首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pressure-corrected hourly counting rate data of four neutron monitor stations have been employed to study the variation of cosmic ray diurnal anisotropy for a period of about 50 years (1955–2003). These neutron monitors, at Oulu ( R c = 0.78 GV), Deep River ( R c = 1.07 GV), Climax ( R c = 2.99 GV), and Huancayo ( R c = 12.91 GV) are well distributed on the earth over different latitudes and their data have been analyzed. The amplitude of the diurnal anisotropy varies with a period of one solar cycle (∼11 years), while the phase varies with a period of two solar cycles (∼22 years). In addition to its variation on year-to-year basis, the average diurnal amplitude and phase has also been calculated by grouping the days for each solar cycle, viz. 19, 20, 21, 22, and 23. As a result of these groupings over solar cycles, no significant change in the diurnal vectors (amplitude as well as phase) from one cycle to other has been observed. Data were analyzed by arranging them into groups on the basis of the polarity of the solar polar magnetic field and consequently on the basis of polarity states of the heliosphere ( A > 0 and A < 0). Difference in time of maximum of diurnal anisotropy (shift to earlier hours) is observed during A < 0 (1970s, 1990s) polarity states as compared to anisotropy observed during A > 0 (1960s, 1980s). This shift in phase of diurnal anisotropy appears to be related to change in preferential entry of cosmic ray particles (via the helioequatorial plane or via solar poles) into the heliosphere due to switch of the heliosphere from one physical/magnetic state to another following the solar polar field reversal.  相似文献   

2.
In this work the galactic cosmic ray modulation in relation to solar activity indices and heliospheric parameters during the years 1996??C?2010 covering solar cycle 23 and the solar minimum between cycles 23 and 24 is studied. A new perspective of this contribution is that cosmic ray data with a rigidity of 10 GV at the top of the atmosphere obtained from many ground-based neutron monitors were used. The proposed empirical relation gave much better results than those in previous works concerning the hysteresis effect. The proposed models obtained from a combination of solar activity indices and heliospheric parameters give a standard deviation <?10?% for all the cases. The correlation coefficient between the cosmic ray variations of 10?GV and the sunspot number reached a value of r=?0.89 with a time lag of 13.6±0.4 months. The best reproduction of the cosmic ray intensity is obtained by taking into account solar and interplanetary indices such as sunspot number, interplanetary magnetic field, CME index, and heliospheric current sheet tilt. The standard deviation between the observed and calculated values is about 7.15?% for all of solar cycle 23; it also works very well during the different phases of the cycle. Moreover, the use of the cosmic ray intensity of 10?GV during the long minimum period between cycles 23 and 24 is of special interest and is discussed in terms of cosmic ray intensity modulation.  相似文献   

3.
Intensity variation of cosmic rays near the heliospheric current sheet   总被引:1,自引:0,他引:1  
Cosmic ray intensity variations near the heliospheric current sheet—both above and below it—have been studied during 1964–1976. Superposed epoch analysis of the cosmic ray neutron monitor data with respect to sector boundaries (i.e., heliospheric current sheet crossings) has been performed. In this analysis we have used the data from neutron monitors well distributed in latitude over the Earth's surface. First, this study has been made during the two solar activity minimum periods 1964–1965 and 1975–1976, using the data from Thule (cut-off rigidity 0 GV), Deep River (cut-off rigidity 1.02 GV), Rome (cut-off rigidity 6.32 GV) and Huancayo (cut-off rigidity 13.45 GV) neutron monitors. We have also analyzed the data from Deep River, Rome and Huancayo neutron monitors, for whom we have the data for full period (1964–1976), by dividing the periods according to the changes in solar activity, interplanetary magnetic field polarity and coronal holes. All these studies have shown a negative gradient with respect to heliomagnetic latitude (current sheet). These results have been discussed in the light of theoretical and observational evidences. Suggestions have been given to overcome the discrepancy between the observational and theoretical results. Further, possible explanations for these observational results have been suggested.  相似文献   

