首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Nutrient pollution from rivers, nonpoint source runoff, and nearly 100 wastewater discharges is a potential threat to the ecological health of Puget Sound with evidence of hypoxia in some basins. However, the relative contributions of loads entering Puget Sound from natural and anthropogenic sources, and the effects of exchange flow from the Pacific Ocean are not well understood. Development of a quantitative model of Puget Sound is thus presented to help improve our understanding of the annual biogeochemical cycles in this system using the unstructured grid Finite-Volume Coastal Ocean Model framework and the Integrated Compartment Model (CE-QUAL-ICM) water quality kinetics. Results based on 2006 data show that phytoplankton growth and die-off, succession between two species of algae, nutrient dynamics, and dissolved oxygen in Puget Sound are strongly tied to seasonal variation of temperature, solar radiation, and the annual exchange and flushing induced by upwelled Pacific Ocean waters. Concentrations in the mixed outflow surface layer occupying approximately 5–20?m of the upper water column show strong effects of eutrophication from natural and anthropogenic sources, spring and summer algae blooms, accompanied by depleted nutrients but high dissolved oxygen levels. The bottom layer reflects dissolved oxygen and nutrient concentrations of upwelled Pacific Ocean water modulated by mixing with biologically active surface outflow in the Strait of Juan de Fuca prior to entering Puget Sound over the Admiralty Inlet. The effect of reflux mixing at the Admiralty Inlet sill resulting in lower nutrient and higher dissolved oxygen levels in bottom waters of Puget Sound than the incoming upwelled Pacific Ocean water is reproduced. By late winter, with the reduction in algal activity, water column constituents of interest, were renewed and the system appeared to reset with cooler temperature, higher nutrient, and higher dissolved oxygen waters from the Pacific Ocean.  相似文献   

2.
Overlying bottom water samples were collected in the Vistula River plume, southern Baltic Sea, (Poland) and analysed for dissolved and labile particulate (1 M HCl extractable) Cu, Pb, Zn, Mn, Fe and Ni, hydrological parameters being measured simultaneously. Particulate organic matter (POM), chlorophyll a and dissolved oxygen are key factors governing the chemical behaviour of the measured metal fractions. For the dissolved Cu, Pb, Zn, Fe and Ni two maxima, in the shallow and in the deeper part of the river plume, were found. In the shallow zone desorption from seaward fluxing metal-rich riverine particles account for markedly increased metal concentrations, as confirmed also by high particulate metal contents. For Pb, atmospheric inputs were also considered to have contributed to the elevated concentrations of dissolved Pb adjacent to the river mouth. In the deep zone desorption from detrital and/or resuspended particles by aerobic decomposition of organic material may be the main mechanism responsible for enrichment of particle-reactive metals (Cu, Pb, Zn) in the overyling bottom waters. The increased concentrations of dissolved Fe may have been due to reductive dissolution of Fe oxyhydroxides within the deep sediments by which dissolved Ni was released to the water. The distribution of Mn was related to dissolved oxygen concentrations, indicating that Mn is released to the water column under oxygen reduced conditions. However, Mn transfer to the dissolved phase from anoxic sediments in deeper part of the Vistula plume was hardly evidenced suggesting that benthic flux of Mn occurs under more severe reductive regime than is consistent with mobilization of Fe. Behaviour of Mn in a shallower part has been presumably affected by release from porewaters and by oxidization into less soluble species resulting in seasonal removal of this metal (e.g. in April) from the dissolved phase. The particulate fractions represented from about 6% (Ni) and 33% (Mn, Zn, Cu) to 80% (Fe) and 89% (Pb) of the total (labile particulate plus dissolved) concentrations. The affinity of the metals for particulate matter decreased in the following order: Pb > Fe > Zn > or = > Cu > Mn > Ni. Significant relationships between particulate Pb-Zn-Cu reflected the affinity of these metals for organic matter, and the significant relationship between Ni-Fe reflected the adsorption of Ni onto Fe-Mn oxyhydroxides. A comparison of metal concentrations with data from other similar areas revealed that the river plume is somewhat contaminated with Cu, Pb and Zn which is in agreement with previous findings on anthropogenic origin of these metals in the Polish zone of southern Baltic Sea.  相似文献   

