首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 638 毫秒
1.
The Waulsortian Limestone (Lower Carboniferous) of the southern Irish Midlands is dolomitized pervasively over a much larger region than previous studies have documented. This study indicates a complex, multistage, multiple fluid history for regional dolomitization. Partially and completely dolomitized sections of Waulsortian Limestones are characterized by finely crystalline (0·01–0·3 mm) planar dolomite. Planar replacive dolomite is commonly followed by coarse (≥0·5 mm) nonplanar replacive dolomite, and pervasive void‐filling saddle dolomite cement is frequently associated with Zn–Pb mineralization. Planar dolomite has average δ18O and δ13C values (‰ PDB) of –4·8 and 3·9 respectively. These are lower oxygen and slightly higher carbon isotope values than averages for marine limestones in the Waulsortian (δ18O=–2·2, δ13C=3·7). Mean C and O isotope values of planar replacive dolomite are also distinct from those of nonplanar and saddle dolomite cement (–7·0 and 3·3; –7·4 and 2·4 respectively). Fluid inclusions indicate a complex history involving at least three chemically and thermally distinct fluids during dolomite cementation. The petrography and geochemistry of planar dolomites are consistent with an early diagenetic origin, possibly in equilibrium with modified Carboniferous sea water. Where the Waulsortian was exposed to hydrothermal fluids (70–280 °C), planar dolomite underwent a neomorphic recrystallization to a coarser crystalline, planar and nonplanar dolomite characterized by lower δ18O values. Void‐filling dolomite cement is isotopically similar to nonplanar, replacive dolomite and reflects a similar origin from hydrothermal fluids. This history of multiple stages of dolomitization is significantly more complex than earlier models proposed for the Irish Midlands and provides a framework upon which to test competing models of regional vs. localized fluid flow.  相似文献   

2.
The Early Jurassic dolomitized carbonates are a hydrocarbon exploration target in Northern Italy. Of these carbonates, the Liassic Albenza Formation platform and the overlying Sedrina Formation shelf were studied to define a pervasive dolomitization model and to shed light on dolomite distribution in the sub‐surface. Field work, as well as analyses of well cores, stable isotopes, trace elements and fluid inclusions, was carried out on the outcropping thrust belt and sub‐surface deformed foreland of the Southern Alps. Petrographic analyses showed a first, pervasive, replacement dolomitization phase (D1) followed by volumetrically less important dolomite cement precipitation phases (D2, D3 and D4). The δ18O values fall between ?8·2‰ and 0·1‰ Vienna‐Pee Dee Belemnite with the more depleted samples belonging to dolomite cement‐rich dolostones; the δ13C ranges from 2·6‰ to 3·7‰ Vienna‐Pee Dee Belemnite. Analysis of trace elements showed different Fe and Mn contents in the sub‐surface and outcropping dolostones, and a higher Fe in the younger dolomite cements. An increase in the precipitation temperature (up to 130 °C from fluid inclusion data) and a decrease in diagenetic fluid salinity (from sea water to brackish) are observed from the first pervasive replacement dolomite to the dolomite cement phases. Field observations indicate that, in the Albenza Formation, dolomitization was limited to palaeohighs or faulted platform margins in the Early Jurassic carbonates. The pervasive replacement phase is interpreted based on a ‘compaction model’; the formation fluids expelled from compacting basinal carbonates could have funnelled along faults into permeable palaeohighs. The high homogenization temperature of the dolomite cements and decreased salinities indicate precipitation at great depth with an influx of meteoric water. These data, along with the thermal history, suggest that the dolomite cements precipitated according to the ‘tectonic squeegee’ dolomitization model. The dolomite precipitation temperature was set against the thermal history of the carbonate platform to interpret the timing of dolomite precipitation. The dolomite precipitation temperatures (90 to 100 °C) were reached in the studied formations first in the thrust fold belt (Early Tertiary, 60 Ma), and then in the foreland succession during the Late Tertiary (10 Ma). This observation suggests that the dolomite precipitation fronts moved southwards over time, recording a ‘diagenetic wave’ linked to the migration of the orogenic system. Observations suggest that the porosity increased during the first phase of replacement dolomitization while the dolomite cementation phases partially occluded the pores. The distribution of porous dolomitized bodies is therefore linked to the ‘compaction dolomitization’ model.  相似文献   

