首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
Dispersion measurements were performed on geomagnetic pulsation data recorded over an Australasian network in a search for evidence of ionospheric dispersion of Pc 1 signals. A method of analysis was adopted in which the slope of emission elements of a selected Pc 1 event are examined individually. It has been found that there are no significant ionospheric dispersion effects for propagation between middle and low latitudes. Magnetospheric propagation paths calculated from dispersion measurements show large variations and are not considered generally reliable.  相似文献   

2.
Experimental investigations on the horizontal propagation of Pc 1 pulsations in directions out of the geomagnetic meridian have been carried out using data recorded over a three-year period at four widely-separated middle and low latitude stations. The results obtained show that Pc 1 signals propagate in off-meridian directions, and that horizontal propagation characteristics in the early morning hours have small directional changes.  相似文献   

3.
Data from an East-West line of magnetometer stations stretching approximately along 67° geomagnetic latitude from western Alberta (290° geomagnetic longitude) to western Quebec (350° geomagnetic longitude) in Canada have been used to study the longitudinal characteristics of Pc5 geomagnetic pulsations. This paper concerns the analysis of 3 days' data of relatively intense pulsational activity which occurred around the middle of October in 1976. The intensity variations of Pc5 activity on longitude and time clearly show that the activity is localized in longitude in the morning sector and confused in the afternoon sector. Pulsational activity in the morning sector for two of the events studied appears to be markedly enhanced across the dawn terminator and midway through the pre-noon quadrant. A study of the longitudinal phase variation indicates that the eastern stations lead in phase before noon and lag in phase after noon. This implies that the signals propagate away from noon toward the dawn-dusk meridian. A systematic reversal in the sense of polarization in the horizontal plane was observed when the line of stations rotated across noon. The polarization characteristics in the vertical planes of the events recorded by stations in eastern Canada between 318° and 350° geomagnetic longitude appear to be stationary with respect to time suggesting that the polarization characteristics of pulsations are influenced by geoelectric structures. The implications of these morphological features will be discussed.  相似文献   

4.
Structured Pc 1 signals propagate in the ionospheric F2 region duct from their secondary sources at high latitudes to lower latitudes. Propagation directions to low latitude stations can be inferred from measurements of polarization parameters. The analysis of five events recorded at two low latitude stations (L = 1.9) are presented. Direction of arrival measurements are used to investigate the spatial and temporal structure of Pc 1 sources. Results show a close relationship between the structure of events identified in the frequency-time representation and direction of arrival measurement patterns. Multiple sources are sometimes indicated.  相似文献   

5.
Comparison is made between the measured monthly occurrences of pc 1-active days in California during the interval 1970–1976 and predictions of these occurrences by Soviet and U.S. researchers. It is shown that successful long-term predictions of the monthly occurrences can be made for up to 3 yr ahead and probably also for longer intervals depending on the need. These predictions could have application in cooperative programs of observation, in magnetotelluric studies, and in communications.  相似文献   

6.
7.
A significant sink of geomagnetic pulsation energy is due to Joule dissipation in the ionosphere. To investigate this we have computed the damping experienced by standing Alfvén waves in a dipole magnetic field. Both the uncoupled poloidal and toroidal modes are considered with Joule dissipation being introduced through a boundary condition which relates the electric and magnetic field strengths at the ionosphere, viz: 4πΣ pEc = b, where Σp is the height integrated Pederson conductivity. The damping rates are strongly dependent on the ionospheric conductivity and we find that typically the normalized damping rate, γω, is ~0.1 for nightside values of conductivity and ~0.01 for the dayside. This would account for the observed scale of bandwidths in pulsation signals. Away from regions of extreme damping we find γL?1Σp?1.  相似文献   

8.
The polarization method of source location has been used on data from two low latitude stations (L = 1.9) to determine the exit region of structured Pc1 emissions from the magnetosphere into the ionosphere. Propagation directions in the ionospheric F2 duct can be inferred from measurements of polarization parameters made at the low latitude recording station. Measurements on six events indicated an average source L value of 3.2, which represented the sources being on the average 1.0 ± 0.5 Re inside the corresponding statistical plasmapause position.  相似文献   