3.
A suite of dissolved trace metals (Ag, Cd, Cu and Pb), inorganic nutrients (NO(3), PO(4)), and chlorophyll a was measured along a 55 mile transect from the East River into western and central Long Island Sound. The main objectives of this study were to determine the relative levels of contamination from sewage, and to assess its possible biological impact on local waters. The East River-Long Island Sound system receives large volumes of treated sewage and industrial effluent as a result of the heavy urbanization of the area. Despite these strong environmental pressures, this study is among the first to report dissolved metal levels from that region. Consistent with the locations of anthropogenic sources, a strong east-west concentration gradient was observed for Ag, Pb, NO(3) and PO(4) with the highest levels found in the East River. In contrast, dissolved Cd and Cu were relatively constant throughout the area of study, suggesting that sewage sources have a more limited influence on the levels of those metals. Remobilization from contaminated sediments may represent the primary source of Cd and Cu to the Long Island Sound under low-runoff conditions in summer. Chlorophyll a concentrations, used as an indicator of total biomass, were also low in the East River. These low chlorophyll concentrations could not be explained by nutrient or light limitation, water column stratification, or to advection of phytoplankton out of the river during tidal flushing. These preliminary results suggest a potential toxic effect of sewage on the biological communities of the East River.  相似文献   

4.
Concentrations and seasonal variations of water chemistry, including dissolved and particulate forms of Fe, Mn, Zn, Cu, Pb, Cd, and Ni in rivers of Primorskii Krai are determined. It is shown that, unlike the macrocomposition, the effect of hydrological regime on the concentration of dissolved metal forms is controversial and depends on anthropogenic load, watershed landscapes, and pH variations. Elevated concentrations of dissolved metal forms are recorded in the beginning of spring flood and during low-water period. Beyond the limits of local impact of wastewater, the concentrations of dissolved forms of Cu, Zn, Ni, Pb, and Cd in river waters of the region insignificantly differ from the clearest rivers of the World.  相似文献   

5.
Concentrations of Co, Cu, Pb and Zn were determined in 107 surficial sediment samples from the continental margin adjacent to Sydney, Australia. The spatial distributions of trace metals in the sediments and the mud content are similar and increase with greater distance from the coast. In contrast, normalization of the concentrations of Cu, Pb and Zn in the total sediment with Co enables a coastal anthropogenic source to be identified. The spatial distribution of Co-normalized concentrations of Cu, Pb and Zn in total sediment is similar to the distribution of these trace metals in the fine fraction of sediment (<62.5 microm), indicating that Co may be used as a normalizing element for determining contaminant sources in the marine environment near Sydney.  相似文献   

6.
Organic compounds were evaluated in March 2010 at 22 stations in Barkley Sound, Vancouver Island Canada and at 66 locations in Puget Sound. Of 37 compounds, 15 were xenobiotics, 8 were determined to have an anthropogenic imprint over natural sources, and 13 were presumed to be of natural or mixed origin. The three most frequently detected compounds were salicyclic acid, vanillin and thymol. The three most abundant compounds were diethylhexyl phthalate (DEHP), ethyl vanillin and benzaldehyde (∼600 ng L−1 on average). Concentrations of xenobiotics were 10-100 times higher in Puget Sound relative to Barkley Sound. Three compound couplets are used to illustrate the influence of human activity on marine waters; vanillin and ethyl vanillin, salicylic acid and acetylsalicylic acid, and cinnamaldehyde and cinnamic acid. Ratios indicate that anthropogenic activities are the predominant source of these chemicals in Puget Sound.  相似文献   