3.
Stratabound epigenetic dolomite occurs in carbonate facies of the Barrandian basin (Silurian and Devonian), Czech Republic. The most intense dolomitization is developed in bioclastic calcarenites within the transition between micritic limestone and shaledominated Přídolí and Lochkov formations deposited on a carbonate slope. Medium-crystalline (100–400 μm), inclusion-rich, xenotopic matrix dolomite (δ 18O=−4.64 to −3.40‰ PDB;δ 13C=+1.05 to +1.85‰ PDB) which selectively replaced most of the bioclastic precursor is volumetrically the most important dolomite type. Coarse crystalline saddle dolomite (δ 18O=−8.04 to −5.14‰ PDB;δ 18C=+0.49 to +1.49 PDB) which precipitated in fractures and vugs within the matrix dolomite represents a later diagenetic dolomitization event. In some vugs, saddle dolomite coprecipitated with petroleum inclusion-rich authigenic quartz crystals and minor sulfides which, in turn, were post-dated by semisolid asphaltic bitumen. The interpretation of the dolomitization remains equivocal. Massive xenotopic dolomite, although generally characteristic of a deeper burial setting, may have been formed by a recrystallization of an earlier, possibly shallow burial dolomite. Deeper burial recrystallization by reactive basinal pore fluids that presumably migrated through the more permeable upper portion of the Přídolí sequence appears as a viable explanation for this dolomitization overprint. Saddle dolomite cement of the matrix dolomite is interpreted as the last dolomitization event that occurred during deep burial at the depth of the oil window zone. The presence of saddle dolomite, the fluid inclusion composition of associated quartz crystals, and vitrinite paleogeothermometry of adjacent sediments imply diagenetic burial temperatures as high as 160°C. Although high geothermal gradients in the past or the involvement of hydrothermally influenced basinal fluids can account for these elevated temperatures, burial heating beneath approximately 3-km-thick sedimentary overburden of presumably post-Givetian strata, no longer preserved in the basin, appears to be the most likely interpretation. This interpretaion may imply that the magnitude of post-Variscan erosion in the Barrandian area was substantially greater than previously thought.  相似文献   

4.
The Early to Middle Cambrian Red Heart Dolomite and lower Arthur Creek Formation of the southern portion of the Georgina Basin, Australia, is an entirely dolomitized succession of shallow-water evaporitic mudflat and deeper-water subtidal lithologies. Three types of dolomite have been identified and are interpreted as: (1) syndepositional dolomite; (2) regional replacement dolomite; and (3) void-filling dolomite (cement). Syndepositional dolomite, derived from saline pore fluids developed in a sabkha environment, is a minor dolomite type with very fine crystal mosaics and has a mottled, non-zoned cathodoluminescence. The widespread regional replacement dolomite ranges from fine- to medium-crystalline forming mainly planar-s and non-planar-a crystal mosaics, and displays blotchy, mottled, non-zoned cathodoluminescence. Void-filling dolomite commonly forms planar-s to planar-e, medium to very coarse crystal mosaics. Rare non-planar-c, very coarsely crystalline saddle dolomite also exists. Void-filling dolomite has a successively zoned cathodoluminescence pattern from non-, to brightly, to dully luminescent. Geochemically, the syndepositional dolomite has δ18O (PDB) values ranging between ? 5.3 and ? 8.6%o. Regional replacement dolomites exhibit a wide range of δ18O values from ? 3.3 to ? 10.9%o whereas void-filling dolomite has δ18O values ranging from ? 10.8 to ? 14.3%o. All three dolomite types have similar δ13C (PDB) values, in the range between +1.7 and ?1.7%o. Three initial dolomitization episodes are interpreted: (1) a sabkha stage, forming the syndepositional dolomite and dolomitizing the evaporitic mudflat lithologies; (2) a brine-reflux stage, replacing the subtidal lithologies; and (3) a burial stage, forming the void-filling dolomite type. Final dolomite stabilization occurred during burial, at elevated temperatures, in the presence of basinal fluids, resulting in progressive recrystallization and stabilization of the earlier-formed syndepositional and replacement dolomites. Both textural and geochemical evolution should be taken into account when studying the origin of dolomites, based on their present geochemical composition. Sulphates are represented by very fine-crystalline syndepositional anhydrite in association with the syndepositional dolomite, and coarse to very coarse anhydrite cement. Evaportic mudflat (sabkha) and burial environments are inferred for the origin of the former and the latter anhydrite types, respectively. Evaporite dissolution breccias, indicative of the former presence of evaporites, are common throughout the succession.  相似文献   

5.
Cambrian dolostone reservoirs in the Tarim Basin, China, have significant potential for future discoveries of petroleum, although exploration and production planning is hampered by limited understanding of the occurrence and distribution of dolomite in such ancient rocks buried to nearly 8 km. The study herein accessed new drill core samples which provide an opportunity to understand the dolomitization process in deep basins and its impact on Cambrian carbonate reservoirs. This study documents the origin of the dolostone reservoirs using a combination of petrology, fluid‐inclusion microthermometry, and stable and radiogenic‐isotopes of outcrop and core samples. An initial microbial dolomitization event occurred in restricted lagoon environments and is characterized by depleted δ13C values. Dolomicrite from lagoonal and sabkha facies, some fabric‐retentive dolomite and fabric‐obliterative dolomite in the peloidal shoal and reef facies show the highest δ18O values. These dolomites represent relatively early reflux dolomitization. The local occurrence of K‐feldspar in dolomicrite indicates that some radiogenic strontium was contributed via terrigenous input. Most fabric‐retentive dolomite may have precipitated from seawater at slightly elevated temperatures, suggested by petrological and isotopic data. Most fabric‐obliterative dolomite, and medium to coarse dolomite cement, formed between 90°C and 130°C from marine evaporitic brine. Saddle dolomite formed by hydrothermal dolomitization at temperatures up to 170°C, and involved the mixing of connate brines with Sr‐ enriched hydrothermal fluids. Intercrystalline, moldic, and breccia porosities are due to the early stages of dolomitization. Macroscopic, intergranular, vuggy, fracture and dissolution porosity are due to burial‐related dissolution and regional hydrothermal events. This work has shown that old (for example, Cambrian or even Precambrian) sucrosic dolomite with associated anhydrite, buried to as much as 8000 m, can still have a high potential for hosting substantial hydrocarbon resources and should be globally targeted for future exploration.  相似文献   