9.
The records of the pulsations of Ez(air) and magnetic components during a pc 1 event are discussed.  相似文献   

10.
The wave characteristics of Pc5 magnetic pulsations are analyzed with data of OGO-5, ISEE-1 and -2 satellites. The toroidal modes (δBD >δBH) of Pc5 pulsations are observed at a higher magnetic latitude in the dawnside outer magnetosphere. The compressional and poloidal modes (δBz.dfnc;δBH >δBD) of Pc5 pulsations are mostly observed near the magnetic equator in the duskside outer magnetosphere. This L.T. asymmetry in the occurrence of dominant modes of Pc5's in space can be explained by the velocity shear instability (Yumoto and Saito, 1980) in the magnetospheric boundary layer, where Alfvénic signals in the IMF medium are assumed to penetrate into the magnetospheric boundary layer along the Archimedean spiral. The asymmetrical behaviour of Pc5 pulsation activity on the ground across the noon meridian can be also explained by the ionospheric screening effect on the compressional Pc5 magnetic pulsations. The compressional modes with a large horizontal wave number in the duskside magnetosphere are expected to be suppressed on the ground throughout the ionosphere and atmosphere.  相似文献   

11.
Geomagnetic data for the year 1967 from seven Canadian observatories, spanning the subauroral, auroral and polar zones, have been analysed to investigate the characteristic variation of Pc5 period with several geophysical variables. Pulsations in the whole spectrum of Pc5 (period range 150–600 s) were found to occur at all of the observatories. Those with smaller periods occurred more frequently at lower latitudes while those with longer periods occurred more frequently at higher latitudes. Daily variation of the periods of Pc5 showed little change with seasons or with magnetic activity. Periods, in general, had two daily maxima which appeared at different local times in different zones. A predominant morning peak was noted at all stations except Baker Lake, where a mid-day maximum of the period was found. The Pc5 periods tended to increase with geomagnetic activity at lower latitude stations, and to decrease with activity at stations in the polar cap for low to moderateKp levels. At high activity levels these trends appeared to reverse, though results are less certain. In different seasons and for the whole year the periods increased almost linearly with latitude. However when similar analysis was done for individual hours of the day and for different magnetic activity groups, this linear relationship between period and geomagnetic latitude was not evident. Efforts to detect a 27-day recurrence tendency of Pc5 periods did not succeed.Contributions from the Earth Physics Branch No. 495.  相似文献   

12.
The morphological features of Pc5 pulsations during a solar cycle are studied using Fort Churchill data for the years 1962–1972. Some of the characteristics noted are as follows: (1) Increasing sunspot numbers show little influence on the diurnal variation of the occurrence, amplitude and the period except perhaps some noticeable change in the absolute magnitude of these parameters during different hours of the day. (2) The morning occurrence peak dominates during all phases of the solar cycle. (3) As noted earlier (Gupta 1973a), with increasing magnetic activity the day side region(s) of generation of Pc5 is found to shift closer to the subsolar point and in the midnight sector, the occurrence region (presumably the region of open and closed field lines) seemed to shift towards earlier hours with increasing magnetic activity and towards later hours with increasing sunspot numbers. (4) Despite the smaller number of data points for high magnetic activity levels the analysis indicates that the amplitude of Pc5 pulsations is directly related to all the levels of magnetic activity. (5) The periods of Pc5 pulsations show strong correlation with increasing sunspot numbers and the amplitude and occurrences are found to vary in accordance with the magnetic activity all through the cycle. (6) The annual and semi-annual variations of Pc5 parameters have been demonstrated especially for the pulsations occurring in the morning close to 8 ± 1 h LT and for those occurring near the midnight hours. (7) A suspected 27-day recurrence tendency has been clearly noticed for the occurrence, amplitude and period of Pc5 pulsations.  相似文献   