7.
At present, there is a very limited information on the levels and distribution of dissolved metals in Manila Bay. In this study, the horizontal and vertical distribution of operationally defined species (labile, bound and total) of dissolved copper (Cu), cadmium (Cd) and zinc (Zn) were determined using differential pulse anodic and cathodic stripping voltammetry in water samples obtained from 18 stations in November 1998. In addition, the 24-h variability in the concentrations of these species at different depths in the water column was determined. These measurements were complemented by the determination of temperature, salinity, dissolved oxygen, chlorophyll a, particulate organic carbon and nutrients. Results showed that more than 50% of total dissolved copper and cadmium were labile while 50% of total dissolved zinc was organically bound. Vertical profiles showed that Cu, Cd and Zn concentrations were generally high at the surface. Zinc and cadmium were characterised by the presence of a mid-depth minimum while copper did not show any clear vertical trend.

Dissolved Cu concentrations during the spatial and diurnal samplings ranged from 0.32 to 6.95 nM and 1.52 to 45.65 nM, respectively. For Cd, the concentrations in 18 stations ranged from 0.05 to 2.92 nM, and from 0.03 to 2.42 nM over a 24-h period. Zn concentrations ranged from 2.48 to 147.43 nM and 2.87 to 88.27 nM during the spatial and diurnal samplings, respectively. The large variation in the concentration of Cu, Cd and Zn in the bay was observed to be associated with the presence of a large vertical density gradient in the water column, which appeared to limit the exchange of materials between the surface and bottom waters. Elevated levels of these metals near point sources suggest anthropogenic inputs in the bay.  相似文献   


8.
The artificial mussel (AM), a novel chemical sampling device, has been developed for monitoring dissolved trace metals in marine environments. The AM consists of Chelex-100 suspended in artificial seawater within Perspex tubing and enclosed with semi-permeable polyacrylamide gel at both ends. To validate the field performance of the AM in temperate waters, we deployed AMs alongside transplanted blue mussels Mytilus edulis in coastal environments in Scotland (Holy Loch, Loch Fyne, Loch Striven and Millport) and Iceland (Reykjavikurh?fn, Gufunes, South of thornerney, Hofsvik, Hvalfj?rethur and Sandgerethi) for monitoring trace metals. While uptake patterns of Cd between the AM and M. edulis were highly comparable, discrepancies were found in the accumulation profiles of the other metals (Cu, Cr, Pb and Zn), in particular Zn. Nonetheless, the AMs gave a better resolution to accurately reveal the spatial difference in dissolved metal contamination when compared with M. edulis. AMs complement the use of mussels since AMs indicate dissolved metals in seawater, whereas uptake by mussels indicates a mixture of dissolved and particulate metals. Our results also indicated that historical metal exposure of the transplanted M. edulis could significantly confound their metal concentrations especially when the deployment period was short (i.e. <34d). This study suggested that the AM can overcome problems associated with variable biological attributes and pre-exposure history in the mussel, and provides a standardized and representative time-integrated estimate of dissolved metal concentrations in different marine environments.  相似文献   