4.
The pressure corrected hourly data from the global network of cosmic ray detectors, measurements of the interplanetary magnetic field (IMF) intensity (B) at Earth’s orbit and its components B x , B y , B z (in the geocentric solar ecliptic coordinates) are used to conduct a comprehensive study of the galactic cosmic ray (GCR) intensity fluctuations caused by the halo coronal mass ejection of 13 May 2005. Distinct differences exist in GCR timelines recorded by neutron monitors (NMs) and multidirectional muon telescopes (MTs), the latter respond to the high rigidity portion of the GCR differential rigidity spectrum. The Forbush decrease (FD) onset in MTs is delayed (~5 h) with respect to the onset of a geomagnetic storm sudden commencement (SSC) and a large pre-increase is present in MT data before, during, and after the SSC onset, of unknown origin. The rigidity spectrum, for a range of GCR rigidities (≤200 GV), is a power law in rigidity (R) with a negative exponent (γ=?1.05) at GCR minimum intensity, leading us to infer that the quasi-linear theory of modulation is inconsistent with observations at high rigidities (>1 GV); the results support the force field theory of modulation. At present, we do not have a comprehensive model for the FD explaining quantitatively all the observational features but we present a preliminary model listing physical processes that may contribute to a FD timeline. We explored the connections between different phases of the FD and the power spectra of IMF components but did not find a sustained relationship.  相似文献   

5.
We study the temporal evolution of cosmic ray intensity during ~27-day Carrington rotation periods applying the method of superposed epoch analysis. We discuss about the average oscillations in the galactic cosmic ray intensity, as observed by ground based neutron monitors, during the course of Carrington rotation in low solar activity conditions and in different polarity states of the heliosphere (A<0 and A>0). During minimum and decreasing phases in low solar activity conditions, we compare the oscillation in one polarity state with that observed in other polarity state in similar phases of solar activity. We find difference in the evolution and amplitude of ~27-day variation during A<0 and A>0 epoch. We also compare the average variations in cosmic ray intensity with the simultaneous variations of solar wind parameters such as solar wind speed and interplanetary magnetic field strength. From the correlation analysis between the cosmic ray intensity and the solar wind speed during the course of Carrington rotation, we find that the correlation is stronger for A>0 than A<0.  相似文献   

6.
We formulate the modulation of galactic anisotropy of cosmic rays caused by their orbital deflection in the heliomagnetosphere. According to the formulation, the average sidereal i-th harmonic daily variation (i = 1,2,…) produced from the anisotropy from an arbitrary direction can be expressed by a linear combination of three basic vectors for uni-directional anisotropy and five basic vectors for bi-directional anisotropy. These vectors are obtained by calculating trajectories of cosmic rays (20?104GV) in a model magnetosphere having Parker's Archimedian spiral structure with a flat or a wavy neutral sheet in either of two polarity states, one is called “Positive” state (away field in the northern space of the neutral sheet and toward field in the southern space) and the other is called “Negative” state (reversed state of the above). Among general characteristics of the sidereal daily variations, the most remarkable features are: (1) The observable variations in low rigidity (? 2000 GV) can be produced even from an uni-directional anisotropy in the direction of the Earth's rotation axis. These variations are strongly dependent on the polarity state, i.e., they are greater in the Positive state than in the Negative. (2) Those produced from the anisotropy in the Equatorial plane also show the polarity dependence but contrary to the previous case they are greater in the Negative state than in the Positive. Their magnitude in the former state is not so small even in the extremely low rigidity (~ 100 GV) as compared with that in high rigidity region. (3) These general characteristics are not altered by the introduction of the wavy neutral sheet or the magnetic irregularities, but the variations are affected more or less, depending on the heliolatitudinal extent of the wavy sheet or the degree of cosmic ray scattering with the irregularities, (4) Sidereal daily variation for the wavy sheet shows a toward-away field dependence similar to that of Swinson-type of solar origin, but the dependence is predominant in intermediate rigidity region (~ 500 GV), in marked contrast to that of solar origin. (5) Finally, whichever its direction may be, the uni-directional anisotropy produces the sidereal diurnal variation common to two conjugate stations in the Northern and Southern hemisphere. If there is any difference between the observed variations at the stations, it should be interpreted as being due to higher order anisotropy such as the bi-directional anisotropy.  相似文献   

