data point clusters on variation diagrams, i.e. the low-K, high-K, and hybrid types. All three erupted simultaneously. Their distribution is delineated in both scoria cones and lava flow units from detailed mapping and a petrochemical study of 135 samples. Six flow units, defined by distinct flow fronts, represent extrusive pulses. The high-K type erupted during all six pulses, the low-K type during the first three, and the hybrid type during the first two.Three mineral assemblages occur out of equilibrium in all three chemical types.Assemblage 1 contains resorbed olivine and clinopyroxene megacrysts and ultramafic microxenoliths (Fo90 + Cr spinel + Cr endiopside) which fractionated within the spinel zone of the mantle.Assemblage 2 contains resorbed plagioclase megacrysts (An60) with olivine inclusions (Fo78) which fractionated in the crust.Assemblage 3 contains microphenocrysts of plagioclase and olivine in a groundmass of the same minerals with late-crystallizing titansalite and titanomagnetite; assemblage 3 crystallized at the surface and/or in the upper crust. Each assemblage represents a distinct range in PTX environment, suggesting that their coexistence in each chemical type may be a function of magma mixing. Such a process is confirmed by variable ratios of incompatible element pairs in a range of analyses.All three chemical types are products of mixing. Some of the hybrid types may have developed from surface mixing of the low-K and high-K lavas; however, the occurrence of all three types at the vent system suggests that subsurface mixing was the dominant process. We suggest that the Madinah flow was extruded from a heterogeneous magma chamber containing vertically stacked sections equivalent to the six eruptive pulses. This chamber may have developed contemporaneously with magma mixing when a crustal reservoir containing a magma in equilibrium with assemblage 2 was invaded by a more primitive magma containing cognate microxenoliths and megacrysts of assemblage 1.  相似文献   

7.
Three major phases are distinguished during the growth of Nyiragongo, an active volcano at the western limit of the Virunga Range, Zaire. Lavas erupted during phase 1 are strongly undersaturated melilitites characterized by the presence of kalsilite phenocrysts, perovskite, and the abundance of calcite in the matrix. Such lavas crop out mainly on the inner crater wall and progressively evolve toward more aphyric melilite nephelinites well represented on the flanks of the volcano. Adventive vents lying at the base of the cone developed along radial fracture systems and erupted olivine and/or clinopyroxene – rich melilitites or nephelinites. Stage 2 lavas are melilite-free nephelinites. Clinopyroxene is the main phenocryst and feldspathoids are abundant in the lavas exposed on the crater wall. These flows result from periodic overflowing of a magma column from an open crater. Extensive fissure flows which erupted from the base of the cone at the end of this stage are related to widespread draining out of magma which in turn induces the formation of the summit pit crater. Magmas erupted during stage 3 are relatively aphyric melilite nephelinites and the main volcanological characteristic is the permanent lava lake observed into the pit crater until the 1977 eruption. Fluctuations of the level of the lava lake was responsible for the development of the inner terraces. Periodic overflowing of the lava lake from the central pit formed the nepheline aggregate lava flows. Petrography and major element geochemistry allow the determination of the principal petrogenetic processes. Melilitites and nephelinites erupted from the summit crater are lavas derived, via clinopyroxene fractionation, from a more primitive melt. The abundance of feldspathoids in these lavas is in keeping with nepheline flotation. Aphyric melilite nephelinites covering the flanks and the extensive fissure flows have a homogeneous chemical composition; rocks from the historical lava lake are slightly more evolved. All these lavas differentiated in a shallow reservoir. Lavas erupted from the parasitic vents are mainly olivine and/or clinopyroxene-phyric rocks. Rushayite and picrites from Muja cone are peculiar high-magnesium lavas resulting from the addition of olivine xenocrysts to melilitic or nephelinitic melts. Fluid and melt inclusions in olivine and clinopyroxene phenocrysts indicate a crystallization depth of 10–14 km. A model involving two reservoirs located at different depths and periodically connected is proposed to explain the petrography of the lavas; this hypothesis is in accordance with geophysical data. Received: July 8, 1993/Accepted: September 10, 1993  相似文献   

