首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A layered deterministic N-leaching model, IMPACT, has been calibrated using data from two study sites on the unconfined Chalk aquilfer of East Anglia, UK. The model predicts nitrogen species movement resulting from the application of sewage sludges and fertilizers to arable land for different vegetation-soil-hydrogeological conditions. One site received sludge in the form of digested sewage cake (DSC) for the first time during the study period, whilst the other site had over 15 years history of liquid undigested sludge (LUS) applications at 3 year intervals. Site data included: 3-monthly concentration profiles at 0.3 m intervals to depths of up to 6 m for N-species and chloride; unsaturated potential measurements; water level and saturated groundwater solute concentrations, fertilizer and sludge input; daily recharge, and soil/chalk type and moisture content. The observed average movement rate for nitrate peaks in the Lower Chalk, measured at one site, was 0.2 m year−2. Leachate peaks were not observed annually but approximately every third year, being associated with large sludge applications and ploughing of grass crops. Significant correlation between observed and modelled nitrate profiles in soil and chalk were obtained which demonstrated applications. The relationship between crop demand, application times of fertilizers and sludge, nitrate availability and recharge was shown strongly to control the shape of nitrate profiles in the soil and chalk and the quantity of nitrate leached tochalk. The change in hydrogeological conditions at the soil-chalk contact and associated potential for denitrification was also shown to exert a significant control on the shape of the nitrate profile. Following calibration, different arable crop and sludge application regimes were examined for a 6 year period and ranked according to their nitrate leaching risk. Of the modelled cereal farming scenarios, the crop/sludge regime giving the least nitrate leaching was a late autumn surface spread application of DSC followed by winter cereals, while highest nitrate leaching was generated by an autumn injection of LUS followed by spring cereals. Field and modelled results may be used in the development of sludge disposal policies to arable land particularly with regard to sludge types, application times, and following crop types and fertilizer requirements. Overall, observed and model data demonstrate the importance of examining nitrate leaching as a continuum from the soil through the chalk to the water table.  相似文献   

2.
崔玉环  王杰  郝泷  董斌  高祥 《湖泊科学》2021,33(2):474-482
考虑流域地理特征的空间分异,以升金湖流域人口/农业集约区大渡口(DDK)与森林子流域唐田河(TTH)为研究区,利用贝叶斯同位素混合模型分别解析这2个子流域硝酸盐来源的贡献率,并分析其不确定性. 研究表明:(1)地下水中,DDK?TTH硝酸盐均主要来源于粪便/污水,贡献率可达65%以上,粪便/污水通过土壤下渗导致地下水硝...  相似文献   

3.
Transport and losses of nitrate from sloped soils are closely linked to nitrogen fertilizer management. Previous studies have always focused on different types of fertilizer applications and rarely analysed various initial nitrate distributions as a result of nitrogen fertilizer applications. Under certain conditions, both subsurface lateral saturated flow and vertical leaching dominate nitrate losses. Soil tank experiments and HYDRUS‐2D modelling were used to better understand the subsurface nitrate transport and losses through lateral saturated flow and vertical leaching under various initial nitrate distributions. Low (L: 180 mg L?1), normal (N: 350 mg L?1), and high (H: 500 mg L?1) nitrate concentrations were used in five different distributions (NNNN, NLLN, LHHL, LNLN, and HNHN) along the slope of the tank. The first two treatments (NNNN and NLLN) were analysed both experimentally and numerically. Experiments were conducted under 12 rainfall events at intervals of 3 days. The HYDRUS‐2D model was calibrated and validated against the experimental data and demonstrated good model performance. The other three treatments (LHHL, LNLN, and HNHN) were investigated using the calibrated model. Nitrate concentrations in purple sloped soils declined exponentially with time under intermittent rainfalls, predominantly in the upper soil layers. Non‐uniform initial nitrate distributions contributed to larger differences between four locations along the slope in deeper soil layers. The non‐uniform nitrate distribution either enhanced or reduced decreases in nitrate concentrations in areas with higher or lower initial nitrate concentrations, respectively. Higher nitrate concentrations at the slope foot and along the slope were reduced mainly by lateral flow and vertical leaching, respectively. Increasing nitrogen application rates increased subsurface nitrate losses. Mean subsurface lateral nitrate fluxes were twice as large as mean vertical leaching nitrate fluxes. However, due to longer leaching durations, total nitrate losses due to vertical leaching were comparable with those due to lateral flow, which indicated comparable environmental risks to surface waters and groundwater.  相似文献   

