首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
Abstract: The Shijuligou deposit was separated by an arcuate ductile shear zone cross the center of the deposit region, resulting in the difference between the southern and northern ore bodies. The lead (Pb) isotopic data of ores of the Shijuligou copper deposit have averages of 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb in 17.634, 15.444, and 37.312, respectively. It has been shown that ore-forming metals originated from intrusive and extrusive rocks in the upper part of ophiolites. The sulfur isotopic data of pyrite and chalcopyrite in the northern part change from +7.61‰ to +8.09‰ and +4.95‰ to +8.88‰ in the southern part. Isotopes of δ18O in the Shijuligou copper deposit are between +11.1‰ and +18.6‰, with the calculated δ18OH2O at +0.65‰. It is suggested that the mineralized fluid is a mixture of magma fluid, meteorological water, and seawater through circulating and leaching metals from the volcanic rocks. The zircon uranium-lead (U–Pb) dating of gabbro is 457.9±1.2 Ma, and the lower crossing age of the discordant and concordia curves of pyroxene spilite of zircon is 454±15 Ma. It is indicated that the Shijuligou deposit formed in a new ocean crust (ophiolite) of the back-arc basin in the late Ordovician. Mineralization should occur in the intermittence period after strong volcanic activity, and the age should be the late Ordovician. Moreover, the mineralization of ophiolite-hosted massive sulfide deposits in the ancient orogenic belt of the late Ordovician in the northern Qilian Mountains was controlled by the primary fault/fracture, with the forming of a metallogenic hydrothermal system by a mixture of volcanic magma fluid and seawater, which circularly leached the metallogenic metals from the volcanic rocks, resulting in their accumulation. The ore bodies were transformed with morphology and metallogenic elements. Jasperoid is an important sign for prospecting such deposits. There were many island arcs in the continent of China. This study provides evidence for understanding and exploration of ophiolite-hosted massive sulfide deposits in western China, especially in the area of northern Qilian Mountains.  相似文献   

2.
The Tongling ore district is one of the most economically important ore areas in the Middle–Lower Yangtze River Metallogenic Belt, eastern China. It contains hundreds of polymetallic copper–gold deposits and occurrences. Those deposits are mainly clustered(from west to east) within the Tongguanshan, Shizishan, Xinqiao, Fenghuangshan, and Shatanjiao orefields. Until recently, the majority of these deposits were thought to be skarn-or porphyry–skarn-type deposits; however there have been recent discoveries of numerous vein-type Au, Ag, and Pb-Zn deposits that do not fall into either of these categories. This indicates that there is some uncertainty over this classification. Here, we present the results of several systematic geological studies of representative deposits in the Tongling ore district. From investigation of the ore-controlling structures, lithology of the host rock, mineral assemblages, and the characteristics of the mineralization and alteration within these deposits, three genetic types of deposits(skarn-, porphyry-, and vein-type deposits) have been identified. The spatial and temporal relationships between the orebodies and Yanshanian intrusions combined with the sources of the ore-forming fluids and metals, as well as the geodynamic setting of this ore district, indicate that all three deposit types are genetically related each other and constitute a magmatic–hydrothermal system. This study outlines a model that relates the polymetallic copper–gold porphyry-, skarn-, and vein-type deposits within the Tongling ore district. This model provides a theoretical basis to guide exploration for deep-seated and concealed porphyry-type Cu(–Mo, –Au) deposits as well as shallow vein-type Au, Ag, and Pb–Zn deposits in this area and elsewhere.  相似文献   