8.
We present the results of a detailed petrological study of a sparsely phyric basalt (MAPCO CH98-DR11) dredged along the Mid-Atlantic Ridge (30°41′N). The sample contains microphenocrysts of olivine that display four different rapid-growth morphologies. Comparison of these morphologies with those obtained in dynamic crystallization experiments allows us to constrain the thermal history of the sample. The dendritic morphology (swallowtail, chain and lattice olivine) is directly related to the final quenching during magma–seawater interaction. In contrast, the three other morphologies, namely the complex polyhedral crystal, the closed hopper and the complex swallowtail morphology result from several cycles of cooling–heating (corresponding to a maximum degree of undercooling of 20–25°C) during crystal growth. These thermal variations occurred before eruption and are interpreted to be the result of turbulent convection in a small magmatic body beneath the ridge. The results suggest that the Mid-Atlantic Ridge is underlain by a mush zone that releases batches of liquid during tectonic segregation. Aphyric basalts are emitted during eruptions controlled by the tectonic activity, whereas phyric basalts correspond to small fractions of magma from the mush zone mobilized by reinjections of primitive magmas.  相似文献   

9.
Internal differentiation processes in a solidifying lava flow were investigated for the Kutsugata lava flow from Rishiri Volcano in northern Japan. In a representative 6-m thick lava flow that was investigated in detail in this study, segregation products darker than the host lavas manifested mainly in the form of pipes (vesicle cylinders) and layers (vesicle sheets), occurring around 0.5–2.3 m and 2.0–4.0 m above the base, respectively. Both the cylinders and sheets are significantly richer in incompatible elements such as TiO2 and K2O than the host lavas, which suggest that these products essentially represent residual melt produced during solidification of the lava flow. Field observation and the geochemical features of the lavas suggest that the vesicle cylinders grew upward from near the base of the flow by continuous feeding of residual melt from the neighboring host lavas to the heads of the cylinders. On the other hand, the vesicle sheets were produced in situ in the solidifying lava flow as fracture veins caused by horizontal compression. The vesicle cylinders have a remarkably higher MgO content (up to 8 wt.%) than the host lava (< 6 wt.%), whereas the vesicle sheets display MgO depletion (as low as 3.5 wt.%). The relatively high MgO content of the vesicle cylinders cannot be explained solely by the mechanical mixing of olivine phenocrysts with the residual melt. It is suggested that the vesicle cylinders were produced by the extraction of olivine-bearing interstitial melt from an augite-plagioclase network in the host lava, whereas the vesicle sheets were formed by the migration of the residual melt from a crystal network consisting of plagioclase, augite, and olivine in the host lava into platy fractures. We infer that this selective crystal fractionation for forming the vesicle cylinders resulted from processes in which abundant vesicles rejected from the upward-migrating floor solidification front prevented olivine crystals from being incorporated into the crystal network in the host lava. The vesicle cylinders are considered to have formed in ∼ 1 day after the lava flow came to rest, while relatively large vesicle sheets (> 1 cm thick) appeared much later (after ∼ 9 days). The formation of these segregation products was essentially complete within 20 days after the lava emplacement.  相似文献   