6.
Burial hydrothermal dolomitization is a common diagenetic modification in sedimentary basins with implications for oil and gas reservoir performance. Outcrop analogues represent an easily accessible source of data to refine the genetic models and assess risk in hydrocarbon exploration and production. The Palaeozoic succession of northern Spain contains numerous excellent exposures of epigenetically dolomitized limestones, particularly in the Carboniferous and Cambrian. The epigenetic dolomites in the Cambrian carbonates of the Láncara Formation are volumetrically small, but have a large aerial distribution across different tectonic units of the Variscan fold and thrust belt. Coarse crystals, abundant saddle dolomite cement, negative δ18O and fluid inclusion homogenization temperatures between 80°C and 120°C characterize these dolomites, which are petrographically and geochemically similar to the tens of kilometre‐sized hydrothermal dolomites replacing the Upper Carboniferous succession in the same area. In both cases, the dolomitizing fluids are derived from highly evaporated sea water, modified to a limited degree through fluid‐rock interaction. The dolomitization events affecting both Cambrian and Carboniferous strata are probably related to the same post‐orogenic hydrothermal fluid flow. The formation of the post‐collisional (latest Carboniferous) Cantabrian arc fostered dolomitization: the extension related to bending of the arc generated deep‐reaching faults and strike‐slip movements, which favoured the circulation of hot dolomitizing fluids in the outer parts of this orocline. A similar dolomitization process affected other areas of Europe after the main stages of the Variscan orogeny. Dolomitization was a continuous, uninterrupted, isochemical process. Limestone replacement resulted in a major porosity redistribution and focused the fluid flow into the newly created porous zones. Replacement was followed immediately by partial to complete cementation of the pores (including zebra fabrics and vugs) with saddle dolomite. The amount of porosity left depends on the volume of cement and therefore on the volume of fluids available.  相似文献   

7.
Magnesite forms a series of 1‐ to 15‐m‐thick beds within the ≈2·0 Ga (Palaeoproterozoic) Tulomozerskaya Formation, NW Fennoscandian Shield, Russia. Drillcore material together with natural exposures reveal that the 680‐m‐thick formation is composed of a stromatolite–dolomite–‘red bed’ sequence formed in a complex combination of shallow‐marine and non‐marine, evaporitic environments. Dolomite‐collapse breccia, stromatolitic and micritic dolostones and sparry allochemical dolostones are the principal rocks hosting the magnesite beds. All dolomite lithologies are marked by δ13C values from +7·1‰ to +11·6‰ (V‐PDB) and δ18O ranging from 17·4‰ to 26·3‰ (V‐SMOW). Magnesite occurs in different forms: finely laminated micritic; stromatolitic magnesite; and structureless micritic, crystalline and coarsely crystalline magnesite. All varieties exhibit anomalously high δ13C values ranging from +9·0‰ to +11·6‰ and δ18O values of 20·0–25·7‰. Laminated and structureless micritic magnesite forms as a secondary phase replacing dolomite during early diagenesis, and replaced dolomite before the major phase of burial. Crystalline and coarsely crystalline magnesite replacing micritic magnesite formed late in the diagenetic/metamorphic history. Magnesite apparently precipitated from sea water‐derived brine, diluted by meteoric fluids. Magnesitization was accomplished under evaporitic conditions (sabkha to playa lake environment) proposed to be similar to the Coorong or Lake Walyungup coastal playa magnesite. Magnesite and host dolostones formed in evaporative and partly restricted environments; consequently, extremely high δ13C values reflect a combined contribution from both global and local carbon reservoirs. A 13C‐rich global carbon reservoir (δ13C at around +5‰) is related to the perturbation of the carbon cycle at 2·0 Ga, whereas the local enhancement in 13C (up to +12‰) is associated with evaporative and restricted environments with high bioproductivity.  相似文献   

8.
Fault-controlled hydrothermal dolomitization in tectonically complex basins can occur at any depth and from different fluid compositions, including ‘deep-seated’, ‘crustal’ or ‘basinal’ brines. Nevertheless, many studies have failed to identify the actual source of these fluids, resulting in a gap in our knowledge on the likely source of magnesium of hydrothermal dolomitization. With development of new concepts in hydrothermal dolomitization, the study aims in particular to test the hypothesis that dolomitizing fluids were sourced from either seawater, ultramafic carbonation or a mixture between the two by utilizing the Cambrian Mount Whyte Formation as an example. Here, the large-scale dolostone bodies are fabric-destructive with a range of crystal fabrics, including euhedral replacement (RD1) and anhedral replacement (RD2). Since dolomite is cross-cut by low amplitude stylolites, dolomitization is interpreted to have occurred shortly after deposition, at a very shallow depth (<1 km). At this time, there would have been sufficient porosity in the mudstones for extensive dolomitization to occur, and the necessary high heat flows and faulting associated with Cambrian rifting to transfer hot brines into the near surface. While the δ18Owater and 87Sr/86Sr ratios values of RD1 are comparable with Cambrian seawater, RD2 shows higher values in both parameters. Therefore, although aspects of the fluid geochemistry are consistent with dolomitization from seawater, very high fluid temperature and salinity could be suggestive of mixing with another, hydrothermal fluid. The very hot temperature, positive Eu anomaly, enriched metal concentrations, and cogenetic relation with quartz could indicate that hot brines were at least partially sourced from ultramafic rocks, potentially as a result of interaction between the underlying Proterozoic serpentinites and CO2-rich fluids. This study highlights that large-scale hydrothermal dolostone bodies can form at shallow burial depths via mixing during fluid pulses, providing a potential explanation for the mass balance problem often associated with their genesis.  相似文献   