3.
The Dongfengnanshan Cu polymetallic deposit is one representative deposit of the Tianbaoshan ore district in the Yanbian area, northeast(NE) China. There occur two types of ore bodies in this deposit, the stratiform ore bodies and veintype ones, controlled by the Early Permian strata and the Late Hercynian diorite intrusion, respectively. Due to the ambiguous genetic type of the stratiform ore bodies, there has been controversy on the relationship between them and veintype ore bodies. To determine the genetic type of stratiform ore bodies, laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) in situ trace elements and S–Pb isotope analysis have been carried on the sulfides in the stratiform ore bodies. Compared with that in skarn, Mississippi Valley-type(MVT), and epithermal deposits, sphalerite samples in the stratiform ore bodies of the Dongfengnanshan deposit are significantly enriched in Fe, Mn, and In, while depleted in Ga, Ge, and Cd, which is similar to the sphalerite in volcanic-associated massive sulfide(VMS) deposits. Co/Ni ratio of pyrrhotites in the stratiform ore bodies is similar to that in VMS-type deposits. The concentrations of Zn and Cd of chalcopyrites are similar to those of recrystallized VMS-type deposits. These characteristics also reflect the intermediate ore-forming temperature of the stratiform ore bodies in this deposit. Sulfur isotope compositions of sulfides are similar to those of VMS-type deposits, reflecting that sulfur originated from the Permian Miaoling Formation. Lead isotope compositions indicate mixed-source for lead. Moreover, the comparison of the Dongfengnanshan stratiform ore bodies with some VMStype deposits in China and abroad, on the trace elements and S–Pb isotope characteristics of the sulfides reveals that the stratiform ore bodies of the Dongfengnanshan deposit belong to the VMS-type, and have closely genetic relationship with the early Permian marine volcanic sedimentary rocks.  相似文献   

4.
1IntroductionOnthenorthernmarginoftheNorthChinaplatformislocatedoneofthemostimportantAu Ag polymetallicore concentratedzones,wherethereareavarietyoforetypes .Soithasbeenat tractingeverincreasingattentionofmanygeologists (PeiRongfuetal.,1 998;ShenBaofengetal.,1 994 ;LuSongnianetal.,1 997;HuShouxietal.,1 994 ;ChenYuchuan ,1 999;ZhaiYushengetal.,1 999) .Manyscholarspresentedtheirresearchresultsinvariousaspects.How ever ,thesourceofore formingmaterialshaslongbeenafocusofdiscussion .Studieso…  相似文献   

5.
The Jinshachang lead–zinc deposit is mainly hosted in the Upper Neoproterozoic carbonate rocks of the Dengying Group and located in the Sichuan–Yunnan–Guizhou(SYG) Pb–Zn–Ag multimetal mineralization area in China.Sulfides minerals including sphalerite,galena and pyrite postdate or coprecipitate with gangue mainly consisting of fluorite,quartz,and barite,making this deposit distinct from most lead–zinc deposits in the SYG.This deposit is controlled by tectonic structures,and most mineralization is located along or near faults zones.Emeishan basalts near the ore district might have contributed to the formation of orebodies.The δ34S values of sphalerite,galena,pyrite and barite were estimated to be 3.6‰–13.4‰,3.7‰–9.0‰,6.4‰ to 29.2‰ and 32.1‰–34.7‰,respectively.In view of the similar δ34S values of barite and sulfates being from the Cambrian strata,the sulfur of barite was likely derived from the Cambrian strata.The homogenization temperatures(T ≈ 134–383°C) of fluid inclusions were not suitable for reducing bacteria,therefore,the bacterial sulfate reduction could not have been an efficient path to generate reduced sulfur in this district.Although thermochemical sulfate reduction process had contributed to the production of reduced sulfur,it was not the main mechanism.Considering other aspects,it can be suggested that sulfur of sulfides should have been derived from magmatic activities.The δ34S values of sphalerite were found to be higher than those of coexisting galena.The equilibrium temperatures calculated by using the sulfur isotopic composition of mineral pairs matched well with the homogenization temperature of fluid inclusions,suggesting that the sulfur isotopic composition in ore-forming fluids had reached a partial equilibrium.  相似文献   

6.
Cu and Fe skarns are the world’s most abundant and largest skarn type deposits, especially in China, and Au-rich skarn deposits have received much attention in the past two decades and yet there are few papers focused on schematic mineral deposit models of Cu–Fe–Au skarn systems. Three types of Au-rich deposits are recognized in the Edongnan region, Middle–Lower Yangtze River metallogenic belt: ~140 Ma Cu–Au and Au–Cu skarn deposits and distal Au–Tl deposits. 137–148 Ma Cu–Fe and 130–133 Ma Fe s...  相似文献   

