共查询到20条相似文献,搜索用时 31 毫秒
1.
大坪金矿成矿可分为三个成矿阶段:早期成矿阶段(白钨矿石英脉)、主成矿阶段(团块状多金属硫化物含金石英脉)和晚成矿阶段(碳酸盐石英脉)。本文利用显微测温和拉曼光谱分析了大坪矿脉的流体包裹体特征,结果表明:流体包裹体基本由富液相CO2包裹体和不同CO2/H2O比例的CO2-H2O型包裹体组成,早阶段白钨矿石英脉中同时富含富气相CO2包裹体,主成矿阶段团块状多金属硫化物金矿石中富液相CO2包裹体占明显优势,只有晚成矿阶段碳酸盐石英脉中含有居次要地位的H2O溶液包裹体。流体包裹体中气相组成基本为纯CO2,早阶段者还含少量N2。早阶段CO2-H2O型包裹体的盐度为6.37%-14.64%NaCl,峰值9%-10.5%NaCl,均一温度为299.4-423.7℃,峰值320-380℃,CO2包裹体密度为0.352-0.798g/cm^3,多数在0.64-0.71g/cm^3;主成矿阶段的CO2-H2O型包裹体的盐度在3.70%-14.64%NaCl之间,峰值7.2%-9.0%NaCl,均一温度279.0-406.5℃之间,峰值320-360℃,CO2包裹体密度为0.591-0.843g/cm^3,多数大于0.8g/cm^3;晚成矿阶段CO2-H2O型包裹体的盐度为4.80%-6.54%NaCl,均一温度为287.6-337.1℃。计算表明早阶段成矿压力约为190-440MPa,主阶段成矿压力约为133.5-340.0MPa,相当的成矿深度为5.1-12.9km。这些特征揭示了该矿成矿流体为近临界的高CO2(CO2≥H2O)的中低盐度的CO2-H2O-NaCl体系流体,在成矿过程中基本不存在流体混合,但发生了明显的沸腾和相分离作用。该矿是剪切带控制下的中深中温热液金矿,成矿作用主要是减压沸腾环境下的快速沉淀。结合其它证据,作者认为该矿的成矿流体主体为深源的壳幔混合流体,而不是地壳浅部的大气降水、岩浆水或其混合流体。金在高CO2的成矿流体中可能主要以硫氢络合物形式迁移,矿质沉淀主要与压力速降条件下发生流体的相分离作用相关。 相似文献
2.
呼斯特岩体位于新疆西天山博罗科努岛弧带中北缘,是博罗科努成矿带东段典型的与矽卡岩矿床成矿有关的中酸性杂岩体。对岩体中的二长花岗岩、花岗闪长岩和暗色包体进行了系统的矿物化学研究,探讨了岩浆的成岩演化过程以及矿物成分与成岩成矿的关系。造岩矿物的化学成分研究表明,呼斯特岩体为典型的I型花岗岩,形成于与俯冲有关的大陆边缘弧环境,成岩物质来自壳幔混源,成岩过程中经历了岩浆混合作用。岩体形成于较高温度(738~770 ℃)、较低压力(057~142 kbar,1 kbar=01 GPa)和高氧逸度环境。二长花岗岩和花岗闪长岩的侵位深度(22~42 km)和高氧逸度有利于可克萨拉—艾木斯呆依铁铜矿床的形成。岩石中的黑云母相对富镁且氧化系数较高,角闪石富镁、富硅且化学成分变化较大,二者均表现出与铁铜矿化有关的成分特征。岩浆混合作用与矿床的形成关系密切,对区内斑岩-矽卡岩型多金属矿床的找矿具有指示意义。 相似文献
3.