9.
The Upper Jurassic to Lower Cretaceous platform‐slope to basinal carbonate strata cropping out in Gargano Promontory (southern Italy) are partly dolomitized. Fieldwork and laboratory analyses (petrographic, petrophysical and geochemical) allowed the characterization of the dolomite bodies with respect to their distribution within the carbonate succession, their dimensions, geometries, textural variability, chemical stability, age, porosity, genetic mechanisms and relation with tectonics. The dolomite bodies range from metres to kilometres in size, are fault‐related and fracture‐related, and probably formed during the Early Cretaceous at <500 m burial depths and temperatures <50°C. The proposed dolomitization model relies on mobilization of Early Cretaceous seawater that flowed, downward and then upward, along faults and fractures and was modified in its isotopic composition moving through Triassic and Jurassic strata that underlie the studied dolomitized succession. Despite the numerous cases reported in literature, this study demonstrates that hydrothermal and/or high‐temperature fluids are not necessarily required for fault‐controlled dolomitization. Distribution and geometries of dolomite bodies can be used for palaeotectonic reconstructions, as they partly record the characteristics (size, attitude and kinematics) of the palaeo‐faults, even if not preserved, that controlled dolomitization. In Gargano Promontory, dolomites record Early Cretaceous palaeo‐faults from metres to kilometres long, striking north‐west/south‐east to east/west and characterized by normal to strike‐slip kinematics. Dolomitization increases the matrix porosity by up to 7% and, therefore, can improve the geofluid storage capacity of tight, platform‐slope to basinal limestones. The results have a great significance for characterization of geofluid (for example, hydrocarbons) reservoirs hosted in similar dolomitized carbonate successions. Distribution, size and shapes of reservoir rocks (i.e. dolomite bodies) could be broadly predictable if the characteristics of the palaeo‐fault system present at the time of dolomitization are known.  相似文献   

10.
Late Cambrian to Early Ordovician sedimentary rocks in the western Tarim Basin, Northwest China, are composed of shallow-marine platform carbonates. The Keping Uplift is located in the northwest region of this basin. On the basis of petrographic and geochemical features, four matrix replacement dolomites and one type of cement dolomite are identified. Matrix replacement dolomites include (1) micritic dolomites (MD1); (2) fine–coarse euhedral floating dolomites (MD2); (3) fine–coarse euhedral dolomites (MD3); and (4) medium–very coarse anhedral mosaic dolomites (MD4). Dolomite cement occurs in minor amounts as coarse saddle dolomite cement (CD1) that mostly fills vugs and fractures in the matrix dolomites. These matrix dolomites have δ18O values of ?9.7‰ to ?3.0‰ VPDB (Vienna Pee Dee Belemnite); δ13C values of ?0.8‰ to 3.5‰ VPDB; 87Sr/86Sr ratios of 0.708516 to 0.709643; Sr concentrations of 50 to 257 ppm; Fe contents of 425 to 16878 ppm; and Mn contents of 28 to 144 ppm. Petrographic and geochemical data suggest that the matrix replacement dolomites were likely formed by normal and evaporative seawater in early stages prior to chemical compaction at shallow burial depths. Compared with matrix dolomites, dolomite cement yields lower δ18O values (?12.9‰ to ?9.1‰ VPDB); slightly lower δ13C values (?1.6‰–0.6‰ VPDB); higher 87Sr/86Sr ratios (0.709165–0.709764); and high homogenization temperature (Th) values (98°C–225°C) and salinities (6 wt%–24 wt% NaCl equivalent). Limited data from dolomite cement shows a low Sr concentration (58.6 ppm) and high Fe and Mn contents (1233 and 1250 ppm, respectively). These data imply that the dolomite cement precipitated from higher temperature hydrothermal salinity fluids. These fluids could be related to widespread igneous activities in the Tarim Basin occurring during Permian time when the host dolostones were deeply buried. Faults likely acted as important conduits that channeled dolomitizing fluids from the underlying strata into the basal carbonates, leading to intense dolomitization. Therefore, dolomitization, in the Keping Uplift area is likely related to evaporated seawater via seepage reflux in addition to burial processes and hydrothermal fluids.  相似文献   