13.
In this paper, the nonlinear dispersion relation for whistlers in the ionosphere has been derived and then the group travel time for an ion-cyclotron whistler from its source to an observer at the satellite has been theoretically calculated. It is seen that the nonlinear effect has some important contribution in the expression of group travel time. Our present analysis gives a more correct result than that obtained by Gurnett and others. From numerical estimations, it is found that the group travel time of whistler may be changed reasonably due to nonlinear interaction of the wave and the plasma of ionosphere.  相似文献   

14.
A model is developed to represent a toroidal mode of Pc5 geomagnetic pulsations. It is shown that this model is consistent in its predictions, such as the latitude profiles of amplitude and phase and their dependence on the height integrated Pedersen conductivity, Σp, with those of Walker's (1980) theory. It is also shown that this theory is relatively easily capable of accommodating (i) a variety of field line plasma mass density distributions, (ii) a variety of external excitation schemes, (iii) unequal Σp's at each end of the field lines and (iv) non-dipolar geomagnetic fields. The theory yields the transient as well as the steady state response, an important feature permitting application to short-lived events or to those for which the generator is amplitude modulated. It is shown, for instance, that the amplitude-latitude profile varies during the transient. It is also shown that the steady state latitude profiles of amplitude and phase are the dual of those observed as a function of frequency when the excitation frequency is scanned through a resonance. A more realistic steady state energy flow from a generator along the field lines to the ionosphere is inherent in this theory compared with that from the mode to the ionosphere which is inherent in Walker's theory.  相似文献   

15.
The result of investigating high-latitude Pc1–2 pulsations are presented in this paper. They show that these unstructured oscillations are typical in intervals of low magnetic activity for regions of projections of the dayside cusp on the Earth's surface. The morphological properties of these pulsations, namely the character of their diurnal variations and dependence of their amplitude and frequency of occurrence on magnetic activity on different latitudes, suggest methods of utilization for tracing the location of the equatorial boundary of the dayside cusp. It is suggested that Pc1–2 pulsations are generated mainly in the dayside magnetosheath on field lines, crossing the magnetopause and entering in the dayside cusp. The possible mechanism of generation is the ion-cyclotron instability of plasma of finite pressure (β ? 1) and with anisotropic temperature (T > T).  相似文献   

16.
Polarization properties of Pc3 magnetic pulsations at very low latitudes cannot be explained by existing theories which are based on the field line resonance model, because magnetic field lines at ¦Φ¦ < 22° are almost entirely in the ionosphere. In order to interpret Pc3 polarization characteristics observed at very low latitudes (¦Φ¦ < 20°), I would like to propose a possible, new qualitative model in which two superimposed ionospheric eddy currents, oscillating with slight differences in frequency in the Pc3 range and in azimuthal wave number, move azimuthally at very low latitudes. The equatorial ionospheric Pedersen eddy currents are believed to be predominantly caused by inductive electric fields of compressional Pc3 source waves which may possibly arrive in the equatorial ionosphere from the outer magnetosphere.  相似文献   

17.
In order to investigate Pc3-4 geomagnetic pulsations at very low and equatorial latitudes, L=1.0 to 1.2, we analyzed simultaneous geomagnetic data from Brazilian stations for 26 days during October-November 1994. The multitaper spectral method based on Fourier transform and singular value decomposition was used to obtain pulsation power spectra, polarization parameters and phase. Eighty-one (81) simultaneous highly polarized Pc3-4 events occurring mainly during daytime were selected for the study. The diurnal events showed enhancement in the polarized power density of about 3.2 times for pulsations observed at stations close to the magnetic equator in comparison to the more distant ones. The phase of pulsation observed at stations near the magnetic equator showed a delay of 48-62° in relation to the most distant one. The peculiarities shown by these Pc3-4 pulsations close to the dip equator are attributed to the increase of the ionospheric conductivity and the intensification of the equatorial electrojet during daytime that regulates the propagation of compressional waves generated in the foreshock region and transmitted to the magnetosphere and ionosphere at low latitudes. The source mechanism of these compressional Pc3-4 modes may be the compressional global mode or the trapped fast mode in the plasmasphere driving forced field line oscillations at very low and equatorial latitudes.  相似文献   