The Qolqoleh gold deposit is located in the northwestern part of the Sanandai‐Sirjan Zone, northwest of Iran. Gold mineralization in the Qolqoleh deposit is almost entirely confined to a series of steeply dipping ductile–brittle shear zones generated during Late Cretaceous–Tertiary continental collision between the Afro‐Arabian and the Iranian microcontinent. The host rocks are Mesozoic volcano‐sedimentary sequences consisting of felsic to mafic metavolcanics, which are metamorphosed to greenschist facies, sericite and chlorite schists. The gold orebodies were found within strong ductile deformation to late brittle deformation. Ore‐controlling structure is NE–SW‐trending oblique thrust with vergence toward south ductile–brittle shear zone. The highly strained host rocks show a combination of mylonitic and cataclastic microstructures, including crystal–plastic deformation and grain size reduction by recrystalization of quartz and mica. The gold orebodies are composed of Au‐bearing highly deformed and altered mylonitic host rocks and cross‐cutting Au‐ and sulfide‐bearing quartz veins. Approximately half of the mineralization is in the form of dissemination in the mylonite and the remainder was clearly emplaced as a result of brittle deformation in quartz–sulfide microfractures, microveins and veins. Only low volumes of gold concentration was introduced during ductile deformation, whereas, during the evident brittle deformation phase, competence contrasts allowed fracturing to focus on the quartz–sericite domain boundaries of the mylonitic foliation, thus permitting the introduction of auriferous fluid to create disseminated and cross‐cutting Au‐quartz veins. According to mineral assemblages and alteration intensity, hydrothermal alteration could be divided into three zones: silicification and sulfidation zone (major ore body); sericite and carbonate alteration zone; and sericite–chlorite alteration zone that may be taken to imply wall‐rock interaction with near neutral fluids (pH 5–6). Silicified and sulfide alteration zone is observed in the inner parts of alteration zones. High gold grades belong to silicified highly deformed mylonitic and ultramylonitic domains and silicified sulfide‐bearing microveins. Based on paragenetic relationships, three main stages of mineralization are recognized in the Qolqoleh gold deposit. Stage I encompasses deposition of large volumes of milky quartz and pyrite. Stage II includes gray and buck quartz, pyrite and minor calcite, sphalerite, subordinate chalcopyrite and gold ores. Stage III consists of comb quartz and calcite, magnetite, sphalerite, chalcopyrite, arsenopyrite, pyrrhotite and gold ores. Studies on regional geology, ore geology and ore‐forming stages have proved that the Qolqoleh deposit was formed in the compression–extension stage during the Late Cretaceous–Tertiary continental collision in a ductile–brittle shear zone, and is characterized by orogenic gold deposits. 相似文献
4.
Quartz‐rich veins in metapelitic schists of the Sanandaj‐Sirjan belt, Hamadan region, Iran, commonly contain two Al2SiO5 polymorphs, and, more rarely, three coexisting Al2SiO5 polymorphs. In most andalusite and sillimanite schists, the types of polymorphs in veins correlate with Al2SiO5 polymorph(s) in the host rocks, although vein polymorphs are texturally and compositionally distinct from those in adjacent host rocks; e.g. vein andalusite is enriched in Fe2O3 relative to host rock andalusite. Low‐grade rocks contain andalusite + quartz veins, medium‐grade rocks contain andalusite + sillimanite + quartz ± plagioclase veins, and high‐grade rocks contain sillimanite + quartz + plagioclase veins/leucosomes. Although most andalusite and sillimanite‐bearing veins occur in host rocks that also contain Al2SiO5, kyanite‐quartz veins crosscut rocks that lack Al2SiO5 (e.g. staurolite schist, granite). A quartz vein containing andalusite + kyanite + sillimanite + staurolite + muscovite occurs in andalusite–sillimanite host rocks. Textural relationships in this vein indicate the crystallization sequence andalusite to kyanite to sillimanite. This crystallization sequence conflicts with the observation that kyanite‐quartz veins post‐date andalusite–sillimanite veins and at least one intrusive phase of a granite that produced a low‐pressure–high‐temperature contact aureole; these relationships imply a sequence of andalusite to sillimanite to kyanite. Varying crystallization sequences for rocks in a largely coherent metamorphic belt can be explained by P–T paths of different rocks passing near (slightly above, slightly below) the Al2SiO5 triple point, and by overprinting of multiple metamorphic events in a terrane that evolved from a continental arc to a collisional orogen. 相似文献
5.