11.
Pervasive dolomites occur preferentially in the stromatoporoid biostromal (or reefal) facies in the basal Devonian (Givetian) carbonate rocks in the Guilin area, South China. The amount of dolomites, however, decreases sharply in the overlying Frasnian carbonate rocks. Dolostones are dominated by replacement dolomites with minor dolomite cements. Replacement dolomites include: (1) fine to medium, planar‐e floating dolomite rhombs (Rd1); (2) medium to coarse, planar‐s patchy/mosaic dolomites (Rd2); and (3) medium to very coarse non‐planar anhedral mosaic dolomites (Rd3). They post‐date early submarine cements and overlap with stylolites. Two types of dolomite cements were identified: planar coarse euhedral dolomite cements (Cd1) and non‐planar (saddle) dolomite cements (Cd2); they post‐date replacement dolomites and predate late‐stage calcite cements that line mouldic vugs and fractures. The replacement dolomites have δ18O values from ?13·7 to ?9·7‰ VPDB, δ13C values from ?2·7 to + 1·5‰ VPDB and 87Sr/86Sr ratios from 0·7082 to 0·7114. Fluid inclusion data of Rd3 dolomites yield homogenization temperatures (Th) of 136–149 °C and salinities of 7·2–11·2 wt% NaCl equivalent. These data suggest that the replacive dolomitization could have occurred from slightly modified sea water and/or saline basinal fluids at relatively high temperatures, probably related to hydrothermal activities during the latest Givetian–middle Fammenian and Early Carboniferous times. Compared with replacement dolomites, Cd2 cements yield lower δ18O values (?14·2 to ?9·3‰ VPDB), lower δ13C values (?3·0 to ?0·7‰ VPDB), higher 87Sr/86Sr ratios (≈ 0·7100) and higher Th values (171–209 °C), which correspond to trapping temperatures (Tr) between 260 and 300 °C after pressure corrections. These data suggest that the dolomite cements precipitated from higher temperature hydrothermal fluids, derived from underlying siliciclastic deposits, and were associated with more intense hydrothermal events during Permian–Early Triassic time, when the host dolostones were deeply buried. The petrographic similarities between some replacement dolomites and Cd2 dolomite cements and the partial overlap in 87Sr/86Sr and δ18O values suggest neomorphism of early formed replacement dolomites that were exposed to later dolomitizing fluids. However, the dolomitization was finally stopped through invasion of meteoric water as a result of basin uplift induced by the Indosinian Orogeny from the early Middle Triassic, as indicated by the decrease in salinities in the dolomite cements in veins (5·1–0·4 wt% NaCl equivalent). Calcite cements generally yield the lowest δ18O values (?18·5 to ?14·3‰ VPDB), variable δ13C values (?11·3 to ?1·2‰ VPDB) and high Th values (145–170 °C) and low salinities (0–0·2 wt% NaCl equivalent), indicating an origin of high‐temperature, dilute fluids recharged by meteoric water in the course of basin uplift during the Indosinian Orogeny. Faults were probably important conduits that channelled dolomitizing fluids from the deeply buried siliciclastic sediments into the basal carbonates, leading to intense dolomitization (i.e. Rd3, Cd1 and Cd2).  相似文献   

12.
《Sedimentary Geology》2006,183(3-4):181-202
Kita-daito-jima is a carbonate island located at the northwestern region of the Philippine Sea (25°55.6′–57.6′N, 131°16.9′–19.8′E). Dolomites extend from the island surface to a depth of 100 m below the ground surface (mbgs). Strontium isotope stratigraphy indicates that subsurface Units C1 (0–49.7 mbgs) and C2 (49.7–103.4 mbgs) were dolomitized at 5.5 Ma and 2.0 Ma, respectively, and that island-surface dolomites are products of dolomitization at 1.6–2.0 Ma. X-ray diffraction analysis indicates that the island-surface and borehole dolomites comprise variable mixtures of four and three dolomite crystal phases, respectively. Each of these phases is distinguished by a different Ca and Mg content. Three textural types can be recognized in the Kita-daito-jima dolomites, fabric-preserving crystalline nonmimetic (CNM), crystalline mimetic (CM), and fabric-preserving microsucrosic (MS). CNM dolomites contain more calcian phases, whereas MS dolomites commonly are richer in more stoichiometric phases. Backscattered electron images indicate that calcian dolomite phases were precipitated earlier than the more stoichiometric dolomite phases and that there is no significant hiatus between the phases, although they are diachronous. Both the island surface and borehole cores dolomites show linear relationships between whole-rock δ18O composition and Mg contents and between whole-rock trace element concentrations (Sr and Na) and Mg contents. These covariances result from phase mixing, not stoichiometric effects. Deconvolution of whole-rock isotopic and elemental compositions based on the relative abundance of phases reveals that each phase has a distinct chemical and isotopic composition. Oxygen isotopic compositions of the island surface and borehole dolomites suggest that all dolomite phases formed in seawater and that dolomitization primarily occurred during glacio-eustatic sea-level lowstands and cooler ocean temperatures.  相似文献   