10.
Spinifex-textured sills (i.e., veins) characterized by komatiitic magmas that have intruded their own volcanic-piles have long been recognized. For instance, in the early 1970s, Pyke and coworkers, in their classic work at Pyke Hill in Munro Township, noted that not all spinifex-bearing ultramafic rocks formed as lava flows, rather some were clearly emplaced as small dikes and sills. Several hypotheses have been proposed to explain spinifex-textured sills: intrusion into a cold host, filter pressing, or drainage of residual liquid. However, these do not satisfactorily explain the phenomenon. Field and petrographic observations at Pyke Hill and Serpentine Mountain demonstrate that spinifex-bearing komatiite sills and dikes were emplaced during channel inflation processes when new magma was intruded into a cooler, semi-consolidated but permeable cumulate material. Komatiitic liquids were intruded into the olivine cumulate rocks near the boundary between the spinifex and the cumulate zones of well-organized to organized komatiite flows. Spinifex-textured sills are generally tabular in morphology, stacked one above another, with curviplanar contacts sub-parallel to stratigraphy. Some sills exhibit complex digitated apophyses. Thinner sills typically have a random olivine spinifex texture similar, though generally composed of coarser crystals, to that of komatiite lava flows. Thicker sills exhibit more complex organization of their constituent crystals characterized by zones of random olivine spinifex, overlying zones of organized coarse spinifex crystals similar to those found in lava flows. They have striking coarse dendritic spinifex zones composed of very large olivine crystals, up to several centimetres long and up to 1 cm wide that are not observed in lava flows. Typically, at the sill margins, the cumulate material of the host flow is composed of euhedral to subhedral olivine crystals that are larger than those distal to the contact. Many of these margin-crystals have either concentric overgrowth shells or dendritic olivine overgrowths that grew from the cumulate-sill contact toward the sill interior. The dendrites grew on pre-existing olivine cumulate at the contact in response to a sharp temperature gradient imposed by the intrusion of hot material, whereas the concentric overgrowths formed as new melt percolated into the unconsolidated groundmass of the host-flow cumulate material. Spinifex-textured sills and dikes occur in well-organized to organized flows that are interpreted to have formed by “breakouts” above and peripheral to lava pathways (channels/conduits) as a result of inflation that accompanied voluminous komatiitic eruptions responsible for the construction and channelization of komatiitic flow fields. The spinifex-textured dikes and sills represent komatiitic lava that was originally emplaced into the channel roof during periods of episodic inflation that resulted in lava breakouts and was subsequently trapped in the “roof rocks” during periods of channel deflation. Accordingly, the occurrence of spinifex-textured sills and dikes may indicate proximity to, and aid in the identification and delineation of lava channel-ways that could potentially host Ni–Cu–(PGE) mineralization within komatiitic lava flow-fields.  相似文献   

11.
The Handkerchief Mesa mixed magma complex is one of several late Cenozoic volcanic complexes in the southeastern San Juan Mountains characterized by mingling and limited mixing of basalt and rhyodacite. Stratigraphy in the dissected vent complex at Handkerchief Mesa records three phases of volcanism, the first and third displaying evidence for coeruption of mafic and silicic magmas. Phases 1 and 2 erupted silicic pyroclastics and basaltic lava flows, respectively. Phase-3 eruptions were dominated by rhyodacite lava flows, rhyodacite dikes, and abundant mingled and mixed hybrid lavas.Pre- and syneruptive basalt-rhyodacite mixing of phase-3 eruptions is shown by: (1) inclusions of quenched basalt in rhyodacite; (2) partially disaggregated basalt inclusions in mixed hybrids and rhyodacites; (3) interfingering lenses of mixed hybrid lavas and rhyodacite. Whole-rock major- and trace-element analyses support a two-component mixing model whereby intermediate hybrids are produced by mixing of basalt and rhyodacite (up to 30% basalt: 70% rhyodacite). Disequilibrium phenocryst textures and mineral compositions are consistent with multistage mixing culminating in an eruptive mixing event. Protracted mixing along a boundary zone at the base of a rhyodacite magma chamber may be responsible for stabilizing Fe-rich olivine phenocrysts in some hybrids.Basalt-rhyodacite mixing is inhibited by rapid crystallization in the basalt shortly after inclusion within the lower temperature melt. The degree to which mechanical dispersion and blending ensues is a critical function of the initial temperature contrast (ΔTi) between the two magmas. Thermal models, simulating the conductive cooling histories for basalt spheres in rhyodacite reservoirs, suggest that at large ΔTi's (> 200°) rapid cooling of the inclusion leads to disequilibrium crystallization with concomitant depression of equilibrium solidi, grain boundary wetting by residual liquids, and limited disaggregation of the inclusion imposed by movement of the host. For small ΔTi's (< 100°) temperatures within the inclusion can be maintained above the solidus for prolonged time periods, enhancing the possibility of producing homogeneous mixed hybrids through mechanical blending and diffusion. Both mechanisms operated at Handkerchief Mesa and contributed to the range of observed textures and compositions.  相似文献   