Francisco A. Jimenez Jr Graciano P. Yumul Jr Victor B. Maglambayan 《Resource Geology》2007,57(2):170-179
The Sibutad gold deposit has gold associated in quartz veins. The most important of these is the Lalab orebody, which contains ore‐grade gold, predominantly, in milky quartz veins and veinlets. Here, alteration quartz and fine‐grained crystalline clear and milky quartz were formed from hydrothermal fluids in three stages, namely stages I, II and III. Fluid inclusion microthermometry was carried out on stage I milky quartz, stage II fine‐grained alteration quartz and stage III milky quartz ± barite veins and veinlets. Homogenization temperatures (TH) are >248°C in stage I, 214–232°C in stage II and 186–239°C in stage III. These fluid inclusions have salinity between 1 and 2 wt% NaCl equivalent. In terms of gold assay, stage I drill‐core samples have gold grades 0.53–0.76 g/ton Au, stage II samples have 1.12–3.70 g/ton Au and stage III samples have 9.06–23.88 g/ton Au. This correlation suggests that gold was precipitated from the stage II and III fluids. 相似文献
6.
Kamal SIAHCHESHM Nasrin KHAJEMOHAMMADLO Ali Asghar CALAGARI Ali ABEDINI 《《地质学报》英文版》2021,95(3):846-859
The Aghbolaq skarn deposit is located in the Urumieh-Golpayegan plutonic belt,NW Iran.The garnetite skarn(stage I) has been intensely cross-cut by the magnetite-garnet skarn (stage II) which were,in turn,cut and offset by the orehosting quartz veins/veinlets (stage III).The predominance of andradite (Adr_(82.5–89.1)) and its high Fe~(3+)/Al ratio (up to 1685)apparently supports the high f O_2,salinity and prevalence of magmatic/hydrothermal fluids involved,rather than meteoric waters,during the magnetite-garnet skarn formation.Two major groups of fluid inclusions,namely aqueous (LV,LVS) and aqueous–carbonic (LV_C,LL_CV_C),were recognized in garnet and quartz veins that,especially in growth zones and along intra-granular trails,better display fluid inclusion assemblages (FIAs) than those in clusters.The prograde magnetite-garnet skarn was formed by the metasomatic fluid at relatively high T_h (209–374℃),under a lithostatic pressure of~200 bars.The retrograde mineralized quartz veins were formed at temperatures ranging from 124℃to 256℃,by dilute and less saline(2.57–11.93 wt%Na Cl eq.) hydrothermal fluids under a hydrostatic pressure of~80 bars.The fluid evolution of the Aghbolaq skarn began with an earlier simple cooling of metasomatic fluid during the prograde stage,followed by the later influx of low salinity meteoric fluids during the retrograde stage. 相似文献
7.
Lamprophyres typically appear in hydrothermal gold deposits. The relationship between lamprophyres and gold deposits is investigated widely. Some researchers suggest that the emplacement of lamprophyres triggers gold mineralization, whereas others hypothesize that the formation of lamprophyres increases the fertility of mantle sources and ore-forming fluids. K-feldspar veins, with ages between those of lamprophyres and gold deposits, appear in lamprophyres in Zhenyuan. Therefore, K-feldspar veins are ideal for investigating the relationship between lamprophyres and gold deposits. Phlogopite in K-feldspar veins has lower Mg#, Ni, and Cr contents and higher TiO2, Li, Ba, Sr, Sc, Zr, Nb, and Cs contents than phlogopite in lamprophyres. The in-situ Sr isotopic values of apatites (0.7063–0.7066) in K-feldspar veins are within the range for apatites (0.7064–0.7078) from lamprophyres. High large-ion lithophile element concentrations and low Nb and Ta concentrations in phlogopite from lamprophyres, in addition to high (87Sr/86Sr)i values of apatite (0.7064–0.7078), indicate that the magma parental to these phlogopite and apatite crystals is derived from an enriched mantle. K-feldspar veins are genetically correlated with lamprophyres, whereas sulfide mineral assemblage and trace element compositions of pyrite in K-feldspar veins suggest that K-feldspar veins in lamprophyres are not directly related to gold mineralization of the Zhenyuan deposit. 相似文献
8.
东昆仑白金沟金矿床石英的成矿作用显示 总被引:2,自引:0,他引:2
1地质特征白金沟金矿地处东昆仑的开荒北地区,位于昆南断裂与阿拉克湖—托索湖断裂交汇处,是东昆仑较为典型的石英脉型金矿和找矿前景颇佳的矿种。区内断裂构造发育,并且多期次活动,以致矿区岩石破碎强烈,影响较大的断裂破碎带有三条,以压性为主,产状分别为210... 相似文献
9.
