首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Low altitude satellite observations of precipitated and locally mirroring protons during periods of ground-based SAR arc observations are presented. The SAR arcs are found to be located in a region with significantly enhanced proton pitch angle scattering and enhanced electron temperature, but inside the plasmapause where the proton pitch angle distribution is anisotropic. The increase in the pitch angle scattering takes place in a localized region having a width of a few tenths of a L-value. The observations can favourably be accounted for by the Cornwall et al. (1971) theory for the SAR arc formation. Using observed proton fluxes and typical energy spectra, the expected intensity in the SAR arc region is estimated to be a few Rayleighs, and the energy flux from precipitated protons above a few keV to be 10?2?10?1erg/cm2s. These estimates are in reasonable agreement with previously published theoretical and experimental values. Simultaneous groundbased observations of Hα emissions were found in the region of intense, isotropic proton precipitation located outside the plasmapause.  相似文献   

2.
The precipitation patterns of 6 keV protons at 10° and 80° pitch angles have been mapped at altitudes <1500 km from the ESRO 1A and 1B spacecraft. Equatorward of the trapping boundary, a region of isotropic precipitation, bounded on its equatorward border by a region of anisotropic (depleted loss cone) precipitation, is always observed. The latitudinal location of this transition appears to be nearly spatially coincident with the plasmapause. Similar precipitation patterns are shown to exist for higher energy protons. The general absence of enhanced precipitation at the plasmapause suggests that the inner boundary of the ring current is not usually produced by an enhanced proton pitch angle diffusion process. The isotropic precipitation observed beyond the plasmapause is most consistent with the occurence of an electrostatic instability throughout the ring current zone. It is doubtful whether the proposed cold Li plasma seeding experiments beyond the plasmapause could significantly increase the observed natural proton precipitation rates.  相似文献   

3.
Low altitude satellite measurements of protons in the 1–100 keV range indicate two energy dependent proton precipitation boundaries. At low invariant latitudes mostly below 60° there is a region of moderately weak proton precipitation. The poleward boundary of this region tends to be at higher latitudes for the high energy protons than for the low energy protons. At high invariant latitudes there is a region where both the low and high energy protons precipitate with an isotropic pitch-angle distribution. The equatorward boundary of this region tends to be at lower latitudes for protons with energy more than 100 keV than for those in the 1–6 keV range. This region with isotropic pitch-angle distribution is located well outside the plasmapause both for the 1–6 and 100-keV protons.Between these two precipitation zones there is a region where the proton pitch-angle distribution is highly anisotropic with almost no protons in the loss cone. This region tends to be wider and more pronounced in the 1–6 than in the 100-keV protons.These findings lend further support to the mechanism of ion-cyclotron instability as the cause of proton pitch-angle diffusion in the low and intermediate regions. The process responsible for the strong diffusion at auroral latitudes has not yet been identified.  相似文献   

4.
Dayside low altitude satellite observations of the pitch angle and energy distribution of electrons and protons in the energy range 1 eV to 100 eV during quite geomagnetic conditions reveal that at times there is a clear latitudinal separation between the precipitating low energy (keV) electrons and protons, with the protons precipitating poleward of the electrons. The high energy (100 keV) proton precipitation overlaps both the low energy (keV) electron and proton precipitation. These observations are consistent with a model where magnetosheath particles stream in along the cusp field lines and are at the same time convected poleward by an electric field.The electrons with energies of a few keV move fast and give the “ionospheric footprint” of the distant cusp. The protons are partly convected poleward of the cusp and into the polar cap. Here the mirroring protons populate the plasma mantle. Equatorward of the cusp the pitch angle distribution of both electrons and protons with energies above a few keV is pancake shaped indicating closed geomagnetic field lines. The 1 keV electrons, penetrate, however, into this region of closed field line structure maintaining an isotropic pitch angle distribution. The intensity is, however, reduced with respect to what it was in the cusp region. It is suggested that these electrons, the lowest energies measured on the satellite, are associated with the entry layer.  相似文献   