9.
In order to investigate the pollution levels, sources and ecological risks of arsenic (As) and heavy metals (Cr, Ni, Cu, Zn, Pb and Cd) in inshore sediments of the Yellow River estuary, the surface sediment in areas of inshore coastal waters were sampled in October 2014 as the flow-sediment regulation project (FSRP) was implemented for 13 years. Results showed that the concentrations of As and heavy metals in inshore sediments of the Yellow River estuary were in the order of Zn?>?Cr?>?Cu?>?Ni?>?Pb?>?As?>?Cd. Higher levels of As, Cr, Ni, Cu, Zn and Pb generally occurred in fine-grained sediments of the Yellow River estuary and the southeast region, which was consistent with the spatial distribution of clay. In contrast, higher concentrations of Cd were generally observed in northwest area of the Yellow River estuary and near the Qingshuigou estuary, which showed similarly spatial distribution with that of sand. The sediment quality guidelines (SQGS) and geoaccumulation indices (Igeo) indicated that the inshore sediments were polluted by Cu, Cd, As, Pb and Zn, and, among them, Cd pollution was more serious. Ecological risk indices (E r i ) demonstrated low risks for Cr, Ni, Cu, Zn, Pb and As, and high potential toxicity by Cd. The integrated ecological risk index implied that 6.8% of stations presented moderate risk, 4.5% of stations exhibited disastrous risk, and 88.7% of stations demonstrated considerable risk. Principal component analysis indicated that Ni, Cu, Zn, Pb and As might originate from common pollution sources, while Cr and Cd might share another similar sources. With the continuous implementation of FSRP, As and heavy metal levels in inshore sediments of the Yellow River estuary could be classified as stage I (2002–2010) and stage II (2010–2014). In the stage I, As, Cr, Ni, Cu, Zn and Pb levels fluctuated but decreased significantly, whereas Cd concentrations showed little variation. In the stage II, As and heavy metal levels significantly increased although some little fluctuations occurred. The continuous accumulation of As and heavy metals (especially for Cd) in inshore sediments of the Yellow River estuary would occur again as the FSRP was implemented for 9 years (since 2010). The ecotoxicological risk of Cd, As, Ni and Cu in inshore sediments might be more serious since the accumulation of the four elements would be continuously occurred in future years. Next step, there will be long-term potential consequences for marine organism if effective measures are not taken to control the loadings of metal pollutants into estuary.  相似文献   

10.
巢湖沉积物重金属富集特征与人为污染评价   总被引:15,自引:6,他引:9  
本文分析了巢湖主要入湖河流河口区表层沉积物及西部湖心区沉积岩芯中Al、Fe、Ni、Cr、Cu、Zn、Pb、Li、V等金属元素变化特征,采用地球化学方法对金属元素变化的"粒度效应"进行矫正,并以Li、V为参照元素对矫正结果进行检验;参考历史沉积物,对河口区及西部湖心区沉积物重金属人为污染特征进行分析;结合沉积岩芯210Pb年代结果,估算西部湖心区近150a来Ni、Cr、Cu、Zn、Pb等重金属元素的人为污染贡献量.结果表明,河口表层沉积物重金属污染具有显著的空间差异,南淝河河口重金属人为污染最重,其中Ni、Cr、Cu、Zn、Pb的人为污染贡献量分别为12.2、32.2、25.3、479.9和76.0 mg/kg,分别占总含量的35%、37%、64%、92%和77%;其次是柘皋河河口,主要重金属污染元素为Cu、Zn和Pb,人为污染贡献量达57.6、57.0和19.5 mg/kg,分别占总含量的73%、47%和36%;而派河、白石山河、杭埠河等河口表层沉积物中重金属元素人为污染程度较弱.巢湖西部湖心区主要污染元素为Cu、Zn、Pb,人为污染开始于1950s,1980年以来其人为污染贡献量显著增加,平均为16.2、245.6、47.8 mg/(m2.a),分别占各元素沉积通量的23%、61%和37%;Ni人为污染开始于1980s初期,人为污染贡献量平均为12.6 mg/(m2.a),占其沉积通量的13%左右;Cr基本未受人为污染影响.西部湖心区沉积岩芯及南淝河河口表层沉积物中重金属污染程度均表现为Zn>Pb>Cu,而且南淝河河口沉积物重金属污染程度显著高于西部湖心区.结合主要入湖河流径流量与河口沉积物重金属污染特征,认为巢湖西部湖心区重金属污染主要通过南淝河输入,来自合肥等城市的废水是主要的污染源.  相似文献   

11.
Dil Deresi stream is a highly contaminated stream passing through the most heavily industrialized area of Izmit Bay. In this research, surface sediments in the <63-microm fraction collected from 34 sites at western part of Izmit Bay, Northeastern Marmara Sea, Turkey were analyzed by ICP-AES for Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn and Zn. Metal concentrations were compared with the marine sediment quality standards (SQS) and literature data to assess the pollution status of the sediments. Enrichment factors (EFs) were calculated to assess whether the concentrations observed represent background or contaminated levels. The analysis revealed three groups of elements: (1) Sn is the most enriched element; (2) As, Cd, Pb and Zn are minor enriched elements; and (3) Co, Cr, Cu, Fe, Mg, Mn and Ni are at background concentrations. The distribution maps of the concentrations and enrichment factors for all heavy metals were also produced as a contour plot based on Geographic Information System (GIS) technology.  相似文献   