7.
The Tongyu copper deposit, located in the western part of the North Qinling Orogen, China, is one of several volcanic-hosted massive sulphide(VHMS) deposits with industrial value and is also a typical example of mineralization related to the subduction and metallogenesis during the Caledonian orogeny. We conducted systematic lead-sulphur isotope geochemical analyses of the Tongyu deposit to understand the possible ore-forming material sources and tectonic settings. Twenty-six sulphide samples yielded clustered δ~(34)S_(CDT) values of 1.13‰-3.36‰, average 2.22‰, and show a tower-type distribution,implying that the sulphur of the Tongyu copper deposit mainly originated from a mantle source. The Pb isotope compositions of sulphides(~(206)Pb/~(204)Pb = 17.59225-18.56354, average 18.32020; ~(207)Pb/~(204)Pb =15.51770-15.69381, average 15.66217; ~(208)Pb/~(204)Pb= 37.99969-39.06953, average 38.52722) are close to the values of the volcanic host rocks(~(206)Pb/~(204)Pb= 18.10678-18.26293, average 18.21158; ~(207)Pb/~(204)Pb =15.63196-15.68188, average 15.65345; ~(208)Pb/~(204)Pb= 38.43676-38.56360, average 38.49171), thus consistent with the Pb in ores and volcanic host rocks having been derived from a common source that was island-arc Pb related to oceanic crust subduction. The northward subduction of the Palaeo-Qinling oceanic crust triggered dehydration of the slab, which generated a large amount of high-oxygen-fugacity aqueous hydrothermal fluid. The fluid rose into the mantle wedge, activated and extracted metallogenic material and promoted partial melting of the mantle wedge. The magma and ore-forming fluid welled up and precipitated, finally forming the Tongyu VHMS copper deposit.  相似文献   

8.
Abundant organic inclusions are present in the Qinglong antimony deposit. However, the source rocks of these organic matters have not been reliably identified. Recently, a paleo–oil reservoir was found in the Qinglong antimony deposit. In view of similar components of gaseous hydrocarbon, we propose that the organic matters observed in inclusions in Qinglong antimony deposit would come from this paleo–oil reservoir. We used the Re–Os dating method to determine the age of the bitumen from this paleo–oil reservoir, and obtained an isochron age of 254.3±2.8 Ma. The age indicates that the oilgeneration from source rock occurred in the early Late Permian, earlier than the Sb mineralization age(~148±8.5 Ma) in the Qinglong antimony deposit area. After oil generation from Devonian source rock, first and secondary migration, the crude oil have probably entered into the fractures and pores of volcanic rocks and limestone and formed a paleo–oil reservoir in the western wing of Dachang anticline. As burial process deepened, the crude oil has turned into natural gas, migrates into the core of Dachang anticline and formed a paleo–gas reservoir. The hydrocarbons(including CH_4) in the reservoirs can serve as reducing agent to provide the sulfur required for Sb mineralization through thermal chemical reduction of sulfates. Therefore, the formation of oil–gas in the area is a prerequisite for the Sb mineralization in the Qinglong antimony deposit.  相似文献   

9.
The Wulasigou Cu-Pb-Zn deposit,located 15 km northwest of Altay city in Xinjiang,is one of many Cu-Pb-Zn polymetallic deposits in the Devonian Kelan volcanic-sedimentary basin in southern Altaids.Two mineralizing periods can be distinguished:the marine volcanic sedimentary PbZn mineralization period,and the metamorphic hydrothermal Cu mineralization period,which is further divided into an early bedded foliated quartz vein stage(Q1) and a late sulfide-quartz vein stage(Q2) crosscutting the foliation.Four types of fluid inclusions were recognized in the Q1 and Q2 quartz from the east orebodies of the Wulasigou deposit:H_2O-CO_2 inclusions,carbonic fluid inclusions,aqueous fluid inclusions,and daughter mineral-bearing fluid inclusions.Microthermometric studies show that solid CO_2 melting temperatures(T_(m,CO2)) of H_2O-CO_2 inclusions in Ql are from-62.3℃ to-58.5C,clathrate melting temperatures(T_(m,clath)l) are from 0.5 C to 7.5 C,partial homogenization temperatures(T_(h,CO2)) vary from 3.3℃ to 25.9℃(to liquid),and the total homogenization temperatures(T_(h,tot)) vary from 285℃ to 378℃,with the salinities being 4.9%-15.1%NaCl eqv.and the CO_2-phase densities being 0.50-0.86 g/cm~3.H_2O-CO_2 inclusions in Q2 have T_(m,CO_2) from-61.9℃ to-56.9℃,T_(m,clath)from 1.3℃ to 9.5℃,T_(h,CO2) from 3.4℃ to 28.7℃(to liquid),and T_(h,tot) from 242℃ to 388℃,with the salinities being 1.0%-15.5%NaCl eqv.and the CO_2-phase densities being 0.48-0.89 g/cm~3.The minimum trapping pressures of fluid inclusions in Q1 and Q2 are estimated to be 260-360 MPa and180-370 MPa,respectively.The δ~(34)S values of pyrite from the volcanic sedimentary period vary from2.3‰ to 2.8‰(CDT),and those from the sulfide-quartz veins fall in a narrow range of-1.9‰ to 2.6‰(CDT).The δD values of fluid inclusions in Q2 range from-121.0‰ to-100.8‰(SMOW),and theδ~(18)O_(H2O) values calculated from δ~(18)O of quartz range from-0.2‰ to 8.3‰(SMOW).The δD-δ~(18)O_(H2O)data are close to the magmatic and metamorphic fields.The fluid inclusion and stable isotope data documented in this study indicate that the vein-type copper mineralization in the Wulasigou Pb-Zn-Cu deposit took place in an orogenic-metamorphic enviroment.  相似文献   