5.
Thermal H+ distributions have been measured as the European Space Agency GEOS-1 satellite passed through the late morning equatorial magnetosphere, plasmapause and plasmasphere. The unique capabilities of the on-board Supralhermal Plasma Analysers (SPA) have been used to overcome the retarding floating potential of the satellite and measure the velocity distribution of the cold protons. In the magnetosphere an enhanced source cone of such ions with a temperature of ~ 0.5 eV is a signature of the filling process occurring outside the plasmapause where flux tubes are relatively empty. In the plasmasphere the thermal H+ is essentially isotropic with a temperature less than 0.5 eV but the motion of the satellite introduces apparent drift.These measurements of cold proton velocity distribution now permit a reappraisal of the definition of the “plasmapause”. It becomes inappropriate to use an arbitrary empirical density, e.g. the conventional 10 cm ?3, in order to establish a boundary. It is now possible to identify a plasmapause interaction region where the two cold proton populations co-exist. This region generally lies Earthward of the 10 cm ?3 density level, has a width which is strongly dependent on magnetic activity and the temperature is typically between 0.5 and 1.5 eV. The change from “filled” to “unfilled” flux tubes relates to the physical processes which are occurring and the controlling electric field configuration; in particular, the last closed equipotential. Throughout this region, in going from the plasmasphere to the magnetosphere, the plasma drift motion is expected to change from corotation to a convection which is controlled by E ×B, and is predominantly Sunward due to the dawn-dusk electric field. Crossing the plasmapause on the morning side, little change in drift direction should occur but subtle variations in the ionic velocity distribution do reflect the change in the degree of flux tube density equilibrium.Our first direct measurement of the magnetospheric E × B drift has been reported previously but here measurements from a selected six day period show how the plasma in the plasmapause region responds to changing magnetospheric activity. The drift velocities cannot he derived with high accuracy but the analysis shows that the technique can provide a valid mapping of the magnelospheric electric field. In addition, since the magnetospheric cold plasma distribution is observed after it has come from the ionosphere, a distance of many Earth radii, the scattering and accelerating mechanisms along the flux tube can be studied. For this particular data-set taken in the late morning, the maximum potential drops along the flux tubes were less than a volt. The ionospheric proton source cone is observed to be broad, pitch angle scattering persists up to 40 or even 70°.Although these results throw new light on the plasmaspheric filling process one must recognise that, however the plasmapause is defined, it is not a simple matter to map this boundary from the equatorial plane down to low altitudes and the mid-latitude trough.  相似文献   

6.
A generation mechanism for 1–30 Hz waves of the second category, observed near the plasmapause by Taylor and Lyons (1976), is suggested in terms of a resonant electron instability. The instability arises because of the resonant interaction between the ring current electrons outside the plasmapause and the ordinary mode drift waves. The instability can generate waves in the frequency range from 0.45 to 35.0 Hz in the region between L = 4.5 and 5.5. The instability can also explain satisfactorily the other properties such as no changes in the proton distributions, the direction of the wave magnetic field and the localization of the region of wave activity, associated with these waves.  相似文献   

7.
Electromagnetic waves propagating transverse to the magnetic field, containing inhomogenous and loss cone plasma, may become unstable due to the excitation of resonant proton, resonant electron and drift cyclotron instabilities. Resonant proton instability gets excited in inhomogenous plasma, irrespective of the presence of temperature anisotropy, loss cone or temperature gradient. However, the growth rate of this instability is much smaller than the other two instabilities. The maximum growth rates of resonant electron instability are enhanced with the increase of loss cone index, gradients in transverse temperature and magnetic field, and with the decrease of temperature anisotropy and gradients in density and parallel temperature. The drift cyclotron instability exists in a bounded range of wave numbers and its growth rate increases with the increase of electron temperature, density and magnetic field gradient, and with the decrease of proton temperature and temperature anisotropy. In the region of ring current for beyond plasmapause the resonant proton and resonant electron instabilities have the characterstic frequencies around 0.1Ωp and growth rates ~10?6Ωp and 10?3Ωp, respectively. In the ring current region the drift cyclotron instability is not excited whereas in the plasma sheet region the frequency and growth rate of this instability are around Ωp and 10?2Ωp, respectively. These instabilities can accelerate the ring current particles along the magnetic field lines and dump them into the auroral region.  相似文献   