4.
Elevated levels of nitrate in groundwater are an important concern for health and the environment. The overapplication of nitrogen fertilizer to croplands is one of the major sources of high nitrate content in groundwater. In this study, we analyse the nitrate concentrations in Korean groundwater based on data from groundwater quality monitoring wells (n = 1,022–2,072), which were sampled twice annually over a recent 13‐year analysis period (2001–2013). We report that groundwater nitrate levels are decreasing, despite steadily increasing groundwater use. The maximum nitrate concentration decreased from 168.91 to 48.11 mg/L, whereas the mean values also show a gradual decreasing trend. Non‐parametric Mann–Kendall tests on nitrate concentrations also confirm the decreasing trend. The nitrate decrease is more clearly evident in agricultural groundwater as compared to domestic and drinking groundwaters. This decrease of nitrate in groundwater coincides with a large decline in nitrogen fertilizer application due to reduced cropland areas, more sustainable agricultural practices, and progressive improvement of sewage disposal services. This study proposes that the long‐term adoption of best practices in agriculture has had a positive impact on groundwater nitrate control.  相似文献   

5.
Managing land to produce food, fibre or timber must have some environmental impact, the magnitude of which will depend on the cropping system and the intensity of management. Nitrogen is an indispensable input for modern agricultural systems, which not only aim to feed people but seek to sustain rural communities dependent on agriculture. In temperate regions there is a universal problem of nitrate leaching from agricultural land, and increases in nitrate concentrations in water bodies in recent years have been a cause for concern, especially the role of nitrate in the development of algal blooms. Nitrate invariably appears in drainage from agricultural land in the absence of any significant input of nitrogen as a result of the breakdown of soil humus or from aerial deposition of combined nitrogen in various forms. Where only inorganic nitrogen fertilizers are applied in amounts and at times to satisfy crop demand, they are apparently used efficiently. Where nitrate in drainage is a direct residue from applied nitrogen fertilizers, it can usually be associated with the use of excessive quantities or with the failure of a crop to achieve its expected yield. Most of the nitrate which appears in soil in autumn comes from the microbial mineralization of soil organic matter. The soil microbial population breaking down organic matter does not differentiate between soil humus or organic matter added to soil by ploughing in grass leys, forage legumes or large quantities of organic manures. Adding such organic materials to soil can lead to the release of much nitrate. Such microbial processes would be impossible to control in environmentally benign ways.  相似文献   

6.
《Journal of Hydrology》2006,316(1-4):195-212
As the increase of nitrate concentration in groundwater has often been ascribed to an inappropriate use of liquid manure, the main purpose of this study was to better understand the factors controlling nitrate dynamics in the unsaturated zone of soils subjected to characteristic agronomic practices, and to contribute to improving Action Programmes, with reference to EU Directive 91/676, for nitrate vulnerable zones (NVZ).Water infiltration and nitrate leaching have been studied in experimental fields located inside nitrate vulnerable zones of the Emilia-Romagna region (Northern Italy), characterized by different pedological and hydrogeological properties and equipped with meteorological station, tensiometers, ceramic-cup samplers and piezometers. This article describes the results obtained from one of these sites, monitored over a 6-year period, which was cereal cropped and treated with pig slurry. MACRO and SOILN field-scale models have been used in order to verify the reliability of simulated water flow and nitrogen transport.The results demonstrate how nitrogen inputs from slurry, substantially higher than crop uptake, cause nitrate accumulation in the surface layer of the soil especially in warm periods (concentrations of up to 300 mg NO3–N l−1 were found in soil water). Even if the soil texture was fine, the shrinking–swelling properties of clay minerals determined fast drainage conditions (related to macroporosity), so that during the early rainy periods nitrates leached through the first meters of the unsaturated zone, at least down to 4 m. This shows that nitrate accumulation should be limited before these periods, i.e. by reducing manure application rates, especially if the soil is to be left uncultivated.The model results confirm the observed role of macroporosity in accelerating the breakthrough of surface applied soluble compounds and provide evidence that MACRO and SOILN may be suitable tools for predicting such phenomena, even though their calibration requires some further refinements.  相似文献   