7.
We study solar modulation of galactic cosmic rays (GCRs) during the deep solar minimum, including the declining phase, of solar cycle 23 and compare the results of this unusual period with the results obtained during similar phases of the previous solar cycles 20, 21, and 22. These periods consist of two epochs each of negative and positive polarities of the heliospheric magnetic field from the north polar region of the Sun. In addition to cosmic-ray data, we utilize simultaneous solar and interplanetary plasma/field data including the tilt angle of the heliospheric current sheet. We study the relation between simultaneous variations in cosmic ray intensity and solar/interplanetary parameters during the declining and the minimum phases of cycle 23. We compare these relations with those obtained for the same phases in the three previous solar cycles. We observe certain peculiar features in cosmic ray modulation during the minimum of solar cycle 23 including the record high GCR intensity. We find, during this unusual minimum, that the correlation of GCR intensity is poor with sunspot number (correlation coefficient R=?0.41), better with interplanetary magnetic field (R=?0.66), still better with solar wind velocity (R=?0.80) and much better with the tilt angle of the heliospheric current sheet (R=?0.92). In our view, it is not the diffusion or the drift alone, but the solar wind convection that is the most likely additional effect responsible for the record high GCR intensity observed during the deep minimum of solar cycle 23.  相似文献   

8.
Influence of cosmic ray pressure and kinetic stream instability on space plasma dynamics and magnetic structure are considered. It is shown that in the outer Heliosphere are important dynamics effects of galactic cosmic ray pressure on solar wind and interplanetary shock wave propagation as well as on the formation of terminal shock wave of the Heliosphere and subsonic region between Heliosphere and interstellar medium. Kinetic stream instability effects are important on distances more than 40–60 AU from the Sun: formation of great anisotropy of galactic cosmic rays in about spiral interplanetary magnetic field leads to the Alfven turbulence generation by non isotropic cosmic ray fluxes. Generated Alfven turbulence influences on cosmic ray propagation, increases the cosmic ray modulation, decreases the cosmic ray anisotropy and increases the cosmic ray pressure gradient in the outer Heliosphere (the later is also important for terminal shock wave formation). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
We study the relationship of the 27-day variations of the galactic cosmic ray intensity with similar variations of the solar wind velocity and the interplanetary magnetic field based on observational data for the Bartels rotation period # 2379 of 23 November 2007 – 19 December 2007. We develop a three-dimensional (3-D) model of the 27-day variation of galactic cosmic ray intensity based on the heliolongitudinally dependent solar wind velocity. A consistent, divergence-free interplanetary magnetic field is derived by solving Maxwell’s equations with a heliolongitudinally dependent 27-day variation of the solar wind velocity reproducing in situ observations. We consider two types of 3-D models of the 27-day variation of galactic cosmic ray intensity, i) with a plane heliospheric neutral sheet, and ii) with the sector structure of the interplanetary magnetic field. The theoretical calculations show that the sector structure does not significantly influence the 27-day variation of galactic cosmic ray intensity, as had been shown before, based on observational data. Furthermore, good agreement is found between the time profiles of the theoretically expected and experimentally obtained first harmonic waves of the 27-day variation of the galactic cosmic ray intensity (with a correlation coefficient of 0.98±0.02). The expected 27-day variation of the galactic cosmic ray intensity is inversely correlated with the modulation parameter ζ (with a correlation coefficient of −0.91±0.05), which is proportional to the product of the solar wind velocity V and the strength of the interplanetary magnetic field B (ζ∼VB). The high anticorrelation between these quantities indicates that the predicted 27-day variation of the galactic cosmic ray intensity mainly is caused by this basic modulation effect.  相似文献   

