首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A holistic ecosystem simulation model has been developed for the Cumberland Basin and upper Chignecto Bay, a turbid macrotidal estuary at the head of the Bay of Fundy. This one-dimensional deterministic model has three compartments, three boundaries and three interacting submodels (physical, pelagic and benthic). Twenty-eight biological state variables represent broad functional groups of organisms and non-living organic carbon pools. All major components of the estuarine ecosystem are included. At the present stage of development, individual pelagic state variables give reasonable annual simulations which are in general agreement with available calibration data. Major problems remain with some benthic state variables, especially the subtidal ones about which little is known. In aggregate, the model performs well and output at the ecosystem level agrees with field observations. In the Cumberland Basin water column, annual community respiration exceeds phytoplankton net production (1–3 g C m−3) by a factor of 2–5 suggesting the importance of carbon imported from surrounding saltmarshes and the seaward boundary. Annual community respiration and microalgal net production (28 g C m−2) on the other hand are closely balanced in intertidal sediments. Respiration in subtidal sediments is entirely dependent upon sedimented carbon. The model supports the hypothesis that the Cumberland Basin is a heterotrophic ecosystem with low primary production which requires imported organic carbon to support the production and respiration of higher trophic levels.  相似文献   

2.
Gulf Stream frontal disturbances cause nutrient-rich waters to frequently upwell and intrude onto the southeastern United States continental shelf between Cape Canaveral, Florida and Cape Hatteras, North Carolina. Phytoplankton response in upwelled waters was determined with three interdisciplinary studies conducted during April 1979 and 1980, and in summer 1978. The results show that when shelf waters are not stratified, upwelling causes productive phytoplankton (diatom) blooms on the outer shelf. Phytoplankton production averages about 2 g C m−2 d−1 during upwelling events, and ‘new’ production is 50% or more of the total. When shelf waters are stratified, upwelled waters penetrate well onto the shelf as a subsurface intrusion in which phytoplankton production averages about fives times higher than the nutrient-depleted overlying mixed layer. Phytoplankton within the intrusion deplete upwelled NO3 in about 7 to 10 days, at which point no further net increase in phytoplankton biomass occurs.Current meter records show that upwelling occurs roughly 50% of the time on the outer shelf during November to April (shelf not stratified), and we estimate that seasonal primary production in upwelled waters is 175 g C m−2 6 months−1 of which at least 50% is ‘new’ production. More than 90% of outer shelf primary and ‘new’ production occurs during upwelling and thus upwelling is the dominant process affecting primary productivity of the outer shelf. Our seasonal estimates of outer shelf primary and ‘new’ production are, respectively, three and ten times higher than previous estimates that did not account for upwelling.  相似文献   

3.
The aim of this study is to explore the contribution of living phytoplankton carbon to vertical fluxes in a coastal upwelling system as a key piece to understand the coupling between primary production in the photic layer and the transfer mechanisms of the organic material from the photic zone. Between April 2004 and January 2005, five campaigns were carried out in the Ría de Vigo (NW Iberian Peninsula) covering the most representative oceanographic conditions for this region. Measurements of particulate organic carbon (POC), chlorophyll-a (chl a), phaeopigments (phaeo), and identification of phytoplankton species were performed on the water column samples and on the organic material collected in sediment traps.The POC fluxes measured by the sediment traps presented no seasonal variation along the studied period ranging around a mean annual value of 1085±365 mg m−2 d−1, in the upper range of the previously reported values for other coastal systems. The fact that higher POC fluxes were registered during autumn and winter, when primary production rates were at their minimum levels points to a dominant contribution of organic carbon from resuspended sediments on the trap collected material. On the contrary, fluxes of living phytoplankton carbon (Cphyto) and chl a clearly presented a seasonal trend with maximum values during summer upwelling (546 mg m−2 d−1 and 22 mg chl m−2 d−1, respectively) and minimum values during winter (22 mg m−2 d−1 and 0.1 mg chl m−2 d−1, respectively). The contribution of Cphyto to the vertical flux of POC ranged between 2% and 49% in response to the pelagic phytoplankton community structure. Higher values of Cphyto fluxes were registered under upwelling conditions which favour the dominance of large chain-forming diatoms (Asterionellopsis glacialis and Detonula pumila) that were rapidly transferred to the sediments. By contrast, Cphyto fluxes decreased during the summer stratification associated with a pelagic phytoplankton community dominated by single-cell diatoms and flagellates. Minimal Cphyto fluxes were observed during the winter mixing conditions, when the presence of the benthic specie Paralia sulcata in the water column also points toward strong sediment resuspension.  相似文献   

4.
A month-long investigation of phytoplankton biomass and primary production (PP) was carried out during a harmful algal bloom (HAB) in Daya Bay, China, in 2003. During the bloom, the phytoplankton community was dominated by Scrippsiella trochoidea and Chattonella marina. The phytoplankton biomass (Chl a) and PP reached peak levels of 519.21 mg m−3 and 734.0 mgC m−3 h−1, respectively. Micro-phytoplankton was the key contributor to Chl a and PP in a cage-culture area and in the adjacent HAB-affected waters, with percentages of up to 82.91% and 84.94%, respectively. The HAB had complicated relationships with hydrological and meteorological factors in Daya Bay. However, the water around the cage-culture area always showed statistically greater phytoplankton biomass and nutrient loadings than in adjacent waters, suggesting that this was the “trigger area” of the bloom. The spatial and temporal distribution of diverse HABs in Daya Bay, their ecological characteristics, and their environmental impacts are also discussed in this paper.  相似文献   