7.
N. Rajmohan  L. Elango 《水文研究》2007,21(20):2698-2712
Study of the movement of water and solute within soil profiles is important for a number of reasons. Accumulation of prominent contaminants from agricultural chemicals in the unsaturated zone over the years is a major concern in many parts of the world. As a result, the unsaturated zone has been a subject of great research interest during the past decade. Hence, an intensive field study was conducted in a part of Palar and Cheyyar river basins to understand the variation of major ions and nutrients in the soil zone during paddy cultivation. The chloride and nitrate data were used to model the movement of these chemicals in the unsaturated zone using the HYDRUS‐2D model. The field study shows that fertilizer application and irrigation return flow increases the major ions and nutrients concentration in the unsaturated zone. Further, the nutrient concentrations are regulated by plant uptake, fertilizer application and infiltration rate. Additionally, denitrification and soil mineralization processes also regulate the nitrogen concentration in the unsaturated zone. The solute transport modelling study concluded that the simulated results match reasonably with the observed trends. Simulated concentrations of chloride and nitrate for a 5‐year period indicate that the concentrations of these ions fluctuate in a cyclic manner (from 60 to 68 mg l?1 and from 3·4 to 3·5 mg l?1 respectively in groundwater) with no upward and downward trend. The influence of excessive fertilizer application on groundwater was also modelled. The model predicts an increase of about 17 mg l?1 of chloride and 2·3 mg l?1 of nitrogen in the groundwater of this area when the application of fertilizers is doubled. The model indicates that the present level of use of agrochemicals is no threat to the groundwater quality. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
9.
The broad purpose of the study described here was to assess the role of denitrification in riparian zones in ameliorating groundwater pollution through nitrate loss, and as a potential source of nitrous oxide to the atmosphere. A suitable riparian zone was identified at Cuddesdon Mill on the River Thame floodplain near Oxford, England. Measurements were made of water and nitrate moving from arable land through the riparian zone and into the river. Techniques to measure denitrification were tested and applied, and the factors controlling denitrification measured. While there was considerable potential for denitrification at the site, this was not realized because much of the water moving off the farmland bypassed the riparian zone, entering the river directly via springs or through gravel lenses beneath the floodplain soil. Management of this site would not reduce nitrate leaching unless the floodplain hydrology could be substantially modified, and the main conclusion is that nitrate buffer zones will only operate efficiently where the hydrology of the site is appropriate. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
High concentrations of N and P in biosolids are one of the strongest appeals for their agronomic use. However, it is essential to understand the fate of N in soils treated with biosolids for both plant nutrition and managing the environmental risk of NO 3 -N leaching. This work aims to evaluate the risk of nitrate leaching from a sandy Podosol soil and from a clay Ferrosol soil, each one amended at the range 0.5–8.0 dry Mg/ha rates of freshly tertiary sewage sludge, composted sludge, limed sludge, heating-dried sludge and solar-irradiated sludge. Results showed that for similar biosolids application rates NO 3 -N accumulated up to 3 times as much in the Ferrosol than in Podosol soil. However, there was a fixed 20% NO 3 -N loss from the 20 cm amended-Ferrosol topsoil, whilst the N-nitrified expected to leach down from 20 cm amended-Podosol topsoil layer ranged from 42% to 76% of the accumulated NO 3 -N, depending on the biosolid type. After all, NO 3 -N expected to leach from Podosol soil ranged from 0.6 (heating-dried sludge) to 3.9 times (limed sludge) relative to Ferrosol soil at similar biosolid application rates. Nevertheless, the risk of NO 3 -N groundwater contamination caused by biosolids applied at 0.5−8.0 dry Mg/ha rates could be considered very low. Published in Russian in Vodnye Resursy, 2006, Vol. 33, No. 4, pp. 492–503.  相似文献   