Farhang Aliyari Ebrahim Rastad Mohammad Mohajjel Greg B. Arehart 《Ore Geology Reviews》2009,36(4):306-314
The Qolqoleh gold deposit is located in northwestern part of the Sanandaj–Sirjan metamorphic belt, northwestern Iran. Igneous and sedimentary units exposed in the area have undergone greenschist metamorphism. The area was affected by a NE–SW trending shear zone and subsequent deformation. Two different types of mineralization are distinguished in the Qolqoleh gold deposit based on geological–structural conditions indicated by microtextural analysis: ductile and then brittle. Ore-forming processes are divided into three stages: Early (I), Middle (II) and Late (III), which include quartz–pyrite (I), sulfides and gold (II) and carbonate veinlets (III), respectively. The stage I fluids are characterized by δ18O = 15.5‰ at 440 ºC, and are thought to be deep-sourced metamorphic waters; the stage III fluids, with δ18O = 1.6‰, are shallow-sourced meteoric waters; whereas, the stage II fluids, with δ18O = 13.1‰, are a mixture of deep-sourced metamorphic and shallow-sourced meteoric fluids. Based on comparisons of the D–O–C isotopic systematics, the ore-forming fluids with characteristic high δ18O and δ13C and low δD originated from metamorphic devolatilization of Cretaceous volcano-sedimentary (felsic to mafic metavolcanic rocks–shale–carbonate–carbonaceous chert) sequences, locally rich in organic matter. During late Cretaceous continental collision of the Afro-Arabian continent and the Iranian microcontinent, a crustal slab consisting of felsic to mafic metavolcanic rocks, carbonate, shale and carbonaceous chert was underthrust northwards beneath the central Iranian microcontinent along the Zagros fault. During further contraction, deformation was localized in reverse oblique-slip structures with vergence toward south; shear zones generally follow contacts between more competent and less competent rock units. Metamorphic devolatilization of this underthrust slab is the source of the ore-forming fluids that generated the Au ore belt, which includes the Qolqoleh gold deposit. 相似文献
10.
Elena D. Andreeva Hiroharu Matsueda Victor M. Okrugin Ryohei Takahashi Shuji Ono 《Resource Geology》2013,63(4):337-349
Mineralogic studies of major ore minerals and fluid inclusion analysis in gangue quartz were carried out for the for the two largest veins, the Aginskoe and Surprise, in the Late Miocene Aginskoe Au–Ag–Te deposit in central Kamchatka, Russia. The veins consist of quartz–adularia–calcite gangue, which are hosted by Late Miocene andesitic and basaltic rocks of the Alnei Formation. The major ore minerals in these veins are native gold, altaite, petzite, hessite, calaverite, sphalerite, and chalcopyrite. Minor and trace minerals are pyrite, galena, and acanthine. Primary gold occurs as free grains, inclusions in sulfides, and constituent in tellurides. Secondary gold is present in form of native mustard gold that usually occur in Fe‐hydroxides and accumulates on the decomposed primary Au‐bearing tellurides such as calaverite, krennerite, and sylvanite. K–Ar dating on vein adularia yielded age of mineralization 7.1–6.9 Ma. Mineralization of the deposit is divided into barren massive quartz (stage I), Au–Ag–Te mineralization occurring in quartz‐adularia‐clays banded ore (Stage II), intensive brecciation (Stage III), post‐ore coarse amethyst (Stage IV), carbonate (Stage V), and supergene stages (Stage VI). In the supergene stage various secondary minerals, including rare bilibinskite, bogdanovite, bessmertnovite metallic alloys, secondary gold, and various oxides, formed under intensely oxidized conditions. Despite heavy oxidation of the ores in the deposit, Te and S fugacities are estimated as Stage II tellurides precipitated at the log f Te2 values ?9 and at log fS2 ?13 based on the chemical compositions of hypogene tellurides and sphalerite. Homogenization temperature of fluid inclusions in quartz broadly ranges from 200 to 300°C. Ore texture, fluid inclusions, gangue, and vein mineral assemblages indicate that the Aginskoe deposit is a low‐sulfidation (quartz–adularia–sericite) vein system. 相似文献
11.