12.
Shells of the common cockle Cerastoderma edule have been analysed using Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) for a suite of elements (Pb, Cu, As, Zn and U). The samples of C. edule were obtained from four sites in the British Isles, two facing the Atlantic and two adjacent to the Irish Sea. The LA-ICP-MS technique, permits high resolution examination of the relationship between the concentrations of elements in the hard parts and that in the environment. This study shows that this bivalve can be used as a biomonitor of pollution. All four areas under investigation are affected by anthropogenic pollution, in particular Zn and Cu, and are characterized by short-term extreme pollution events. Furthermore, high levels of U are recorded from the cockles sampled from the sites adjacent to the Irish Sea, probably related to a combination of both natural and industrial effluents discharged into the area.  相似文献   

13.
Measurements of dissolved Cd, Co, Cu, Mn, Ni, Pb, and Zn have been made on a seasonal basis at five stations on a north–south transect across the central English Channel between Cherbourg and the Isle of Wight. Vertical and horizontal distributions of dissolved Cd, Pb, Cu and Zn are relatively uniform except for sampling sites near the English coast. Dissolved Mn and Co show increased concentrations in the English coastal waters, and for Mn the seasonal trend in concentration follows the pattern seen in the Strait of Dover with higher values in the late summer. Ni and Cu are higher in concentration on the English side, which reflects mainly riverine sources. Measurements were also made of particulate forms of the metals above plus particulate Al, Ca, Fe, Mg, Sr and Ti. Water column concentrations of particulate metals broadly follow the distribution of suspended particulate matter, with highest concentrations near the UK coast. Trace metal concentrations have been integrated with modelled data on fluxes of water to provide estimates of fluxes for these elements into the eastern Channel, and an initial comparison is made with data for fluxes of metals through the Strait of Dover obtained during an earlier study. A major influence on the fluxes of particulate metals through the Isle of Wight-Cherbourg transect is the gyre system to the South east to the Isle of Wight, which has important east to west as well as west to east transport components. For those elements where the dissolved form of the metal dominates, the large flow of water in the central Channel waters leads to major fluxes of the metals towards the east and the Strait of Dover. However, the high suspended particulate matter loadings in the coastal waters and impact of the gyre system lead to net east to west fluxes of particulate Al, Fe, Mn and Ti. Comparison of these fluxes with data on the net west to east transport of these materials through the Strait of Dover infers that there must be a significant supply of these particulate metals to the eastern Channel.  相似文献   

14.
Over the last three decades there has been a significant decline in the number of marine pollution monitoring-related studies in South Africa. Thus, the current study was conducted to assess the current state of metal contamination within the South African marine environment through the validation of the artificial mussel (AM). Indigenous reference mussels (Perna perna) were deployed alongside the passive device within the South African marine environment for a 6 week exposure period. Analysis of metal uptake (Cd, Cr, Cu, Pb and Zn) was determined by filtration and elution of the AM chelex resins, microwave digestion of the transplanted mussels, and determination of their metal concentrations by ICP-MS and ICP-OES analysis. Uptake patterns between the AM and transplanted mussels showed significant temporal and spatial correlation for the majority of the elements analysed. While the AM provided relevant and complementary information on the dissolved metal concentrations, limitations were also observed.  相似文献   