12.
 Ruapehu volcano erupted intermittently between September and November 1995, and June and July 1996, producing juvenile andesitic scoria and bombs. The volcanic activity was characterized by small, sequential phreatomagmatic and strombolian eruptions. The petrography and geochemistry of dated samples from 1995 (initial magmatic eruption of 18 September 1995, and two larger events on 23 September and 11 October), and from 1996 (initial and larger eruptions on 17–18 June) suggest that episodes of magma mixing occurred in separate magma pockets within the upper part of the magma plumbing system, producing juvenile andesitic magma by mixing between relatively high (1000–1200  °C)- and low (∼1000  °C)- temperature (T) end members. Oscillatory zoning in pyroxene phenocrysts suggests that repeated mixing events occurred prior to and during the 1995 and 1996 eruptions. Although the 1995 and 1996 andesitic magmas are products of similar mixing processes, they display chronological variations in phenocryst clinopyroxene, matrix glass, and whole-rock compositions. A comparison of the chemistry of magnesian clinopyroxene in the four tephras indicates that, from 18 September through June 1996, the tephras were derived from at least two discrete high-temperature (high-T) batches of magma. Crystals of magnesian clinopyroxene in the 23 September and 11 October tephras appear to be derived from different high-T magma batches. Whole-rock and matrix-glass compositions of all tephras are consistent with their derivation from distinct mixed melts. We propose that, prior to 1995 there was a shallow low-temperature (low-T) magma storage system comprising crystal-rich mush and remnant magma from preceding eruptive episodes. Crystal clots and gabbroic inclusions in the tephras attest to the existence of relict crystal mush. At least two discrete high-T magmas were then repeatedly injected into the mush zone, forming discrete and mixed magma pockets within the shallow system. The intermittent 1995 and 1996 eruptions sequentially tapped these magma pockets. Received: 1 April 1998 / Accepted: 22 December 1998  相似文献   

13.
Thermal contraction joints form in the upper and lower solidifying crusts of basaltic lava flows and grow toward the interior as the crusts thicken. Lava flows are thus divided by vertical joints that, by changes in joint spacing and form, define horizontal intraflow layers known as tiers. Entablatures are tiers with joint spacings less than about 40 cm, whereas colonnades have larger joint spacings. We use structural and petrographic methods to infer heat-transfer processes and to constrain environmental conditions that produce these contrasting tiers. Joint-surface morphology indicates overall joint-growth direction and thus identifies the level in a flow where the upper and lower crusts met. Rock texture provides information on relative cooling rates in the tiers of a flow. Lava flows without entablature have textures that develop by relatively slow cooling, and two joint sets that usually meet near their middles, which indicate mostly conductive cooling. Entablature-bearing flows have two main joint sets that meet well below their middles, and textures that indicate fast cooling of entablatures and slow cooling of colonnades. Entablatures always occur in the upper joint sets and sometimes alternate several times with colonnades. Solidification times of entablature-bearing flows, constrained by lower joint-set thicknesses, are much less than those predicted by a purely conductive cooling model. These results are best explained by a cooling model based on conductive heat transfer near a flow base and water-steam convection in the upper part of an entablature-bearing flow. Calculated solidification rates in the upper parts of such flows exceed that of the upper crust of Kilauea Iki lava lake, where water-steam convection is documented. Use of the solidification rates in an available model of water-steam convection yields permeability values that agree with measured values for fractured crystalline rock. We conclude, therefore, that an entablature forms when part of a flow cools very rapidly by water-steam convection. Flooding of the flow top by surface drainage most likely induces the convection. Colonnades form under conditions of slower cooling by conductive heat transfer in the absence of water.  相似文献   