11.
The heterogeneous nature of both groundwater discharge to a lake (inflow) and nitrate concentrations in groundwater can lead to significant errors in calculations of nutrient loading. Therefore, an integrated approach, combining groundwater flow and transport modelling with observed nitrate and ammonium groundwater concentrations, was used to estimate nitrate loading from a catchment via groundwater to an oligotrophic flow‐through lake (Lake Hampen, Denmark). The transport model was calibrated against three vertical nitrate profiles from multi‐level wells and 17 shallow wells bordering a crop field near the lake. Nitrate concentrations in groundwater discharging to the lake from the crop field were on average 70 times higher than in groundwater from forested areas. The crop field was responsible for 96% of the total nitrate loading (16.2 t NO3/year) to the lake even though the field only covered 4.5% of the catchment area. Consequently, a small change in land use in the catchment will have a large effect on the lake nutrient balance and possible lake restoration. The study is the first known attempt to estimate the decrease of nitrate loading via groundwater to a seepage lake when an identified catchment source (a crop field) is removed.  相似文献   

12.
South Florida's Miami‐Dade agricultural area is located between two protected natural areas, the Biscayne and Everglades National Parks, subject to the costliest environmental restoration project in history. Agriculture, an important economic activity in the region, competes for land and water resources with the restoration efforts and Miami's urban sprawl. The objective of this study, understanding water quality interactions between agricultural land use and the shallow regional aquifer, is critical to the reduction of agriculture's potentially negative impacts. A study was conducted in a 4‐ha square field containing 0·9 ha of corn surrounded by fallow land. The crop rows were oriented NW–SE along the dominant groundwater flow in the area. A network of 18 monitoring wells was distributed across the field. Shallow groundwater nitrate–nitrogen concentration [N‐NO3?] was analyzed on samples collected from the wells biweekly for 3 years. Detailed hydrological (water table elevation [WTE] at each well, groundwater flow direction [GwFD], rainfall) and crop (irrigation, fertilization, calendar) data were also recorded in situ. Flow direction is locally affected by seasonal regional drainage through canal management exercised by the local water authority. The data set was analyzed by dynamic factor analysis (DFA), a specialized time series statistical technique only recently applied in hydrology. In a first step, the observed nitrate variation was successfully described by five common trends representing the unexplained variability. By including the measured hydrological series as explanatory variables the trends were reduced to only three. The analysis yields a quantification of the effects of hydrological factors over local groundwater nitrate concentration. Furthermore, a spatial structure across the field, matching land use, was found in the five remaining common trends whereby the groundwater [N‐NO3?] in wells within the corn rows could be generally separated from those in fallow land NW and SE of the crop strip. Fertilization, masked by soil/water/plant‐delayed processes, had no discernible effect on groundwater nitrate levels. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
A.L. Jones  P.L. Smart   《Journal of Hydrology》2005,310(1-4):201-215
Autoregressive modelling is used to investigate the internal structure of long-term (1935–1999) records of nitrate concentration for five karst springs in the Mendip Hills. There is a significant short term (1–2 months) positive autocorrelation at three of the five springs due to the availability of sufficient nitrate within the soil store to maintain concentrations in winter recharge for several months. The absence of short term (1–2 months) positive autocorrelation in the other two springs is due to the marked contrast in land use between the limestone and swallet parts of the catchment, rapid concentrated recharge from the latter causing short term switching in the dominant water source at the spring and thus fluctuating nitrate concentrations. Significant negative autocorrelation is evident at lags varying from 4 to 7 months through to 14–22 months for individual springs, with positive autocorrelation at 19–20 months at one site. This variable timing is explained by moderation of the exhaustion effect in the soil by groundwater storage, which gives longer residence times in large catchments and those with a dominance of diffuse flow. The lags derived from autoregressive modelling may therefore provide an indication of average groundwater residence times. Significant differences in the structure of the autocorrelation function for successive 10-year periods are evident at Cheddar Spring, and are explained by the effect the ploughing up of grasslands during the Second World War and increased fertiliser usage on available nitrogen in the soil store. This effect is moderated by the influence of summer temperatures on rates of mineralization, and of both summer and winter rainfall on the timing and magnitude of nitrate leaching. The pattern of nitrate leaching also appears to have been perturbed by the 1976 drought.  相似文献   