8.
《Planetary and Space Science》1999,47(10-11):1377-1387
The Galileo plasma wave instrument has detected intense electromagnetic wave emissions approximately centered on the second and fourth harmonics of the local proton gyrofrequency during the close equatorial flyby of Io on 7 December 1995. Their frequencies suggest these emissions are likely generated locally by an instability driven by non thermal protons. Given that this process occurs close to Io, we suggest that hydrogen-bearing compounds, escaping from Io, are broken up/ionized near this moon, thereby releasing protons. Newly-created protons are thus injected in the Jovian corotating plasma with the corotation velocity, leading to the formation of a ring in velocity space. Several electromagnetic wave–particle instabilities can be driven by a ring of newborn protons. Given that the corotating plasma is sub-Alfvénic relative to Io, the magnetosonic mode cannot be destabilized by this proton ring. The full dispersion relation is studied using the WHAMP program (Rönmark, 1982. Rep. 179. Kiruna Geophys. Inst., Kiruna, Sweden) as well as a new algorithm that allows us to fit the distribution function of newborn protons in a more realistic way. This improvement in the ring model is necessary to explain the relative narrowness of the observed spectral peaks. The measured E/B ratio is also used to identify the relevant instability and wave mode: this mode results from the coupling between the ion Bernstein and the ion cyclotron mode (IBCW). To our knowledge this mode has not yet been studied. From the instability threshold an estimate of the density of newborn protons around Io is thus given; at about 2 Io radii from the surface and 40°W longitude from the sub-Jupiter meridian, this density is found to be ≥0.5% of the local plasma density (∼4000 cm−3), namely ≥20 cm−3. Assuming a stationary pickup process and a rn distribution of pickup protons within several Io radii of Io’s wake, this implies that more than 1026 protons/s are created around Io. The ultimate origin of these protons is an open issue.  相似文献   

9.
One of the most striking and persistent features in high latitude regions as seen by the ISIS-2 scanning auroral photometer is a fairly uniform belt of diffuse auroral emission extending along the auroral oval. Indications are that this region follows, contributes to, and may in a sense actually define the auroral oval during quiet times.The diffuse belt is sharply defined at its equatorward edge, which is located at an invariant latitude of about 65° in the midnight sector during relatively low magnetic activity (Kp = 1?3). The poleward edge of the region is not as sharply defined but is typically at about 68°. Discrete auroras (arcs and bands) are located, in general, near the poleward boundary of the diffuse aurora. The position of the belt appears to be relatively unaffected by the occurrence of individual substorms, even when discrete forms have moved well poleward. Representative intensities at 5577 Å are 1–2 kR (corrected for albedo) at quiet times and may reach 5 kR during an auroral substorm.It appears that the mantle aurora and proton aurora constitute this diffuse aurora in the midnight sector. Precipitating protons and electrons both contribute to the emissions in this region.  相似文献   

10.
The latitudinal morphology of > 100 keV protons at different local times has been studied as a function of substorm activity. A characteristic pattern is found: during quiet-times there is an isotropic zone centred around 67° near midnight, but located on higher latitudes towards dusk and dawn. This zone moves slightly equatorward during the substorm growth phase. During the expansive phase the precipitation spreads poleward apparently to ~ 71° near midnight. The protons are precipitated over a large local time interval on the nightside, but the most intense fluxes are found in the pre-midnight sector. A further poleward expansion, to more than 75° near midnight, seems to take place late in the substorm. Away from midnight, the expansion reaches even higher latitudes. During the recovery phase the intensity of the expanded region decreases gradually; the poleward boundary is almost stationary if the interplanetary magnetic field (IMF) has a northward component and no further substorm activity takes place. Mainly protons with energy below ~ 500 keV are precipitated in the expanded region. On the dayside no increase in the precipitation rates is found during substorm expansion, but late in the substorm an enhanced precipitation is found, covering several degrees in latitude. The low-latitude anisotropic precipitation zone is remarkably stable during substorms. A schematic model is presented and discussed in relation to earlier results.  相似文献   