10.
S. Y. Oh  Y. Yi  J. W. Bieber 《Solar physics》2010,262(1):199-212
The diurnal variation of the galactic cosmic ray (GCR) count rates measured by a ground-based neutron monitor (NM) station represents an anisotropic flow of GCR at 1 AU. The variation of the local time of GCR maximum intensity (we call the phase) is thought in general to have a period of two sunspot cycles (22 years). However, other interpretations are also possible. In order to determine the cyclic behavior of GCR anisotropic variation more precisely, we have carried out a statistical study on the diurnal variation of the phase. We examined 54-year data of Huancayo (Haleakala), 40-year data from Rome, and 43-year data from Oulu NM stations using the ‘pile-up’ method and the F-test. We found that the phase variation has two components: of 22-year and 11-year cycles. All NM stations show mainly the 22-year phase variation controlled by the drift effect due to solar polar magnetic field reversal, regardless of their latitudinal location (cut-off rigidity). However, the lower the NM station latitude is (the higher the cut-off rigidity is), the higher is the contribution from the 11-year phase variation controlled by the diffusion effect due to the change in strength of the interplanetary magnetic fields associated with the sunspot cycle.  相似文献   

11.
The diurnal variation of cosmic ray intensity, based on the records of two neutron monitor stations at Athens (Greece) and Oulu (Finland) for the time period 2001 to 2014, is studied. This period covers the maximum and the descending phase of the solar cycle 23, the minimum of the solar cycles 23/24 and the ascending phase of the solar cycle 24.These two stations differ in their geographic latitude and magnetic threshold rigidity. The amplitude and phase of the diurnal anisotropy vectors have been calculated on annual and monthly basis.From our analysis it is resulted that there is a different behaviour in the characteristics of the diurnal anisotropy during the different phases of the solar cycle, depended on the solar magnetic field polarity, but also during extreme events of solar activity, such as Ground Level Enhancements and cosmic ray events, such as Forbush decreases and magnetospheric events. These results may be useful to Space Weather forecasting and especially to Biomagnetic studies.  相似文献   

12.
Long-term variations of galactic cosmic rays were compared with the behavior of various solar activity indices and heliospheric parameters during the current solar cycle. This study continues previous works where the cosmic-ray intensity for the solar cycles 20, 21, and 22 was well simulated from the linear combination of the sunspot number, the number of grouped solar flares, and the geomagnetic index A p. The application of this model to the current solar cycle characterized by many peculiarities and extreme solar events led us to study more empirical relations between solar-heliospheric variables, such as the interplanetary magnetic field, coronal mass ejections, and the tilt of the heliospheric current sheet, and cosmic-ray modulation. By analyzing monthly cosmic-ray data from the Neutron Monitor Stations of Oulu (cutoff rigidity 0.81 GV) and Moscow (2.42 GV) the contribution of these parameters in the ascending, maximum, and descending phases of the cycle was investigated and it is shown that a combination of these parameters reproduces the majority of the modulation potential variations during this cycle. The approach applied makes it possible to better describe the behavior of cosmic rays in the epochs of the solar maxima, which could not be done before. An extended study of the time profiles, the correlations, and the time lags of the cosmic-ray intensity against these parameters using the method of minimizing RMS over all the considered period 1996 – 2006 determines characteristic properties of this cycle as being an odd cycle. Moreover, the obtained hysteresis curves and a correlative analysis during the positive polarity (qA>0, where q is the particle charge) and during the negative polarity (qA<0) intervals of the cycle result in significantly different behavior between solar and heliospheric parameters. The time lag and the correlation coefficient of the cosmic-ray intensity are higher for the solar indices in comparison to the heliospheric ones. A similar behavior also appears in the case of the intervals with positive and negative polarity of the solar magnetic field.  相似文献   