14.
The aim of this study is to evaluate the impact of the application of industrial fertilizers and liquid swine manure in groundwater in two pilot agricultural areas, San Pedro and Pichidegua, which have been under long‐term historic use of fertilizers. A comprehensive hydrogeological investigation was carried out to define the geology and the groundwater flow system. Chemical and isotopic tools were used to evaluate the distribution and behavior of the nitrate in the groundwater. The isotopic tools included δ18O, δ2H, and 3H, which provide information about the origin and residence time of the groundwater; δ15N‐NO3? and δ18O‐NO3?, which provide information about nitrate sources and processes that can affect nitrate along the groundwater flow system. The application rate of liquid manure and other fertilizers all together with land uses was also evaluated. The hydrogeological investigation identified the presence of a confined aquifer underneath a thick low‐permeability aquitard, whose extension covers most of the two study areas. The nitrate concentration data, excepting a few points in zones located near recharge areas in the upper part of the basins and lower areas at the valley outlets (San Pedro), showed nitrate concentration below 10 mgN/L at the regional scale. The isotope data for nitrate showed no influence of the liquid swine manure in the groundwater at the regional scale, except for the high part of the basins and the outlet of the San Pedro valley, which are areas fertilized by manure. This data showed that the regional aquifer on both pilot study areas is protected by the thick low‐permeability aquitard, which is playing an important role on nitrate attenuation. Evidence of denitrification was also found on both shallow and deep groundwater in the Pichidegua site. This study showed that a comprehensive hydrogeological characterization complemented by chemical and isotope data is key for understanding nitrate distribution and concentration in aquifers from areas with intensive agriculture activities.  相似文献   

15.
Identification of major nitrate sources that adversely impact groundwater quality in municipal well capture zones in areas of emerging nitrate contamination is essential to minimize leaching and prevent exceedance of the nitrate drinking water standard. Vertical profiles of nitrate leachate in deep soils provide an estimate of the amount of nitrate in transit beneath irrigated, row-cropped fields; depths of peak leachate; and the approximate rate of downward movement. Profiles of pore-water soil-nitrate concentrations in thick 60-feet (~18 m), fine-textured soils near Hastings, Nebraska clearly indicate that considerably more nitrate leached beneath furrow-irrigated than center-pivot irrigated fields. Peak leaching appeared to correlate with recorded periods of poor weather conditions during some growing seasons and may best be controlled by “spoon feeding” fertilizer to the crop through the sprinkler irrigation system at times of nutrient need. The presence of trace levels of atrazine and deethylatrazine to 60 feet (18 m) in core samples indicates that larger, more complex anthropogenic molecules also leach through the fine-textured soils. The light δ15NNO3 values in the surficial groundwater beneath fertilized and irrigated cropland indicate that ammonium fertilizer is a major N source and suggest that the natural soil-N contribution is negligible. δ15NNO3 values were most enriched in irrigation wells located within municipal well capture zones downgradient of a large feedlot. Dual isotope method (DIM) δ15NNO3 and δ18ONO3 values suggest that the Hastings’ municipal wells farther downgradient are contaminated with a mixture of nitrate from manure and commercial ammonium-based fertilizer. DIM values indicate an absence of denitrification, which has implications for long-term management of the water resources.  相似文献   