15.
The particulate concentrations of 17 trace metals, Al, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Ag, Sb, Au, Hg, Pb and Th have been measured in the marine atmosphere (58 samples) and in the deep waters (35 samples) of the Tropical North Atlantic. For oceanic suspended matter, our results are similar to those in samples from the Atlantic and the Pacific Oceans collected during the GEOSECS Program. Based on these results, we have made a flux balance for the mixed layer between input via the atmosphere and removal through small and large particles. These data show that the primary flux of suspended aluminosilicates in the Tropical North Atlantic is attributable to the atmospheric input. Elements Sc, Th, Fe, V, Mn, Co and Cr show high correlation with Al in the marine atmosphere. Of these elements, Fe, Mn, V, Co and Cr are influenced by additional processes such as biological, in the marine environment. For elements Ni, Cu, Zn, Se, Ag, Sb, Au, Hg and Pb, we observe high enrichments (relative to average crustal material) in the marine atmosphere which may be due, at least partially, to the influence of anthropogenic sources. These metals also show similar enrichments in deep ocean suspended matter. Model calculations indicate that the atmospheric flux may not control the deep ocean particulate chemistry of Ni, Cu, Zn, Ag, Sb, Au and Hg. Hence it is likely that, for these elements, the enrichment in the ocean is due to processes within the marine regime, for example their involvement in the biological cycle of the ocean. For Se and Pb, the atmospheric source looks to be the dominant contribution to their particulate concentration in seawater. In the deep North Atlantic, particulate Pb appears to be mostly of anthropogenic origin, which is not the case for Se.  相似文献   

16.
Laboratory incubation experiments were carried out on sediment cores collected from Esthwaite Water, U.K., during April 1987, when the sediments displayed a characteristic surface (1.5 to 2 cm) oxide floc. The experiments were undertaken at 10°C, in the dark, under variable redox and pH conditions for periods of ~ 720 h (30 d). In some cases, realistic amounts of decomposing lake algae were added to simulate the deposition of an algal bloom. Pore waters and overlying waters were obtained from the incubated sediment cores at various time intervals and the samples analysed for pH and dissolved Fe, Mn, Zn and Cu by AAS. The results demonstrated that trace metal concentrations at the sediment-water interface can show rapid, pulsed responses to episodic events associated with controlling factors such as algal deposition and mixing conditions. The variations in dissolved Fe and Mn concentrations could generally be explained by their well known redox behaviour. Appreciable loss of Mn from solution under conditions of well-developed anoxia was consistent with adsorption of Mn2+ by FeS. Cu and Zn were both rapidly (24 h) released into solution during incubation of sediment cores prior to the development of anoxia in the overlying waters. Their most likely sources were the reductive remobilization of Mn oxides and the decomposition of organic matter. The addition of decomposing algae to a series of cores resulted in even higher interfacial dissolved concentrations of Cu and Zn, probably through acting as a supplementary source of the metals and through increased oxide dissolution. Switching from anoxic to oxic conditions also rapidly increased dissolved Cu and Zn concentrations, possibly due to their release during the oxidation of metal sulphides. The enhanced releases of dissolved Cu and Zn were generally short-lived with removal being attributed to the formation of sulphides during anoxia and to adsorption by Fe and Mn oxides under oxic conditions.  相似文献   

17.
Concentrations of ten metals were measured in waters and sediments at 14 sites during four sampling periods (1996–1997). These sites include various marine ecosystems that are highly influenced by industry, tourism and river discharges, nine of which are within the Morrocoy National Park. Spatially, metal concentrations in water were homogenous, whereas in sediments their distributions were related to grain size. Maximum concentrations of cadmium (Cd) and mean concentrations of copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) in water were above the guideline values proposed by NOAA, indicating the potential of these metals for producing chronic effects in marine biota. Sheltered sites showed the highest metal concentrations in sediments; with Cd and Zn above these guidelines. Enrichment factors and geo-accumulation indexes suggested that metals in sediments were largely of natural origin except for Pb, Cd and vanadium (V), which were apparently associated with industrial effluents. A disruption of the spatial distribution of metals after heavy rainfall, when exposed sites reached concentrations as high as those in sheltered sites, showed the influence of nearby rivers. The potential increase of such climatic events could represent additional stress for natural protected areas in the Caribbean.  相似文献   