13.
A radial anisotropy in the flux of cosmic rays in heliosphere was theoretically predicted by Parker and others within the framework of the diffusion–convection mechanism. The solar wind is responsible for sweeping out the galactic cosmic rays, creating a radial density gradient within the heliosphere. This gradient coupled with the interplanetary magnetic field induces a flow of charged particles perpendicular to the ecliptic plane which was measured and correctly explained by Swinson, and is hereafter referred as ‘Swinson flow’. The large area GRAPES-3 tracking muon telescope offers a powerful probe to measure the Swinson flow and the underlying radial density gradient of the galactic cosmic rays at a relatively high rigidity of ∼100 GV. The GRAPES-3 data collected over a period of six years (2000–2005) were analyzed and the amplitude of the Swinson flow was estimated to be (0.0644 ± 0.0008)% of cosmic ray flux which was an ∼80σ effect. The phase of the maximum flow was at a sidereal time of (17.70 ± 0.05) h which was 18 min earlier than the expected value of 18 h. This small 18 min phase difference had a significance of ∼6σ indicating the inherent precision of the GRAPES-3 measurement. The radial density gradient of the galactic cosmic rays at a median rigidity of 77 GV was found to be 0.65% AU−1.  相似文献   

14.
Identifying the precursors (pre-increases or pre-decreases) of a geomagnetic storm or a Forbush decrease is of great importance since they can forecast and warn of oncoming space weather effects. A wide investigation using 93 events which occurred in the period from 1967 to 2006 with an anisotropy A xy >1.2% has been conducted. Twenty-seven of the events revealed clear signs of precursors and were classified into three categories. Here we present one of the aforementioned groups, including five Forbush decreases (24 June 1980, 28 October 2000, 17 August 2001, 23 April 2002, and 10 May 2002). Apart from hourly cosmic ray intensity data, provided by the worldwide network of neutron monitor stations, data on solar flares, solar wind speed, geomagnetic indices (Kp and Dst), and interplanetary magnetic field were used for the analysis of the examined cosmic ray intensity decreases. The asymptotic longitudinal cosmic ray distribution diagrams were plotted using the “ring of stations” method. Results reveal a long pre-decrease up to 24 hours before the shock arrival in a narrow longitudinal zone from 90° to 180°.  相似文献   

15.
High angular-resolution measurements of directional fluxes of solar particles in space have been obtained with detectors aboard OGO-5 during the cosmic ray event of 18 November 1968. This is the only case on record for which sharply-defined directional observations of protons and electrons covering a wide rigidity range (0.3 MV to 1.5 GV) are available.The satellite experiment provided data for determining pitch-angle distributions with respect to the direction of the local interplanetary magnetic field lines during the lengthy highly anisotropic phase of the event. It was found that the unidirectional differential intensities j(θ) of 3- to 25-MeV protons varied in accordance with the relationship j(θ) = b0 + b1cosθ + b2cos2θ, where b0 and b1 ? 0, and b2, is positive, zero or negative. Soon after onset, 79–266-keV electrons arriving from the direction of the Sun displayed an anisotropic component with the intensity varying as cos θ. Later, a double-peaked distribution appeared at the lower energies, whereas the flux at the upper end of the range covered by the experiment became isotropic. These results have been interpreted in the light of the temporal flux profiles and the state of the interplanetary medium.The observation of the unusually large and long-lasting anisotropies lead to several conclusions including: (1) If injection of the solar particles was instantaneous, the diffusion coefficient was either constant or increasing with distance from the Sun. (2) If the solar source emitted particles over an extended period, and there is evidence to that effect, there was weak scattering in the region between the Sun and the Earth and a strong scattering region beyond the Earth's orbit. (3) Solar electrons were stored near the Sun. (4) The observed angular distribution of 200-MV protons in the magnetosheath was in good agreement with that deduced in an earlier analysis of polar orbiting satellite observations and trajectory calculations.  相似文献   