14.
Gabbro xenoliths in a tholeiitic lava of Kahoolawe Island, Hawaii, a 1.3–1.4 Ma shield volcano, are 1–3 cm in size and comprised of plagioclase, clinopyroxene, and orthopyroxene. Gabbro textures — while intergranular and in part subophitic-are open due to 28–48 vol.% of vesicular basalt occupying xenolith space. Vesicles in and around the xenoliths are lined or filled with rhyolitic glass (segregation vesicles). The host is evolved tholeiite (MgO 6.1 wt%) with phenocrysts, microphenocrysts, and glomerocrysts of olivine, clinopyroxene, orthopyroxene, and plagioclase, and megacrysts (1 cm) of plagioclase. The Sr-isotope ratio of one xenolith is 0.70489; the host basalt ratio is 0.70460. Xenolith isotope composition, grain resorption, and clinopyroxene (Fs12.5–15Wo38–35.5), orthopyroxene (Fs19.5–24Wo4.1), and plagioclase (An68–65Or0.8–1.2) compositions suggest that these gabbros crystallized from Kahoolawe tholeiitic magma of essentially the same composition as the host basalt, but pre-dating the magma represented by the host. Based on the absence of intergranular Fe–Ti oxide phases from the pl+cpx+opx assemblages, and the open, vuggy textures, we envision crystallization on a reservoir roof at temperatures >1100°C. Entrainment of gabbro assemblages and plagioclase megacrysts from a roof mush/suspension zone occurred during convection associated with replenishment of the magma reservoir. These open-textured gabbro xenoliths are therefore not fragments of preexisting coarse-grained bodies such as sills or segregation veins. Rhyolitic glass in vesicles represents a gas-effervescence filtration process that forced fractionated residual liquids from the groundmass into voids associated with the xenoliths.Sirrine Environmental Consultants, Fremont, CA 94538  相似文献   

15.
The present paper examines magmatic structures in the Jizera and Liberec granites of the Krkonoše–Jizera Plutonic Complex, Bohemian Massif. The magmatic structures are here interpreted to preserve direct field evidence for highly localized magma flow and other processes in crystal-rich mushes, and to capture the evolution of physical processes in an ancient granitic magma chamber. We propose that after chamber-wide mixing and hybridization, as suggested by recent petrological studies, laminar magma flow became highly localized to weaker channel-like domains within the higher-strength crystal framework. Mafic schlieren formed at flow rims, and their formation presumably involved gravitational settling and velocity gradient flow sorting coupled with interstitial melt escape. Local thermal or compositional convection may have resulted in the formation of vertical schlieren tubes and ladder dikes whereas subhorizontal tubes or channels formed during flow driven by lateral gradients in magma pressure. After the cessation or deceleration of channel flow, gravity-driven processes (settling of crystals and enclaves, gravitational differentiation, development of downward dripping instabilities), accompanied by compaction, filter pressing and melt segregation, dominated in the crystal mush within the flow channels. Subsequently, magmatic folds developed in schlieren layers and the magma chamber recorded complex, late magmatic strains at high magma crystallinities. Late-stage magma pulsing into localized submagmatic cracks represents the latest events of magmatic history of the chamber prior to its final crystallization. We emphasize that the most favorable environments for the formation and preservation of magmatic structures, such as those hosted in the Jizera and Liberec granites, are slowly cooling crystal-rich mushes. Therefore, where preserved in plutons, these structures may lend strong support for a “mush model” of magmatic systems.  相似文献   