18.
Bivalves are commonly used to detect metal pollution in the marine environment. Commercially cultured Milky oysters (Saccostrea commercialis) were transplanted in various sites along the North Queensland coast and analyzed for two metals of potentially anthropogenic origin (Cd, Zn). To provide additional information, naturally occurring Black Lip oysters (Saccostrea echinata) were also collected at the transplantation sites. The study demonstrated that the oysters species transplanted are good bioindicators of these metal concentrations in tropical waters, sensitive to variations in the environment at concentrations which are much smaller than pollution signals commonly reported for temperate waters. Three transplant experiments were carried out from May 1999 to February 2000. Milky oysters transplanted to offshore areas (Orpheus Is., Kelso Reef) accumulated Cd in the soft parts whereas oysters sampled from cages placed in Ross Creek and the Herbert River estuaries showed a decrease in Cd concentration, which resulted from an increase in dry weight. Dry weight appeared to be an important covariant affecting Cd concentration in the oysters whereas it does not unambiguously affect Zn concentrations. For the duration of the experiments, oysters sampled from the Magnetic Is. reference site showed effectively constant Cd concentrations and total Cd contents which indicates that any seasonal cycle affecting metal concentration is weak. It was found that Cd accumulation in oysters increased as ambient dissolved Cd concentration decreased, from which it was concluded that for these oysters, the predominant source of Cd was from the particulate phase rather than the dissolved phase.  相似文献   

19.
鄱阳湖流域乐安河重金属污染水平   总被引:14,自引:3,他引:11  
万金保  闫伟伟  谢婷 《湖泊科学》2007,19(4):421-427
乐安河是鄱阳湖五大入湖水系中重金属污染最严重的水域.为研究其污染现状,于2003-2004年度对乐安河水体、底泥及水生生物的重金属污染进行了调查与分析.结果表明,乐安河水体中的重金属除Cu的含量超出地表水环境质量标准Ⅲ类标准外,其它各项监测指标均能达到地表水环境质量Ⅲ类标准.乐安河底泥的重金属含量平均值与国家土壤环境质量相比,Cu的平均值超出了三级标准,而Pb和Zn的含量指标均符合三级标准;通过地质累积指数评价结果表明,乐安河底泥中Cu为严重污染,Pb为偏中度污染,Zn为中度污染.乐安河水生植物对Cu,Pb,Zn都有不同程度的富集,根据富集系数评价表明,植物对Cu的平均富集能力相对较强,其次是Pb和Zn.浮游动物、植物和底栖动物也受到不同程度的污染,其分布和数量因河段水质变化的影响也出现类似的波动.  相似文献   

20.
In the near pristine environment of a silled fjord on the west coast of Scotland samples were taken for the determination of dissolved and particulate trace metals (Fe, Mn, Cu, Ni, Cd, Zn and Pb), together with nutrient and hydrographic data, during 19 surveys carried out over a year. An indication of the pristine nature of the environment are the low concentrations of dissolved silicon, phosphate and nitrate which are considerably lower than those of coastal waters which are subject to larger anthropogenic burdens. Distributions of dissolved Cu, Ni and Cd were found to broadly reflect conservative mixing of freshwater and seawater with both end members having similar concentrations. The concentration of dissolved Cu and Ni in seawater entering upper Loch Linnhe (Cu 0.28 μg l−1; Ni 0.26 μg l−1) was consistent with the 1:1 conservative mix of Irish Sea water and North Atlantic surface water predicted from radio-caesium tracer experiments (Mackay & Baxter, 1985). Atmospheric input of trace metals to upper Loch Linnhe appeared to be a relatively minor term in the mass balance relative to fluvial inputs. Values of distribution coefficients Kd were similar to those previously reported for the coastal environment. Iron showed the strongest affinity for the suspended sediments; with particulate percentages of the total load usually greater than 80%. Lead and Mn showed a similar strong affinity to the particle phase. For Cu, Ni and Zn the mass of the element in the dissolved phase was generally greater than that in the particulate fraction. Cadmium, was least associated with the particles, with typically greater than 90% existing in the dissolved phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号