新疆库布苏金矿化带矿物标型特征研究 总被引:3,自引:0,他引:3
张京俊 《华北地质矿产杂志》1997,12(4):347-357
论文在简述了金矿化地质的前提下,利用电子探针测试,化学分析,热发光分析,红外分析,热电系数测试,包裹体均一温度和爆裂温度及其成分测试等技术手段,应用相似一类比原则,分析总结出了石英,自然金,黄铁矿等的找矿,预测矿物标型及指示该矿化带成因的矿物标型。并结合地质特征,得出该矿化带金仍有潜力,其成因为同火山岩有关的变质热液成矿,并且经历了至少两个阶段的矿化作用。 相似文献
12.
从江翁浪金矿是黔东南地区蚀变岩型金矿的典型代表.前人对翁浪金矿的研究仅限于宏观的构造及围岩蚀变等方面,同时对该金矿床容矿岩石及矿石物质组分作过初步研究探讨.在前人工作的基础上,采用矿相鉴定、化学分析、单矿物试金分析、电子探针及X射线衍射等多种物理化学分析手段,对翁浪金矿床中金矿物类型、形态、成色、嵌布特征以及金的赋存状态、载金矿物等做了细致的微观分析研究. 相似文献
13.
Jinxiang LI Guangming LI Kezhang QIN Bo XIAO Lei CHEN Junxing ZHAO 《Resource Geology》2012,62(1):19-41
The Early Cretaceous Duolong gold‐rich porphyry copper deposit is a newly discovered deposit with proven 5.38 Mt Cu resources of 0.72% Cu and 41 t gold of 0.23 g t?1 in northern Tibet. Granodiorite porphyry and quartz diorite porphyrite are the main ore‐bearing porphyries. A wide range of hydrothermal alteration associated with these porphyries is divided into potassic, argillic and propylitic zones from the ore‐bearing porphyry center outward and upward. In the hydrothermal alteration zones, secondary albite (91.5–99.7% Ab) occurs along the rim of plagioclase phenocryst and fissures. Secondary K‐feldspar (75.1–96.9% Or) replaces plagioclase phenocryst and matrix or occurs in veinlets. Biotite occurs mainly as matrix and veinlet in addition to phenocryst in the potassic zone. The biotite are Mg‐rich and formed under a highly oxidized condition at temperatures ranging from 400°C to 430°C. All the biotites are absent in F, and have high Cl content (0.19–0.26%), with log (XCl/XOH) values of ?2.74 to ?2.88 and IV (Cl) values of ?3.48 to ?3.35, suggesting a significant role of chloride complexes (CuCl2‐ and AuCl2‐) in transporting and precipitating copper and gold. Chlorites are present in all alteration zones and correspond mainly to pycnochlorite. They have similar Fe/(Fe+Mg), Mn/(Mn+Mg) ratios, and a formation temperature range of 280–360°C. However, the formation temperature of chlorite in the quartz‐gypsum‐carbonate‐chlorite vein is between 190°C and 220°C, indicating that it may have resulted from a later stage of hydrothermal activity. Fe3+/Fe2+ ratios of chlorites have negative correlation with AlIV, suggesting oxygen fugacity of fluids increases with decreasing temperature. Apatite mineral inclusions in the biotite phenocrysts show high SO3 content (0.44–0.82%) and high Cl content (1–1.37%), indicating the host magma had a high oxidation state and was enriched in S and Cl. The highest Cl content of apatite in the propylitic zone may have resulted from pressure decrease, and the lowest Cl content of apatite in the argillic zone may have been caused by a low Cl content in the fluids. The low concentration of SO3 content in the hydrothermal apatite compared to the magmatic one may have resulted from the decrease of oxygen fugacity and S content in the hydrothermal fluid, which are caused by the abundant precipitation of magnetite. 相似文献
14.