13.
Hydrothermal mineral assemblages and related hydrothermally enhanced fracturing are common in the Precambrian Dengying Formation of Central Sichuan Basin. Petrographic and geochemical analyses of core samples show that the hydrothermal dolomite reservoirs of Dengying Formation consist of four main types of pores in the reservoir facies. These include: 1) hydrothermal dissolution vug(or pore), 2) intercrystalline pore, 3) residual inter-breccia vug(or pore), and 4) enlarged dissolved-fracture. There are three different fabrics dolomite in hydrothermal dolomite reservoirs, namely, saddle dolomite, fine-medium dolomite and micritic dolomite. Micritic dolomite is the original lithology of host rock. Saddle dolomite with curved or irregular crystal faces was directly crystallized from hydrothermal fluids(average temperature 192°C). Fine-medium dolomites are the products of recrystallization of micritic dolomite, resulting in abnormal geochemical characteristics, such as slight depletion of δ18O, significant enrichment of Mn-Fe and 87Sr/86Sr, and positive Eu anomaly. A model for the distribution of various hydrothermal dolomite reservoir facies is proposed here, which incorporates three fundamental geological controls: 1) extensional tectonics and tectono-hydrothermal events(i.e., the Xingkai Taphrogenesis of Late Sinian-Early Cambrian, and Emei Taphrogenesis of Late Permian), 2) hydrothermal fluid storage in clastic rocks with large thickness(e.g., Nanhua System of Chengjiang Formation and part of Doushantuo Formation), and 3) confining bed for hydrothermal fluids(such as, the shale in Qiongzhusi Formation). The supply of hydrothermal fluid is critical. Large basement-rooted faults and associated grid-like fracture system may function as the channels for upward migration of hydrothermal fluid flow. The intersection of the above-mentioned faults(including the conversion fault), especially transtensional sags above negative flower structures on wrench faults can serve as a key target for future hydrocarbon exploration.  相似文献   

14.
Widespread dolomitization and leaching occur in the Asbian to Brigantian (Dinantian) sequence of the Bowland Basin. Within this mudrock-dominated succession, dolomite is developed in calcarenites and limestone breccia/conglomerates deposited in a carbonate slope environment (Pendleside Limestone) and also within graded quartz wackes deposited by density currents in a generally ‘starved’ basin environment (Pendleside Sandstone). The dolomitized intervals range in thickness from less than one metre to several tens of metres and have a stratabound nature. All stages of calcite cement pre-date dolomitization and calcite veins are dolomitized. Dolomite crystals replace neomorphic spar and may also contain insoluble residues that were concentrated along stylolites. Thus dolomitization was a late stage process within the carbonate diagenetic sequence. A late-stage diagenetic origin is also indicated within the sandstones, with dolomite post-dating the development of quartz overgrowths. Six main textural styles of dolomite are observed: (1) scattered; (2) mosaic; (3) subhedral to euhedral rhombic; (4) microcrystalline; (5) single crystal and (6) saddle. The style of dolomite developed is dependent on the host rock mineralogy, on whether it is space-filling or replacive and also on temperature. Chemically the dolomite varies from near stoichiometric compositions to ankeritic varieties containing up to 20 mole % FeCO3. Generally the dolomites have isotopic compositions depleted in δ18O compared to the host limestone, with similar or lighter δ13C values. Initial dolomite was of the scattered type, but with progressive replacement of the host a mosaic dolostone with a sucrosic texture was produced. There was a general increase in the Fe and Mn content and reduction in δ18O ratio of the crystals during dolomitization. Leaching is restricted to partly dolomitized horizons, where calcite, feldspars, micas, clays and, to some extent, dolomite have been leached. This has produced biomouldic and vuggy secondary porosity within the carbonates, whereas in the sandstones honeycombed, corroded and floating grains associated with oversized pores occur. Porosity within both carbonates and sandstones is reduced by ferroan dolomite/ankerite cements. Field, petrographic and chemical characteristics indicate that dolomitizing solutions were predominantly derived from the enclosing mudrocks (Bowland Shales) during intermediate/deep burial. Fluid migration out of the mudrocks would have been sided by dehydration reactions and overpressure, the fluids migrating along the most permeable horizons—the coarse grained carbonates and sandstones that are now dolomitized and contain secondary porosity.  相似文献   

15.
Peritidal carbonates of the Lower Jurassic (Liassic) Gibraltar Limestone Formation, which form the main mass of the Rock of Gibraltar, are replaced by fine and medium crystalline dolomites. Replacement occurs as massive bedded or laminated dolomites in the lower 100 m of an ≈460‐m‐thick platform succession. The fine crystalline dolomite has δ18Ο values either similar to, or slightly higher than, those expected from Early Jurassic marine dolomite, and δ13C values together with 87Sr/86Sr ratios that overlap with sea‐water values for that time, indicating that the dolomitizing fluid was Early Jurassic sea water. Absence of massive evaporitic minerals and/or evaporite solution‐collapse breccias in these carbonate rocks indicates that the salinity of sea water during dolomitization was below that of gypsum precipitation. The occurrence of peritidal facies, a restricted microbiota and rare gypsum pseudomorphs are also consistent with penesaline conditions (salinity 72–199‰). The medium crystalline dolomite has some δ18Ο and δ13C values and 87Sr/86Sr ratios similar to those of Early Jurassic marine dolomites, which indicates that ambient sea water was again a likely dolomitizing fluid. However, the spread of δ18Ο, δ13C and 87Sr/86Sr values indicates that dolomitization occurred at slightly increased temperatures as a result of shallow (≈500 m) burial or that dolomitization was multistage. These data support the hypothesis that penesaline sea water can produce massive dolomitization in thick peritidal carbonates in the absence of evaporite precipitation. Taking earlier models into consideration, it appears that replacement dolomites can be produced by sea water or modified sea water with a wide range of salinities (normal, penesaline to hypersaline), provided that there is a driving mechanism for fluid migration. The Gibraltar dolomites confirm other reports of significant Early Jurassic dolomitization in the western Tethys carbonate platforms.  相似文献   