16.
The Forbush decrease (Fd) of the Galactic cosmic ray (GCR) intensity and disturbances in the Earth’s magnetic field generally take place simultaneously and are caused by the same phenomenon, namely a coronal mass ejection (CME) or a shock wave created after violent processes in the solar atmosphere. The magnetic cut-off rigidity of the Earth’s magnetic field changes because of the disturbances, leading to additional changes in the GCR intensity observed by neutron monitors and muon telescopes. Therefore, one may expect distortion in the temporal changes in the power-law exponent of the rigidity spectrum calculated from neutron monitor data without correcting for the changes in the cut-off rigidity of the Earth’s magnetic field. We compare temporal changes in the rigidity spectrum of Fds calculated from neutron monitor data corrected and uncorrected for the geomagnetic disturbances. We show some differences in the power-law exponent of the rigidity spectrum of Fds, particularly during large disturbances of the cut-off rigidity of the Earth’s magnetic field. However, the general features of the temporal changes in the rigidity spectrum of Fds remain valid as they were found in our previous study. Namely, at the initial phase of the Fd, the rigidity spectrum is relatively soft and it gradually becomes hard up to the time of the minimum level of the GCR intensity. Then during the recovery phase of the Fd, the rigidity spectrum gradually becomes soft. This confirms that the structural changes of the interplanetary magnetic field turbulence in the range of frequencies of 10?6?–?10?5 Hz are generally responsible for the time variations in the rigidity spectrum we found during the Fds.  相似文献   

17.
The simultaneous enhancement or subsidence of both the high-speed solar wind streams and the galactic cosmic rays in the minimum or the maximum phase of the solar cycle are interpreted in a unified manner by the concept of geometrical evolution of the general magnetic field of the corona-heliomagnetosphere system. The coronal general magnetic field evolves from an open dipole-like configuration in the minimum phase to a closed configuration with many loop-like formations in the maximum phase of the solar cycle. This concept, developed in a theoretical solar-cycle model driven by the dynamo action of the global convection, is examined and found to be valid by studying the evolution of the coronal general magnetic field calculated from the observed surface general magnetic field of 1959–1974. It is also found that the energy density of the poloidal component of the general surface field, from which the coronal field originates, attained a maximum in the maximum phase and showed a evolution with virtually no phase delay with respect to that of the toroidal component of the field, to which the sunspot activity is related. The subsidence of the high-speed solar wind in the maximum phase is understood as a braking of the solar wind streams by the tightly closed and strong coronal field lines in the lower corona in the maximum phase. The field lines of the heliomagnetosphere, which originate from the coronal field lines drawn by the solar wind, are inferred to be also more tightly closed at the heliopause in the maximum phase than in the minimum phase. The decrease of the galactic cosmic rays in the maximum phase (known as the Forbush's negative correlation between the galactic cosmic ray intensity and the solar activity or the Forbush solar-cycle modulation of the galactic cosmic rays) is interpreted as a braking of the cosmic rays by the closed magnetic field lines at the heliopause. The observed phase lag (approximately one year) of the galactic cosmic ray modulation with respect to the evolution of the solar cycle, and the observed absence of the gradient of the total cosmic ray intensity between 1 AU and 8 AU, are discussed to support this view of the cosmic ray modulation at the remote heliopause, and reject other hypotheses to explain the phenomenon in terms of the magnetic irregularities of various kinds carried by the solar wind: The short-term Forbush decrease at a time of a flare shows that the magnetic irregularities can react on the cosmic rays relatively near the Sun if they even played a dominant role in the long-term modulation. The concept of the general magnetic field of the corona and the surface is also used to understand the basic nature of the surface field itself, by comparing the geometry of the calculated coronal field lines with the eclipse photographs of the corona, and by discussing, in the context of the coronal general magnetic field associated with the solar cycle, the process of the emergence of the coronal field lines from the interior and the formation of the transequatorial arches and loops connecting the two hemispheres in the corona.  相似文献   