10.
The Feidong district is located in the southern segment of the Tan–Lu fault zone that separates the South China Block (NCB) from the North China Craton (NCC). We report zircon U-Pb geochronology and Hf isotope data, as well as whole-rock geochemistry for Xishanyi granodiorite and Jianshan granite in the Feidong district. Zircon U-Pb dating results show that the emplacement ages of the Xishanyi and Jianshan intrusions are 124 ± 3 Ma and 130 ± 1 Ma respectively, coeval with magmatic events linked to large-scale lithospheric thinning in eastern China. The whole-rock geochemistry of the Xishanyi and Jianshan intrusions demonstrate that they are peraluminous, high potassium calc-alkaline I-type granites with adakitic characteristics. Both intrusions underwent weak crustal assimilation during emplacement. The in situ zircon εHf(t) values of the Xishanyi granodiorites range from ?26.4 to ?21.8, with TDM2 model ages of 2552 to 2841 Ma. The in situ zircon εHf(t) values of the Jianshan granite are from ?27.5 to ?23.0 with TDM2 model ages of 2632 to 2904 Ma. The peak age of inherited zircon grains from the Xishanyi granodiorite and the Jianshan granite were ~2.07 Ga and ~1.94 Ga, respectively. After compared with the regional magmatism, we suggest that both the Xishanyi and Jianshan granitoid intrusions were derived from partial melting of the NCC lower crust.  相似文献   

11.
Volcanogenic massive sulfide (VMS) deposits are one of the most important base–metal deposit types in China, are major sources of Zn, Cu, Pb, Ag, and Au, and significant sources for Co, Sn, Se, Mn, Cd, In, Bi, Te, Ga, and Ge. They typically occur at or near the seafloor in submarine volcanic environments, and are classified according to base metal content, gold content, or host-rock lithology. The spatial distribution of the deposits is determined by the different geological settings, with VMS deposits concentrated in the Sanjiang, Qilian and Altai metallogenic provinces. VMS deposits in China range in age from Archaean to Mesozoic, and have three epochs of large scale mineralization of Proterozoic, Palaeozoic and Mesozoic. Only Hongtoushan Cu–Zn deposit has been recognized so far in an Archaean greenstone belt, at the north margin of the North China Platform. The Proterozoic era was one of the important metallogenic periods for the formation of VMS mineralization, mainly in the Early and Late Proterozoic periods. VMS-type Cu–Fe and Cu–Zn deposits related to submarine volcanic-sedimentary rocks, were formed in the Aulacogens and rifts in the interior and along both sides of the North China Platform, and the southern margin of the Yangtze Platform. More than half of the VMS deposits formed in the Palaeozoic, and three important VMS–metallogenic provinces have been recognized, they are Altai–Junggar (i.e. Ashele Cu–Pb–Zn deposit), Sanjiang (i.e. Laochang Zn–Pb–Cu deposit) and Qilian (i.e. Baiyinchang Cu–Zn deposit). The Triassic is a significant tectonic and metallogenic period for China. In the Sanjiang Palaeo–Tethys, the Late Triassic Yidun arc is the latest arc–basin system, in which the Gacun-style VMS Pb–Zn–Cu–Ag deposits developed in the intra-arc rift basins, with bimodal volcanic suites at the northern segment of the arc.  相似文献   