16.
Shi Qi  Wei Liu  Heping Shu  Fei Liu  Jinzhu Ma 《水文研究》2020,34(20):3941-3954
The sources and storage of soil NO3 in the western Tengger Desert, Northwest China, were explored using water chemistry analysis and stable isotope techniques. In line with the expansion and development of oases, part of the desert has been transformed into cultivated land and artificial forest land. The mean soil NO3 contents found in areas of cultivated land and artificial forest were 123.06 mg kg−1 and 1.26 mg kg−1, far higher and slightly lower than the background desert soil values, respectively. The δ15N-NO3 and δ18O-NO3 values in cultivated soils ranged from 1.00 to 11.81 ‰, and from −1.85 to 8.99 ‰, respectively, and the mean mNO3/Cl value in cultivated soils was 2.3. These figures would appear to demonstrate that the rapid increase in the nitrate content in soils is principally due to the use of nitrogen fertilizer. Such increases in soil NO3 storage is likely to promote the leaching of nitrogen into the groundwater where coarsely textured soils exist, the pollution of water sources used for irrigation water, and extreme precipitation events. The δ15N-NO3 and δ18O-NO3 values in groundwater ranged from 3.72 to 6.54 ‰, and from −0.19 to 12.06 ‰, respectively, mainly reflecting the nitrification of soil nitrogen. These values appeared similar to those measured in the soil water in adjacent areas of cultivated land and vegetated desert, indicating that the groundwater has been affected by both natural and artificial NO3. Artificial afforestation of desert regions would therefore seem to be a useful way of reducing the threat posed by anthropogenic sources to the circulation of NO3-N within arid regions, as well as promoting wind sheltering and sand fixation. This study explored the NO3 storage and groundwater quality responses to oasis development in arid areas in an attempt to provide effective information for local agricultural organizations and agricultural nitrogen management models.  相似文献   

17.
To investigate the origin and behaviour of nitrate in alluvial aquifers adjacent to Nakdong River, Korea, we chose two representative sites (Wolha and Yongdang) having similar land‐use characteristics but different geology. A total of 96 shallow groundwater samples were collected from irrigation and domestic wells tapping alluvial aquifers. About 63% of the samples analysed had nitrate concentrations that exceeded the Korean drinking water limit (44·3 mg l?1 NO3?), and about 35% of the samples had nitrate concentrations that exceeded the Korean groundwater quality standard for agricultural use (88·6 mg l?1 NO3?). Based on nitrogen isotope analysis, two major nitrate sources were identified: synthetic fertilizer (about 4‰ δ15N) applied to farmland, and animal manure and sewage (15–20‰ δ15N) originating from upstream residential areas. Shallow groundwater in the farmland generally had higher nitrate concentrations than those in residential areas, due to the influence of synthetic fertilizer. Nitrate concentrations at both study sites were highest near the water table and then progressively decreased with depth. Nitrate concentrations are also closely related to the geologic characteristics of the aquifer. In Yongdang, denitrification is important in regulating nitrate chemistry because of the availability of organic carbon from a silt layer (about 20 m thick) below a thin, sandy surface aquifer. In Wolha, however, conservative mixing between farmland‐recharged water and water coming from a village is suggested as the dominant process. Mixing ratios estimated based on the nitrate concentrations and the δ15N values indicate that water originating from the village affects the nitrate chemistry of the shallow groundwater underneath the farmland to a large extent. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Increased nitrate concentrations in groundwater and surface waters represent one of the most widespread and acute impacts of modern agriculture on the environment. However, there is often a fundamental gap in understanding how individual agricultural fields and practices contribute to this broad-scale issue. To practically address nutrient dynamics at individual agricultural sites, methods for assessing nitrogen loss to groundwater that are minimally invasive and thus can encourage farmer “buy in” are necessary. We present an approach that uses edge-of-field monitoring at multilevel samplers along with a once-per-year tracer application (bromide) to calculate nitrogen loss on an annual basis. Using appropriate spatio-temporal integrals of measured concentrations, a net loss of nitrogen to groundwater (per field area) can be calculated. This approach directly measures impacts of nitrogen leaching below the water table, while avoiding permanent in-field installations that can interfere with farm operations. We present an application of this technique to assess nitrogen loss to groundwater over 5 years for a commercial agricultural field in Sauk County, WI. Results from Field 19 indicate that nitrogen losses are similar to (or slightly below) previously reported values for corn and potato crops. In all years, however, we estimate that more than 25% (>60 kg/ha) of nitrogen applied leached as nitrate to groundwater. Use of this mass flux estimation method was most reliable when: (1) tracer is injected directly at the water table, limiting “smearing” within the vadose zone; and (2) nitrate concentrations from laboratory analysis were obtained, rather than using ion-selective electrodes or nitrate test strips.  相似文献   