18.
I. Sabbah 《Solar physics》2007,245(1):207-217
Neutron monitor data observed at Climax (CL) and Huancayo/Haleakala (HU/HAL) have been used to calculate the amplitude A of the 27-day variation of galactic cosmic rays (CRs). The median primary rigidity of response, R m, for these detectors encompasses the range 18 ≤R m≤46 GV and the threshold rigidity R 0 covers the range 2.97≤R 0≤12.9 GV. The daily average values of CR counts have been harmonically analyzed for each Bartels solar rotation (SR) during the period 1953 – 2001. The amplitude of the 27-day CR variation is cross-correlated to solar activity as measured by the sunspot number R, the interplanetary magnetic field (IMF) strength B, the z-component B z of the IMF vector, and the tilt angle ψ of the heliospheric current sheet (HCS). It is anticorrelated to the solar coronal hole area (CHA) index as well as to the solar wind speed V. The wind speed V leads the amplitude by 24 SRs. The amplitude of the 27-day CR variation is better correlated to each of the these parameters during positive solar polarity (A>0) than during negative solar polarity (A<0) periods. The CR modulation differs during A>0 from that during A<0 owing to the contribution of the z-component of the IMF. It differs during A 1>0 (1971 – 1980) from that during A 2>0 (1992 – 2001) owing to solar wind speed.  相似文献   

19.
A. Geramios 《Solar physics》1978,58(1):201-210
In order to estimate the N-S anisotropy latitude gradient, the time variation of the direction of the N-S anisotropy during the August 1972 cosmic ray storms is measured using polar (Alert-Mc Murdo) and equatorial (Athens-Potchefstroom, S. Africa) neutron monitor stations. A maximum value of (43 ± 2)%/50° and a linear correlation between the measured polar and equatorial N-S anisotropies is obtained. The correlation between N-S anisotropy and: (1) the direction of the related shock wave, (2) the heliographic latitude of the related solar flare, (3) the direction of the interplanetary magnetic field, and (4) the K p index has been checked.Presented at the 5th European Cosmic Ray Conference, Leeds, U.K.Now at Max-Planck-Institut für Kernphysik, Heidelberg, F.R.G.  相似文献   

20.
Galactic cosmic rays (GCRs) are modulated by the heliospheric magnetic field (HMF) both over decadal time scales (due to long-term, global HMF variations), and over time scales of a few hours (associated with solar wind structures such as coronal mass ejections or the heliospheric current sheet, HCS). Due to the close association between the HCS, the streamer belt, and the band of slow solar wind, HCS crossings are often associated with corotating interaction regions where fast solar wind catches up and compresses slow solar wind ahead of it. However, not all HCS crossings are associated with strong compressions. In this study we categorize HCS crossings in two ways: Firstly, using the change in magnetic polarity, as either away-to-toward (AT) or toward-to-away (TA) magnetic field directions relative to the Sun and, secondly, using the strength of the associated solar wind compression, determined from the observed plasma density enhancement. For each category, we use superposed epoch analyses to show differences in both solar wind parameters and GCR flux inferred from neutron monitors. For strong-compression HCS crossings, we observe a peak in neutron counts preceding the HCS crossing, followed by a large drop after the crossing, attributable to the so-called ‘snow-plough’ effect. For weak-compression HCS crossings, where magnetic field polarity effects are more readily observable, we instead observe that the neutron counts have a tendency to peak in the away magnetic field sector. By splitting the data by the dominant polarity at each solar polar region, we find that the increase in GCR flux prior to the HCS crossing is primarily from strong compressions in cycles with negative north polar fields due to GCR drift effects. Finally, we report on unexpected differences in GCR behavior between TA weak compressions during opposing polarity cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号