12.
The Lanping basin, Yunnan province, SW China, is located at the juncture of the Eurasian and Indian Plates in the eastern part of the Tibetan Plateau. The Lanping basin, in the Sanjiang Tethyan metallogenic province, is a significant Cu–Ag–Zn–Pb mineralized belt in China that includes the largest sandstone‐hosted Zn–Pb deposit in the world, the Jinding deposit, as well as several Ag–Cu deposits (the Baiyangping and Jinman deposits). These deposits, with total reserves of over 16.0 Mt Pb + Zn, 0.6 Mt Cu, and 7,000 t Ag, are mainly hosted in Meso‐Cenozoic clastic rocks and are dominantly controlled by two Cenozoic thrust systems developed in the western and eastern segments of the basin. The Baiyangping, Babaoshan, and Hetaoqing ore deposits are representative of the epithermal base metal deposits in the Lanping basin. The microthermometric data show that the ore‐forming fluids for these deposits were low temperature (110–180 °C) and had bimodal distribution of salinity at moderate and mid to high salinities (approximately 2–8 wt.% and 18–26 wt.% NaCl equivalent). The C and O isotope data indicate that the ore‐forming fluids were related to hot basin brines. We present new He and Ar isotope data on volatiles released from fluid inclusions contained in sulfides and in barite in these three deposits. 3He/4He ratios of the ore‐forming fluids are 0.01 to 0.14 R/Ra with a mean of 0.07 Ra (where R is the 3He/4He ratio and Ra is the ratio for atmospheric helium). This mean value is intermediate to typical 3He/4He ratios for the crust (R/Ra = 0.01 to 0.05) and the ratio for air‐saturated water (R/Ra = 1). The mean ratio is also significantly lower than the ratios found for mantle‐derived fluids (R/Ra = 6 to 9). The 40Ar/36Ar ratios of the ore‐forming fluids range from 298 to 382 with a mean of 323. This value is slightly higher than that for the air‐saturated water (295.5). The 3He/4He ratios of fluids from the fluid inclusions imply that the ore‐forming fluid for the Baiyangping, Babaoshan, and Hetaoqing deposits was derived from the crust and that any mantle‐derived He was negligible. The content of the radiogenic Ar ranges between 0.2 to 20.4%, and the proportion of air‐derived 40Ar averages 94.1%. This indicates that atmospheric Ar was important in the formation of these deposits but that some radiogenic 40Ar was derived from crustal rocks. Based on these observations coupled with other geochemical evidence, we suggest that the ore‐forming fluids responsible for the formation of the Ag–Cu–Pb–Zn polymetallic ore deposits in the Baiyangping area of the Lanping basin were mainly derived from crustal fluids. The fluids may have mixed with some amount of air‐saturated water, but there was no significant involvement of mantle‐derived fluids.  相似文献   

13.
西藏多不杂矿集区斑岩铜矿地球化学指标研究   总被引:2,自引:0,他引:2  
多不杂矿集区位于西藏改则县北部,是近些年发现的超大型斑岩型铜矿床,在以多不杂为中心,东西长约30km,南北宽约10km的范围内,包括多不杂、波龙、色那、拿顿、拿若、尕尔勤和铁格龙7个矿区。本文在前人工作的基础上,通过对矿集区钻孔岩芯样品地球化学数据进行旋转正交因子处理和成矿元素Cu与稀土元素La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y、微量元素U、Th的相关性分析,发现轻重稀土元素均在Cu矿(化)体部位相对富集。另外微量元素U、Th(尤其是Th),与金属元素Cu含量随深度的变化也存在一定的对应关系,在Cu矿化部位相对富集。研究表明稀土元素La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y与微量元素U、Th可能是一种潜在有效的矿产勘查地球化学指标。  相似文献   