19.
In an aquifer system with complex hydrogeology, mixing of groundwater with different ages could occur associated with various flow pathways. In this study, we applied different groundwater age‐estimation techniques (lumped parameter model and numerical model) to characterize groundwater age distributions and the major pathways of nitrate contamination in the Gosan agricultural field, Jeju Island. According to the lumped parameter model, groundwater age in the study area could be explained by the binary mixing of the young groundwater (4–33 years) and the old water component (>60 years). The complex hydrogeologic regimes and local heterogeneity observed in the study area (multilayered aquifer, well leakage hydraulics) were particularly well reflected in the numerical model. The numerical model predicted that the regional aquifer of Gosan responded to the fertilizer applications more rapidly (mean age: 9.7–22.3 years) than as estimated by other models. Our study results demonstrated that application and comparison of multiple age‐estimation methods can be useful to understand better the flow regimes and the mixing characteristics of groundwater with different ages (pathways), and accordingly, to reduce the risk of improper groundwater management plans arising from the aquifer heterogeneity.  相似文献   

20.
Coal fly ash (CFA) and paper waste (PW) related environmental problems and its recycling techniques have been a major challenge to society. Therefore, it is of crucial importance to develop new recycling methods for CFA and PW. This work proposes a potential new way of developing synthetic aggregates (SA) using CFA, PW, starch waste and ammonium sulfate (AS) as a granular nitrogen fertilizer medium, and their utilization as a soil amendment to improve crop production in the low productive acidic red soil of Okinawa, Japan. Three types of SA with three different nitrogen (N) percentages were produced and used to amend acidic red soil in a pot experiment for the cultivation of Komatsuna, which is also called as Japanese mustard spinach (Brassica rapa var. pervidis). SA had a low bulk density (0.58–0.62 g/cm3), high water holding capacity (0.60–0.64 kg/kg), high saturated hydraulic conductivity (2.34·10–2 cm/s), high mean weight diameter (MWD) (4.32–4.48 mm), alkaline pH (8.58–8.61), high electrical conductivity (EC) (82.18–84.35 mS/m) and high carbon (C) content (68.71–70.07 g/kg) in comparison with the acidic red soil. The trace element concentrations of the developed SA were below the maximum pollutant concentration of individual metals for land application of sewage sludge given by the US Environmental Protection Agency. Scanning electron microscopic (SEM) studies showed the higher structural surface area of SA, where round shaped CFA particles were embedded into the fibrous PW matrix. Incorporation of SA into the acidic red soil not only enhanced soil fertility but also improved the physical and chemical properties of the soil compared to soil without SA addition. SA addition to the acidic red soil significantly increased the growth and yield parameters of Komatsuna compared to soil without SA addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号