11.
The topology of the boundaries of penetration (or inversely the boundaries of the forbidden regions) of 90° pitch angle equatorial protons with energies less than 100 keV are explored for an equatorial convection E-field which is directed in general from dawn to dusk. Due to the dependence of drift path on energy (or magnetic moment) complex structural features are expected in the proton energy spectra detected on satellites since the penetration distance of a proton is not a monotonically increasing or decreasing function of energy. During a storm when the convection E is enhanced, model calculations predict elongations of the forbidden regions analogous to plasmatail extensions of the plasmasphere. Following a reduction in the convection field, spiral-structured forbidden regions can occur. Structural features inherent to large scale convection field changes may be seen in the noselike proton spectrograms observed near dusk by instrumentation on the satellite Explorer 45 (S3) (Smith and Hoffman, 1974). These nose events are modelled by using an electric field model developed originally by Volland (1973). The strength of the field is related to Kp through night-time equatorial plasmapause measurements.  相似文献   

12.
On 26 July 1967, a magnetically quiet day (ΣKp = 12?) with high whistler activity at Halley Bay, it was found possible, by measurement of whistler nose-frequency and dispersion and the bearings of the whistler exit points, to make a detailed study of the magnetospheric structure associated with the whistler ducts.During the period 0509–2305 UT most of the exit points of whistlers inside the plasmasphere were situated along a strip about 100km wide passing through Halley Bay in an azimuthal direction 30°E of N between 57° and 62° invariant latitude. A mechanism which can give rise to such a well-defined locus which co-rotates with the Earth is not clear. Nevertheless, it does appear that the locus coincides with the contour of solar zenith angle 102° at 1800 UT 25 July. This was also the time of occurrence of a sub-storm and it is suggested that the magnetospheric structure was initiated by proton precipitation along the solar zenith angle 102° contour.At mid-day knee-whistlers observed outside the plasmapause had exit points which were closely aligned along an L-shell at an invariant latitude of 62.5°. They exhibited a marked variation (~ 3:1) in electron tube content over about 12° of invariant longitude and a drift of about 8 msec?1 to lower L-shells.Throughout the period of observation the plasmapause lay about 2° polewards of the mean position found by Carpenter (1968) for moderately disturbed days.  相似文献   

13.
Vertical profiles of electron density obtained in the vicinity of the plasmapause using the Alouette-II topside sounder have been analyzed to assess the presence of H+ flow in the topside ionosphere. The observations in the midnight sector show clearly the presence of the plasmapause; i.e. there is a sharp boundary separating the poleward regions of polar wind H+ flow and the more gentle conditions of the plasmasphere where light ions are present in abundance. In contrast, in the sunlit morning sector upwards H+ flow is deduced to be present to invariant latitudes as low as 48° (L = 2·2) in the regions normally known to be well inside the plasmasphere. The upwards H+ flux is sufficiently large (3 × 108 ions cm?2 sec?1) that the plasmapause cannot be seen in the latitudinal electron density contours of the topside ionosphere. The cause for this flow remains unknown but it may be a result of a diurnal refilling process.  相似文献   

14.
The relationship between the proton intensity in the interplanetary space and radio bursts of type II for 78 proton events for the period of 1989–2005 is studied based on the data of the Radio Solar Telescope Network. Two families of events have been revealed in plots describing the dependence of the intensity of protons with different energies and the rate of the frequency drift of meter-decameter radio bursts. This suggests the generation of shock waves both in the region of flare energy release and at the fronts of coronal mass ejection.  相似文献   

15.
Detailed properties of a Pc5 pulsation with large azimuthal wavenumber observed using the STARE radar have recently been reported. A further four examples of this type of pulsation are presented, and it is shown that their properties are generally similar to those of the first example. However, there are some differences, the most important being that the variation of azimuthal phase velocity with latitude is significantly different for different time intervals during individual events, so that a mean phase velocity for a given latitude cannot be defined.When mapped to the equatorial plane in a dipole geomagnetic field, the variation of azimuthal phase velocity with L resembles the gradient-curvature drift of energetic protons in only a few time intervals within the events. The results are interpreted in terms of current theories of drift and bounce resonance of energetic particles with hydromagnetic waves. It is found that no single theory explains all aspects of the observations.  相似文献   