16.
In an effort to constrain the mechanism of dolomitization in Neogene dolomites in the Bahamas and improve understanding of the use of chemostratigraphic tracers in shallow‐water carbonate sediments the δ34S, Δ47, δ13C, δ18O, δ44/40Ca and δ26Mg values and Sr concentrations have been measured in dolomitized intervals from the Clino core, drilled on the margin of Great Bahama Bank and two other cores (Unda and San Salvador) in the Bahamas. The Unda and San Salvador cores have massively dolomitized intervals that have carbonate associated sulphate δ34S values similar to those found in contemporaneous seawater and δ44/40Ca, δ26Mg values, Sr contents and Δ47 temperatures (25 to 30°C) indicating relatively shallow dolomitization in a fluid‐buffered system. In contrast, dolomitized intervals in the Clino core have elevated values of carbonate associated sulphate δ34S values indicating dolomitization in a more sediment‐buffered diagenetic system where bacterial sulphate reduction enriches the residual in 34S, consistent with high sediment Sr concentrations and low δ44/40Ca and high δ26Mg values. Only dolomites associated with hardgrounds in the Clino core have carbonate associated δ34S values similar to seawater, indicating continuous flushing of the upper layers of the sediment by seawater during sedimentary hiatuses. This interpretation is supported by changes to more positive δ44/40Ca values at hardground surfaces. All dolomites, whether they formed in an open fluid‐buffered or closed sediment‐buffered diagenetic system have similar δ26Mg values suggesting that the HMC transformed to dolomite. The clumped isotope derived temperatures in the dolomitized intervals in Clino yield temperatures that are higher than normal, possibly indicating a kinetic isotope effect on dolomite Δ47 values associated with carbonate formation through bacterial sulphate reduction. The findings of this study highlight the utility of applying multiple geochemical proxies to disentangle the diagenetic history of shallow‐water carbonate sediments and caution against simple interpretations of stratigraphic variability in these geochemical proxies as indicating changes in the global geochemical cycling of these elements in seawater.  相似文献   

17.
Abstract Interpretation of seepage reflux dolomitization is commonly restricted to intervals containing evaporites even though several workers have modelled reflux of mesosaline brines. This study looked at the partially dolomitized forereef facies of the Capitan Formation to test the extent of reflux dolomitization and evaluate the possible role of the near‐backreef mesosaline carbonate lagoon as an alternative source of dolomitizing fluids. The Capitan Formation forereef facies ranges from 10% to 90% dolomite. Most of the dolomite is fabric preserving and formed during early burial after marine cementation, before and/or during evaporite cementation and before stylolitization. Within the forereef facies, dolomite follows depositional units, with debris‐flow and grain‐flow deposits the most dolomitized and turbidity‐current deposits the least. The amount of dolomite increases with stratigraphic age and decreases downslope. Within the reef facies, dolomite is restricted to haloes around fractures and primary cavities except where the reef facies lacks marine cements and, in contrast, is completely dolomitized. This dolomite distribution supports dolomitization by sinking fluids. Oxygen isotopic values for fabric‐preserving dolomite (δ18O = 0·9 ± 1·0‰, N = 101) support dolomitization by sea water to isotopically enriched sea water. These values are closer to the near‐backreef dolomite (δ18O = 2·1 ± 0·7‰, N = 48) than the hypersaline backreef dolomite (δ18O = 3·6 ± 0·9‰, N = 11). Therefore, the fabric‐preserving dolomite is consistent with dolomitization during seepage reflux of mainly mesosaline brines derived from the near‐backreef carbonate lagoon. The occurrence of mesosaline brine reflux in the Capitan Formation has important implications for dolomitization in forereef facies and elsewhere. First, any area with a restricted carbonate lagoon may be dolomitized by refluxing brines even if there are no evaporite facies present. Secondly, such brines may travel significant distances vertically provided permeable pathways (such as fractures) are present. Therefore, the absence of immediately overlying evaporite or restricted facies is not sufficient cause to eliminate reflux dolomitization from consideration.  相似文献   