The several-hundred-m-thick Miocene Upper Red Formation in northwestern Iran hosts stratiform and fault-controlled copper mineralization. Copper enrichment in the percent range occurs in dm-thick carbonaceous sandstone and shale units within the clastic redbed sequence and consists of fine-grained disseminated copper sulfides (chalcopyrite, bornite, chalcocite) and supergene alteration minerals (covellite, malachite and azurite). The copper mineralization formed after calcite cementation of the primary rock permeability. Copper sulfides occur mainly as replacement of diagenetic pyrite, which, in turn, replaced organic matter. Electron microprobe analysis on bornite, chalcocite and covellite identifies elevated silver contents in these minerals (up to 0.12, 0.72 and 1.21 wt%, respectively), whereas chalcopyrite and pyrite have only trace amounts of silver (<0.26 and 0.06 wt%, respectively). Microthermometric data on fluid inclusions in authigenic quartz and calcite indicate that the Cu mineralization is related to a diagenetic fluid of moderate-to low temperature (Th = 96–160 °C) but high salinity (25–38 wt% CaCl2 equiv.). The range of δ34S in pyrite is −41.9 to −16.4‰ (average −31.4‰), where framboidal pyrite shows the most negative values between −41.9 and −31.8‰, and fine-grained pyrite has relatively heavier δ34S values (−29.2 to −16.4‰), consistent with a bacteriogenic derivation of the sulfur. The Cu-sulfides (chalcopyrite, bornite and chalcocite) show slightly heavier values from −14.6 to −9.0‰, and their sulfur sources may be both the precursor pyrite-S and the bacterial reduction of sulfate-bearing basinal brines. Carbonates related to the ore stage show isotopically light values of δ13CV-PDB from −8.2 to −5.1‰ and δ18OV-PDB from −10.3 to −7.2‰, indicating a mixed source of oxidation of organic carbon (ca. −20‰) and HCO3− from seawater/porewater (ca. 0‰). The copper mineralization is mainly controlled by organic matter content and paleopermeability (intragranular space to large fracture patterns), enhanced by feldspar and calcite dissolution. The Cheshmeh-Konan deposit can be classified as a redbed-type sediment-hosted stratiform copper (SSC) deposit. 相似文献
15.
16.
藏南过铝花岗岩中电气石的矿物化学特征及成因意义 总被引:2,自引:0,他引:2
讨论了藏南过铝花岗岩中电气石的地质产状、矿物学和矿物化学特征。结果表明:(1)在以氧原子数为24.5计算的化学式中,电气石的(Fe+Mg)/Mg比值在2.32~5.37之间,指示花岗岩和伟晶岩中的电气石均为黑电气石系列,而且属镁电气石—铁电气石系列中的较富铁电气石的成员;(2)电气石的FeO/(FeO+MgO)值高达0.70~0.89,与贫Li花岗岩接近,Al-Al50Fe50-Al50Mg50图解和Fe-Mg-Ca图解投点均位于贫Li花岗岩区,属于贫Li花岗岩有关的电气石;(3)TiO2-MnO/CaO-MgO/FeO三元图解可判定属于第Ⅰ类,即MgO和FeO含量同步消长,且较贫Mg富Fe,而MnO和TiO2含量为异步消长,这与电气石的FeO/(FeO+MgO)值所反映的性质相同;(4)地质产状、矿物学及矿物化学揭示的成因信息表明藏南过铝花岗岩中的电气石为酸性侵入体岩浆期后热液成因。 相似文献
17.
ZHANG Yan YU Xuefeng PENG Qiming LI Dapeng LI Xiaowei SHEN Kun ZHANG Shangkun SHAN Wei 《《地质学报》英文版》2020,94(6):2134-2151
The newly discovered Shanzhuang BIF is hosted in the Shancaoyu Formation of the Taishan Group within the Eastern Block, southeastern margin of the North China Craton. The ores can be subdivided into three types in terms of mineral assemblages, corresponding to three types(I, II, III). The element concentration of the type I magnetite is similar to that of the type II magnetite, while the type III magnetite is similar to that of the schist. In general, magnetite and hemat ite grains from the ores... 相似文献
18.
金赋存状态的研究,不仅可为金矿选冶提供技术参数,还有成因和化探等方面的意义。通过玲珑金矿大开头矿区金及主要矿石矿物的电子探针分析,显示出金只以独立金矿物相形式;金矿物主要为银金矿和含银自然金;金矿物以裂隙金、粒问金和包体金存在于黄铁矿或石英等颗粒中,但主要是存在于黄铁矿的裂隙中和硫化物与石英之间的晶体间隙中。金矿形态有极细的脉状、角砾状、麦粒状、浑圆粒状和不规则粒状等;粒状金矿物粒度细小、多在10μm左右;细脉状金的脉宽多在1-5μm之间。以黄铁矿为主的硫化物化学成分中几乎不舍金,金仅呈独立金矿物相。根据金与硫化物和石英的相嵌关系,探讨了本区金成矿作用过程。 相似文献
19.