16.
17.
The first simultaneous (within 6 min) observations of the low altitude polar cusp regions in the conjugate hemispheres are reported here based on two events detected by the DMSP-F2 and F4 satellites within the same geomagnetic local time sector. It is found that the electron spectra in the cusp are identical in the opposing hemispheres. In one case the observed latitudinal location and extent of the cusps are the same at the two hemispheres. However, in the other case the location of the equatorward boundary of the cusp regions differs by about 2° with drastically different spatial features. It is also found that in one of the events the plasma sheet electron precipitation regions overlap with the cusp regions at lower latitude in both hemispheres. The poleward boundary of these overlapping regions is located at the same latitude on either hemisphere, suggesting that this is the latitude of the last closed field line and that the cusp electrons are present on both closed and open magnetic field lines.  相似文献   

18.
Data from the magnetometer MAG aboard the Venus Express S/C are investigated for the occurrence of cyclotron wave phenomena upstream of the Venus bow shock. For an unmagnetized planet such as Venus and Mars the neutral exosphere extends into the on-flowing solar wind and pick-up processes can play an important role in the removal of particles from the atmosphere. At Mars upstream proton cyclotron waves were observed but at Venus they were not yet detected. From the MAG data of the first 4 months in orbit we report the occurrence of proton cyclotron waves well upstream from the planet, both outside and inside of the planetary foreshock region; pick-up protons generate specific cyclotron waves already far from the bow shock. This provides direct evidence that the solar wind is removing hydrogen from the Venus exosphere. Determining the role the solar wind plays in the escape of particles from the total planetary atmosphere is an important step towards understanding the evolution of the environmental conditions on Venus. The continual observations of the Venus Express mission will allow mapping the volume of escape more accurately, and determine better the present rate of hydrogen loss.  相似文献   

19.
The dynamics of the intervals of pulsation of diminishing periods (IPDP) generation region and that of the auroral absorption (AA) are compared. It is known that IPDP is the manifestation of the ion-cyclotron instability due to precipitation and drift of protons and AA is the result of electron precipitation. The westward movement in space and time of the AA and IPDP generation region was revealed. This is the first experimental confirmation of the joint westward drift of the electron and proton in the form of neutral clouds in the magnetosphere during an auroral substorm.  相似文献   

20.
During August 1972, Explorer 45 orbiting near the equatorial plane with an apogee of ~5.2 Re traversed magnetic field lines in close proximity to those simultaneously traversed by the topside ionospheric satellite ISIS 2 near dusk in the L range 2.0–5.4. The locations of the Explorer 45 plasmapause crossings (determined by the saturation of the d.c. electric field double probe) during this month were compared to the latitudinal decreases of the H+ density observed on ISIS 2 (by the magnetic ion mass spectrometer) near the same magnetic field lines. The equatorially determined plasmapause field lines typically passed through or poleward of the minimum of the ionospheric light ion trough, with coincident satellite passes occurring for which the L separation between the plasmapause and trough field lines was between 1 and 2. Hence, the abruptly decreasing H+ density on the low latitude side of the ionospheric trough is not a near earth signature of the equatorial plasmapause. Vertical flows of the H+ ions in the light ion trough as detected by the magnetic ion mass spectrometer on ISIS were directed upward with velocities between 1 and 2 km s?1 near dusk on these passes. These velocities decreased to lower values on the low latitude side of the H+ trough but did not show any noticeable change across the field lines corresponding to the magnetospheric plasmapause. The existence of upward accelerated H+ flows to possibly supersonic speeds during the refilling of magnetic flux tubes in the outer plasmasphere could produce an equatorial plasmapause whose field lines map into the ionosphere at latitudes which are poleward of the H+ density decrease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号