18.
Calcitized Jurassic dolostones from central Mount Lebanon (Kesrouane Formation) are discussed utilizing petrographic, mineralogical and geochemical data. In particular, two sequential extraction methods for both major/trace elements and stable isotope analyses provide results that support and refine conventional bulk analyses data. The new data demonstrate that the major dedolomitization phase of the investigated Jurassic carbonates occurred as a result of the migration of karst‐related meteoric waters (characterized by soil‐derived carbon, and estimated δ18OV‐SMOW composition between ?7·2‰ and ?3·4‰) into previously dolomitized horizons within the limestone rock, during the final uplift and emergence of Mount Lebanon, after Palaeogene time. The study demonstrates that, in this case, the mechanisms of dedolomitization and their resulting fabrics are controlled primarily by the texture of the original dolomite rock. Pervasively dolomitized rocks, where the micritic matrix is entirely dolomitized, show calcitization mainly through dissolution/precipitation. By contrast, the rock textures that still include a considerable amount of limey micritic matrix – spared from dolomitization – are more prone to mole per mole and mimic replacement of the dolomite crystals by calcite.  相似文献   

19.
The Dongmozhazhua deposit, the largest Pb–Zn deposit in south Qinghai, China, is stratabound, carbonate‐hosted and associated with epigenetic dolomitization and silicification of Lower–Middle Permian—Upper Triassic limestones in the hanging walls of a Cenozoic thrust fault system. The mineralization is localized in a Cenozoic thrust‐folded belt along the northeastern edge of the Tibetan plateau, which was formed due to the India–Asia plate collision during the early Tertiary. The deposit comprises 16 orebodies with variable thicknesses (1.5–26.3 m) and lengths (160–1820 m). The ores occur as dissemination, vein, and breccia cement. The main sulfide assemblage is sphalerite + galena + pyrite + marcasite ± chalcopyrite ± tetrahedrite, and gangue minerals consist mainly of calcite, dolomite, barite, and quartz. Samples of pre‐ to post‐ore stages calcite yielded δ13C and δ18O values that are, respectively, similar to and lower than those yielded by the host limestones, suggesting that the calcite formed from fluids derived from carbonate dissolution. Fluid inclusions in calcite and sphalerite in the polymetallic sulfidization stage mostly comprise liquid and gas phases at room temperature, with moderate homogenization temperatures (100–140°C) and high salinities (21–28 wt% NaCl eq.). Micro‐thermometric fluid inclusion data point to polysaline brines as ore‐forming fluids. The δD and δ18O values of ore fluids, cation compositions of fluid inclusions, and geological information suggest two main possible fluid sources, namely basinal brines and evaporated seawater. The fluid inclusion data and regional geology suggest that basinal brines derived from Tertiary basins located southeast of the Dongmozhazhua deposit migrated along deep detachment zones of the regional thrust system, leached substantial base metals from country rocks, and finally ascended along thrust faults at Dongmozhazhua. There, the base‐metal‐rich basinal brines mixed with bacterially‐reduced H2S‐bearing fluids derived from evaporated seawater preserved in the Permo–Triassic carbonate strata. The mixing of the two fluids resulted in Pb–Zn mineralization. The Dongmozhazhua Pb–Zn deposit has many characteristics that are similar to MVT Pb–Zn deposits worldwide.  相似文献   

20.
Dolomites occur extensively in Cambrian to Lower Ordovician carbonates in the Tienshan orogen of the Quruqtagh area, north‐east Tarim Basin, where thick (up to 1 km), dark grey lenticular limestones of semi‐pelagic to pelagic origin are prominent. The dolomites generally occur as beige, anastomosed geobodies that cross‐cut well‐stratified limestones. Based on detailed field investigations and petrographic examination, three types of matrix dolomite are identified: fine crystalline planar‐e (Md1), fine to medium crystalline planar‐s (e) (Md2) and fine to coarse crystalline non‐planar‐a (Md3) dolomites. One type of cement dolomite, the non‐planar saddle dolomite (Cd), is also common. The preferential occurrence of Md1 along low‐amplitude stylolites points to a causal link to pressure dissolution by which minor Mg ions were probably released for replacive dolomitization during shallow burial compaction. Type Md2, Md3 and Cd dolomites, commonly co‐occurring within the fractured zones, have large overlaps in isotopic composition with that of host limestone, implying that dolomitizing fluids inherited their composition from remnant pore fluids or were buffered by the formation water of host limestones through water–rock interaction. However, the lower δ18O and higher 87Sr/86Sr ratios of these dolomites also suggest more intense fluid–rock interaction at elevated temperature and inputs of Mg and radiogenic Sr from the host limestones with more argillaceous matter and possibly underlying Neoproterozoic siliciclastic strata. Secondary tensional faults and fractures within a compressional tectonic regime were probably important conduits through which higher‐temperature Mg‐rich fluids that had been expelled from depth were driven by enhanced tectonic compression and heating during block overthrusting, forming irregular networks of dolomitized bodies enclosed within the host limestones. This scenario probably took place during the Late Hercynian orogeny, as the Tarim block collided with Tienshan island arc system to the north and north‐east. Subsequent downward recharges of meteoric fluids into the dolomitizing aquifer probably terminated dolomitization as a result of final closure of the South Tienshan Ocean (or Palaeo‐Asian Ocean) and significant tectonic uplift of the Tienshan orogen. This study demonstrates the constructive role of notably tensional (or transtensional) faulting/fracturing in channelling fluids upward as a result of intense tectonic compression and heating along overthrust planes on the convergent plate margin; however, a relatively short‐lived, low fluid flux may have limited the dolomitization exclusively within the fractured/faulted limestones in the overthrust sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号