16.
After a 26 years long quiescence El Reventador, an active volcano of the rear-arc zone of Ecuador, entered a new eruptive cycle which lasted from 3 November to mid December 2002. The initial sub-Plinian activity (VEI 4 with andesite pyroclastic falls and flows) shifted on 6 and 21 November to an effusive stage characterized by the emission of two lava flows (andesite to low-silica andesite Lava-1 and basaltic andesite Lava-2) containing abundant gabbro cumulates. The erupted products are medium to high-K calc-alkaline and were investigated with respect to major element oxides, mineral chemistry, texture and thermobarometry. Inferred pre-eruptive magmatic processes are dominated by the intrusion of a high-T mafic magma (possibly up to 1165 ± 15 °C) into an andesite reservoir, acting as magma mixing and trigger for the eruption. Before this refilling, the andesite magma chamber was characterized by water content of 5.3 ± 1.0%, high oxygen fugacity (> NNO + 2) and temperatures, in the upper and lower part of the reservoir, of 850 and 952 ± 65 °C respectively. Accurate amphibole-based barometry constrains the magma chamber depth between 8.2 and 11.3 km (± 2.2 km). The 6 October 2002 seismic swarm (hypocenters from 10 to 11 km) preceding El Reventador eruption, supports the intrusion of magmas at these depths. The widespread occurrence of disequilibrium features in most of the andesites (e.g. complex mineral zoning and phase overgrowths) indicates that convective self-mixing have been operating together with fractional crystallization (inferred from the cognate gabbro cumulates) before the injection of the basic magma which then gave rise to basaltic andesite and low-silica andesite hybrid layers. Magma mixing in the shallow chamber is inferred from the anomalous SiO2–Al2O3 whole-rock pattern and strong olivine disequilibria. Both lavas show three types of amphibole breakdown rims mainly due to heating (mixing processes) and/or relatively slow syn-eruptive ascent rate (decompression) of the magmas. The lack of any disequilibrium textures in the pumices of the 3 November fall deposit suggest that pre-eruptive mixing did not occur in the roof zone of the chamber. A model of the subvolcanic feeding system of El Reventador, consistent with the intrusion of a low-Al2O3 crystal-rich basic magma into an already self-mixed andesite shallow reservoir, is here proposed. It is also inferred that before entering the shallow chamber the “basaltic” magma underwent a polybaric crystallization at deeper crustal levels.  相似文献   

17.
Phenocrysts in volcanic rocks are commonly used to deduce crystallization processes in magma chambers. A fundamental assumption is that the phenocrysts crystallized in the magma chambers at isobaric and nearly equilibrium conditions, on the basis of their large sizes. However, this assumption is not always true as demonstrated here for a porphyritic alkali basalt (Kutsugata lava) from Rishiri Volcano, northern Japan. All phenocryst phases in the Kutsugata lava, plagioclase, olivine, and augite, have macroscopically homogeneous distribution of textures showing features characteristic of rapid growth throughout the crystals. Rarely, a core region with distinct composition is present in all phenocryst phases. Phenocrysts, excluding this core, are occasionally in direct contact with each other, forming crystal aggregates. The equilibrium liquidus temperature of plagioclase, the dominant phase (35 vol%) in the Kutsugata lava, can never exceed the estimated magmatic temperature, unless the liquidus temperature increases significantly due to vesiculation of the magma during ascent. This suggests that most phenocrysts in the Kutsugata lava were formed by decompression of the magma during ascent in a conduit, rather than by cooling during residence in a magma reservoir. In the magma chamber before eruption, probably located at depth of more than 7 km, only cores of the phenocrysts were present and the magma was nearly aphyric (<5 vol% crystals), though the observed rock is highly porphyritic with up to 40 vol% crystals. The Kutsugata magma is inferred to have been rich in dissolved H2O (>4 wt.%) in the magma chamber, and liquidus temperatures of phenocryst phases were significantly suppressed. Large undercooling caused by decompression and degassing of the magma was the driving force for significant crystallization during ascent because of the increase in liquidus temperature due to vapor exsolution. Low ascent rate of the Kutsugata magma, which is suggested by pahoehoe lava morphology and no association of pyroclastics, gave sufficient time for crystallization. Furthermore, the large degree of superheating of plagioclase in the magma chamber caused plagioclase crystallization with low population density and large crystal size, which characterizes the porphyritic nature of the Kutsugata lava. Alkali basalt is likely to satisfy these conditions and similar phenomena are suggested to occur in other volcanic systems.  相似文献   