Investigation on the Distribution of Gold Across the Ahar Area (NW Iran) Using Stream‐Sediment and BLEG Methods 下载免费PDF全文
Vartan Simmonds Fatemeh Jahangiryar Mohssen Moazzen Ahmad Ravaghi 《Resource Geology》2016,66(2):213-225
The Ahar area is located in NW Iran. The main part of the area is covered by Eocene andesitic and andesi‐basaltic rocks within which several granitoid intrusives of Oligocene age are emplaced. This caused vast hydrothermal alterations and Cu and Au mineralization. In this regard, this contribution aims to explore the distribution of gold across the region based on systematic sampling of stream sediments and using the secondary geochemical halos, as well as the bulk leach extractable gold (BLEG) method. Meanwhile, the results obtained from these two methods will be compared in order to find out if the anomalous zones match with each other. For this, 620 stream sediment samples of ?80 mesh grain size and 422 BLEG samples were collected and analyzed by Fire Assay and atomic absorption spectroscopy (AAS) methods, respectively. For BLEG samples, gold was first dissolved using KCN before being analyzed by the AAS method. Furthermore, 84 rock samples were also collected during the field control surveys and were analyzed by Fire Assay and ICP‐OES methods for gold and other elements, respectively. After determining the distribution characteristics and statistical parameters of gold in each group of samples, anomaly maps of gold for each method were prepared, revealing almost similar anomalous zones across the region. Based on these maps, most of the discovered anomalies correlate well with granitoid intrusives of Oligocene age and the related hydrothermal alterations, which have occurred within the intrusives and the host andesitic‐basaltic rocks of Eocene age, especially at the NE and central parts of the area and east of Ahar. Some silicic veins and veinlets have been observed during field surveys in these parts, within which high concentrations of Au and sometimes Cu are determined. Another anomalous zone is located over the hydrothermal alterations within trachy‐andesitic and andesitic volcanics of Pliocene age at the SE part of the quadrangle, where vast alterations caused by volcanic fumaroles and epithermal mineralization of gold and Pb–Zn is discovered. In this regard, the SE and NE parts of the area and the east Ahar area are proposed, in order of importance, for further detailed investigations. 相似文献
20.
胶东是我国黄金的主要产地,前人已开展大量矿床学研究,但主要集中在浅部,其深部的成矿研究仍然薄弱.本文以目前最深的见矿钻孔为研究对象,在宏观观察描述的基础上,以电子探针为主要研究方法,在微观上系统开展深部金矿的矿相学和元素地球化学研究,为深部金矿成矿特征提供了第一手的基础资料,研究结果对于深入认识焦家金矿带矿床的成因以及进一步的深部找矿预测都具有重要意义.超深科研钻ZK01井位于莱州吴一村地区,是目前焦家断裂带最深的见矿钻孔,也是我国岩金最深见矿孔.深钻蚀变类型主要有钾化、硅化、黄铁矿化、绢英岩化、黄铁绢英岩化、绿泥石化和碳酸盐化,矿石类型为黄铁绢英岩化碎裂岩和黄铁绢英岩化花岗质碎裂岩,矿体多以脉状、细脉网脉状、细脉浸染状为主.载金矿物主要为黄铁矿,少数金矿物分布在黄铜矿、石英和钾长石中.焦家带深部矿石金矿物成色较高,主要为含银自然金,其次为银金矿,说明该深钻深部金矿形成于高温、较深的成矿环境;成矿时代相对较老.Au主要有两种赋存形式:独立的金矿物和不可见金即晶格金.独立金矿物可分为三种赋存状态,即包体金、裂隙金和晶隙金.初步认为矿石矿物生成顺序从早到晚依次为:(不含Pb黄铁矿、方铅矿、辉铋矿、金矿物)→(黄铜矿)→(含Pb黄铁矿)→(方铅矿、金矿物)→(重晶石)→(闪锌矿).深钻成矿热液存在多期活动,碎裂岩带为含金热液运移提供了通道,多重成矿阶段的叠加和复合导致金矿物多期次结晶. 相似文献