18.
This paper presents a theoretical investigation of the ducting of Pc1 hydromagnetic waves in an ionospheric layer situated above the F2 region. Theoretical calculations show that this upper ionospheric duct may also sustain horizontal propagation of Pc1 pulsations over appreciable distances. It is found that there is a low-frequency cutoff as in the case of the F2 layer waveguide. The group velocity of waves in the upper ionospheric duct is considerably greater, and dispersion is more pronounced compared to the ducted propagation in the F2 region.  相似文献   

19.
Several attempts have been made to predict the strength of the interplanetary magnetic field (IMF) from the frequency of Pc 3, 4 pulsations measured on the ground. The predictive capability of the ground pulsations depends on the relationship which exists between their frequency and the IMF magnitude. It has been suggested that the relationship improves considerably when coincident frequencies between two stations are used.In this paper we show the correlation between the IMF magnitude and the frequency of coincident pulsation events in a network of five stations in the IGS magnetometer array. We do find that the frequency-field strength relationship is very good for the coincident events at the stations with large longitudinal separation ( > 3 h). We also confirm that the frequency taken from a network of ground stations is a better predictor of IMF magnitude than that from a single station.  相似文献   

20.
Daytime Pc 3–4 pulsation activities observed at globally coordinated low-latitude stations [SGC (L = 1.8,λ = 118.0°W), EWA(1.15,158.1°W), ONW(1.3,141.5°E)] are evidently controlled by the cone angle θXB of the IMF observed at ISEE 3. Moreover, the Pc 3–4 frequencies (?) at the low latitudes and high latitude (COL; L = 5.6 and λ = 147.9°W) on the ground and that of compressional waves at geosynchronous orbit (GOES 2; L = 6.67 and λ = 106.7°W) are also correlated with the IMFmagnitude(BIMF).The correlation of ? of the compressional Pc 3–4 waves at GOES 2 against BIMF is higher than those of the Pc 3–4 pulsations at the globally coordinated ground stations, i.e., γ = 0.70 at GOES 2, and (0.36,0.60,0.66,0.54) at (COL, SGC, EWA, ONW), respectively. The standard deviation (σn = ± Δ? mHz) of the observed frequencies from the form ? (mHz) = 6.0 × BIMF (nT) is larger at the ground stations than at GOES 2, i.e., Δ? = ± 6.6 mHz atGOES 2, and ±(13.9, 9.1, 10.7, 12.1) mHz at (COL, SGC, EWA, ONW), respectively. The correlations between the IMF magnitude BIMF and Pc 3–4 frequencies at the low latitudes are higher than that at the high latitude on the ground, which can be interpreted by a “filtering action” of the magnetosphere for daytime Pc 3–4 magnetic pulsations. The scatter plots of pulsation frequency ? against the IMF magnitude BIMF for the compressional Pc 3–4 waves at GOES 2 are restricted within the forms ? = 4.5 × BIMFand ? = 7.5 × BIMF. The frequency distribution is in excellent agreement with the speculation (scΩi = 0.3 ~ 0.5) of the spacecraft frame frequency of the magnetosonic right-hand waves excited by the anomalous ion cyclotron resonance with reflected ion beams with V6 = 650 ~ 1150 km s?1 in the solar wind frame observed by the ISEE satellite in the Earth's foreshock. These observational results suggest that the magnetosonic right-handed waves excited by the reflected ion beams in the Earth's foreshock are convected through the magnetosheath to the magnetopause, transmitted into the magnetosphere without significant changes in spectra, and then couple with various HM waves in the Pc 3–4 frequency range at various locations in the magnetosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号