14.
四川省白玉县呷村-有热矿区成矿流体地球化学   总被引:1,自引:0,他引:1  
四川省白玉县呷村银多金属矿床是我国著名的VMS型矿床之一,该矿床由西矿带热液流体补给通道相的脉状-网脉状矿化系统和东矿带的海底盆(洼)地卤水池喷气-化学沉积系统组成。有热矿床紧邻呷村矿床的南部,实质上是呷村矿带(体)的自然南延部分,具有相同的地质背景和成矿环境。本文分别对呷村西矿带、东矿带以及有热矿床进行了主成矿期石英的流体包裹体测试和氢、氧同位素分析以及硫化物的硫同位素分析。显微测温结果显示,呷村矿床从西矿带到东矿带,即由深部向浅部表现为成矿温度下降(258.0~209.8℃),流体的盐度略变小(4.42%~4.18%NaCleqv),而流体的密度增大(0.816~0.894g/cm3),并且有热矿床成矿流体特征(平均成矿温度为244.3℃;平均盐度为4.71%NaCleqv;平均密度为0.841g/cm3)与呷村西矿带流体特征更类似。显微激光拉曼光谱分析显示流体包裹体的液相成分主要为H2O,气相成分为H2O、CO2、N2以及CH4。氢、氧同位素研究显示,成矿流体为海水和岩浆水的混合流体。硫同位素分析结果表明,呷村西矿带(δ34S平均值为-3.65‰)与呷村东矿带的硫(δ34S平均值为-0.68‰)和有热矿床(δ34S平均值为-3.74‰)的硫都由深部岩浆提供,并且有热矿床与呷村西矿带的硫同位素特征更类似。成矿流体物理化学特征和同位素示踪结果表明,有热矿床目前已知矿体可与呷村西矿带对比,暗示可能存在尚未发现的类似呷村东矿带的富矿体。呷村-有热矿区的成矿机制为:在海水对流的成矿模式下,由岩浆水和海水混合而成的成矿流体,携带来自岩浆来源的成矿物质,自下而上向上运移和循环,在热液补给通道和海底发生淀积作用,形成脉状-网脉状矿体和块状矿体。  相似文献   

15.
新泰市岳家庄金矿构造控矿特征   总被引:2,自引:0,他引:2  
新泰市岳家庄金矿区位于鲁西地区中南部的下港 -化马湾 -蒙山构造岩浆杂岩带内。该杂岩带发育在新太古代花岗岩—绿岩带中 ,并经受了韧性剪切带和多期次脆性断裂活动的改造。带内分布有燕山期脉岩、火山岩和以金为主的多金属元素组合异常 ,因此是有利的金矿成矿构造带。本文通过对岳家庄金矿区控矿构造体系的详尽分析 ,认为韧性剪切带属中温中部构造层次的压剪性韧性变形。它与雁翎关岩组的复合部位是金富集的有利部位 ,而与北西向脆性断裂叠加部位则是更为重要的控矿构造  相似文献   

16.
对尔山铜矿产于北祁连早古生代辉长岩与玄武岩的接触部位,大地构造属走廊南山岛弧带。矿石具有海绵陨铁结构,具有似岩浆熔离型矿床的成因特点,矿点处为1:5万物探异常查证时圈定的CD-3磁异常,磁异常呈面状展布,强度中等,在-644~417nT,该异常由辉长岩引起;同时在CD-3磁异常的北西方向0.5~1.2km处,圈定出的CD-1磁异常、CD-2磁异常与矿点处CD-3磁异常具有相似的特点,经推断磁异常可能与辉长岩有关。矿点东、西两侧新发现2处地质背景、矿化特征、物化探异常与此类同的镍矿(化)点;另外,在CD-1磁异常处,圈定的1:5万36号水系异常主元素为Cu异常,解释推断认为是铜矿化引起。因此,认为对尔山一带具有寻找岩浆熔离型铜镍矿的良好前景。  相似文献   

17.
在野外地质观察、室内鉴定分析的基础上,对开心岭多金属矿区地层进行了重新划分,同时对成矿地质特征及成矿机理进行了论述。矿区由4个矿段组成,共圈定铁矿体15条(含8条隐伏矿体)。其中,10条为铁矿体,5条为锌矿体。各矿体皆产于早二叠世开心岭群尕的考组火山岩中,根据岩相及岩性组合,推断该火山岩在3次喷发期内构成了6个韵律层。提出该矿床成因类型属火山喷流(VMS)型锌多金属矿床,火山岩是区内重要的找矿标志。  相似文献   

18.
茶尖岭矿区后水矿化点铜银多金属矿属于浅成热液脉型成因,通过矿床形成的热源、水源、矿源的信息标志分析了后水矿化点铜银多金属成矿条件。认为该矿化点铜银多金属成矿的热源、水源、矿源条件均较充足,指出找矿有利地段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号