18.
Nisyros island is a calc-alkaline volcano, built up during the last 100 ka. The first cycle of its subaerial history includes the cone-building activity with three phases, each characterized by a similar sequence: (1) effusive and explosive activity fed by basaltic andesitic and andesitic magmas; and (2) effusive andextrusive activity fed by dacitic and rhyolitic magmas. The second eruptive cycle includes the caldera-forming explosive activity with two phases, each consisting of the sequence: (1) rhyolitic phreatomagmatic eruptions triggering a central caldera collapse; and (2) extrusion of dacitic-rhyolitic domes and lava flows. The rocks of this cycle are characteized by the presence of mafic enclaves with different petrographic and chemical features which testify to mixing-mingling processes between variously evolved magmas. Jumps in the degree of evolution are present in the stratigraphic series, accompanied by changes in the porphyritic index. This index ranges from 60% to about 5% and correlates with several teochemical parameters, including a negative correlation with Sr isotope ratios (0.703384–0.705120). The latter increase from basaltic andesites to intermediate rocks, but then slightly decrease in the most evolved volcanic rocks. The petrographic, geochemical and isotopic characteristics can be largely explained by processes occurring in a convecting, crystallizing and assimilating magma chamber, where crystal sorting, retention, resorption and accumulation take place. A group of crystal-rich basaltic andesites with high Sr and compatible element contents and low incompatible elements and Sr isotope ratios probably resulted from the accumulation of plagioclase and pyroxene in an andesitic liquid. Re-entrainment of plagioclase crystals in the crystallizing magma may have been responsible for the lower 87Sr/86Sr in the most evolved rocks. The gaps in the degree of evolution with time are interpreted as due to liquid segregation from a crystal mush once critical crystallinity was reached. At that stage convection halted, and a less dense, less porphyritic, more evolved magma separated from a denser crystal-rich magma portion. The differences in incompatible element enrichment of pre-and post-caldera dacites and the chemical variation in the post-caldera dome sequence are the result of hybridization of post-caldera dome magmas with more mafic magmas, as represented by the enclave compositions. The occurrence of the quenched, more mafic magmas in the two post-caldera units suggests that renewed intrusion of mafic magma took place after each collapse event.  相似文献   

19.
Data on the variation of temperature with time and in space are essential to a complete understanding of the crystallization history of basaltic magma in Kilauea Iki lava lake. Methods used to determine temperatures in the lake have included direct, downhole thermocouple measurements and Fe-Ti oxide geothermometry. In addition, the temperature variations of MgO and CaO contents of glasses, as determined in melting experiments on appropriate Kilauean samples, have been calibrated for use as purely empirical geothermometers and are directly applicable to interstitial glasses in olivine-bearing core from Kilauea Iki. The uncertainty in inferred quenching temperatures is ±8–10° C. Comparison of the three methods shows that (1) oxide and glass geothermometry give results that are consistent with each other and consistent with the petrography and relative position of samples, (2) downhole thermo-couple measurements are low in all but the earliest, shallowest holes because the deeper holes never completely recover to predrilling temperatures, (3) glass geothermometry provides the greatest detail on temperature profiles in the partially molten zone, much of which is otherwise inaccessible, and (4) all three methods are necessary to construct a complete temperature profile for any given drill hole. Application of glass-based geothermometry to partially molten drill core recovered in 1975–1981 reveals in great detail the variation of temperature, in both time and space, within the partially molten zone of Kilauea Iki lava lake. The geothermometers developed here are also potentially applicable to glassy samples from other Kilauea lava lakes and to rapidly quenched lava samples from eruptions of Kilauea and Mauna Loa.  相似文献   

20.
Mount Erebus, Antarctica, is a large (3794 m) alkaline open-conduit stratovolcano that hosts a vigorously convecting and persistently degassing lake of anorthoclase phonolite magma. The composition of the lake was investigated by analyzing glass and mineral compositions in lava bombs erupted between 1972 and 2004. Matrix glass, titanomagnetite, olivine, clinopyroxene, and fluor-apatite compositions are invariant and show that the magmatic temperature (∼ 1000°C) and oxygen fugacity (ΔlogFMQ = − 0.9) have been stable. Large temperature variations at the lake surface (~ 400–500°C) are not reflected in mineral compositions. Anorthoclase phenocrysts up to 10 cm in length feature a restricted compositional range (An10.3–22.9Ab62.8–68.1Or11.4–27.2) with complex textural and compositional zoning. Anorthoclase textures and compositions indicate crystallization occurs at low degrees of effective undercooling. We propose shallow water exsolution causes crystallization and shallow convection cycles the anorthoclase crystals through many episodes of growth resulting in their exceptional size. Minor variations in eruptive activity from 1972 to 2004 are decoupled from magma compositions. The variations probably relate to changes in conduit geometry within the volcano and/or variable input of CO2-rich volatiles into the upper-level magma chamber from deeper in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号