5.
The flux of suspended particulate material across the mouth of a well-mixed estuary was measured over 12 months. Samples were taken over one neap and one spring tidal cycle each month and analysed for total suspended particulate material, inorganic and organic particulates, particulate organic carbon and particulate organic nitrogen. Water volume transport at discrete time-steps were determined by means of a one-dimensional hydrodynamic model, calibrated for each tidal cycle sampled. Net transport varied between tidal cycles with regard to direction (import or export) and magnitude. Annual budgets revealed a net export of 5306 tonne of total suspended particulate material (3900 tonne of inorganic particulates, 1286 tonne of particulate organic carbon and 120 tonne of particulate organic nitrogen). The sources of particulate organic carbon are mainly from saltmarshes (194 g POC m2y1) and from intertidal invertebrate production (586 g POC m−2y−1).  相似文献   

6.
We investigated trophic transfer efficiency in the pelagic food chain of deep, oligotrophic Lake Stechlin (Germany) by analyses of the primary, secondary, and fish production. Primary production between April and November 2000 was estimated at 78 g C m−2, pelagic secondary production at 14 g C m−2, and production of the main planktivorous fish species [European cisco, Coregonus albula (L.)] at 0.77 g C m−2. Thus, trophic transfer efficiency between primary and pelagic secondary production was around 18%, whereas between pelagic and fish production around 6%. The high efficiency at the first step of the chain is discussed to be due to the high food quality in oligotrophic lakes due to the dominance of Bacillariophyceae and Chlorophyceae rich in essential fatty acids. In turn, the relatively low trophic transfer efficiency between the secondary and the fish production is mainly explained by the avoidance of calanoid copepods as food source by the ciscoes. Concerning the trophic transfer efficiency, results from this study support the general assumption of a 10% transfer between neighbouring trophic levels within ecosystems.  相似文献   

7.
The use of phytoplankton patterns of diversity for algal bloom management   总被引:1,自引:0,他引:1  
Guillermo Chalar   《Limnologica》2009,39(3):200-208
Many biotic and abiotic processes contribute to variability in phytoplankton diversity in aquatic ecosystems. Depending on their intensity and on their frequency, these may drive non-equilibrium dynamics and enhance the species diversity. Different studies propose that biodiversity buffers ecosystem functioning against environmental fluctuations leading to more predictable aggregate community or ecosystem properties. Salto Grande reservoir is polymictic and eutrophic with recurrent summer cyanobacterial blooms. The aim of this study was to determine the key variable(s) related with phytoplankton diversity in order to predict the possible occurrence of an algal bloom at the ecosystem. A preliminary analysis of the data matrix suggested non-linear relationships between diversity and the selected variables: phytoplankton abundance and the vertical attenuation coefficient (Kd). The best function fitting of the scatter plot of phytoplankton diversity versus phytoplankton abundance was a rational function. The inflection point of phytoplankton diversity estimated by the second derivate of this function was 2.7 bit cell−1 which corresponded to an abundance of 3000 cells ml−1. The relationship of phytoplankton diversity and vertical attenuation coefficient values also show a humped distribution pattern (Gauss function). The inflection point of this function corresponded to a diversity value of 1.9 bit cell−1 and 2.5 m−1 for Kd. These inflection points were, respectively, related with the resource competition among the present species and the light limitation conditions. The showed patterns of diversity and the estimated threshold values could be integrated to construct a predictive model for the reservoir based on phytoplankton diversity and the probable ambient conditions of the reservoir.  相似文献   

8.
A vacuum microbalance technique has been used to determine the specific surface areas and porosities of suspended solids and sediments from two turbid estuaries. In the Tamar Estuary, the suspended solids had specific surface areas in the range 8–20 m2 g−1 whereas the sediments were in the range 5–15 m2 g−1. Sediments from the iron-rich system of Restronguet Creek were in the range 5–26 m2 g−1. The specific surface areas and porosities of the particles were influenced by the carbon and non-detrital iron contents. The results are relevant to sorption behaviour of dissolved trace constituents in the presence of natural particles.  相似文献   

9.
Phytoplankton size structure plays a significant role in controlling the carbon flux of marine pelagic ecosystems. The mesoscale distribution and seasonal variation of total and size-fractionated phytoplankton biomass in surface waters, as measured by chlorophyll a (Chl a), was studied in the Southern Yellow Sea using data from four cruises during 2006–2007. The distribution of Chl a showed a high degree of spatial and temporal variation in the study area. Chl a concentrations were relatively high in the summer and autumn, with a mean of 1.42 and 1.27 mg m−3, respectively. Conversely, in the winter and spring, the average Chl a levels were only 0.98 and 0.99 mg m−3. Total Chl a showed a clear decreasing gradient from coastal areas to the open sea in the summer, autumn and winter cruises. Patches of high Chl a were observed in the central part of the Southern Yellow Sea in the spring due to the onset of the phytoplankton bloom. The eutrophic coastal waters contributed at least 68% of the total phytoplankton biomass in the surface layer. Picophytoplankton showed a consistent and absolute dominance in the central region of the Southern Yellow Sea (>40%) in all of the cruises, while the proportion of microphytoplankton was the highest in coastal waters. The relative proportions of pico- and nanophytoplankton decreased with total biomass, whereas the proportion of the micro-fraction increased with total biomass. Relationships between phytoplankton biomass and environmental factors were also analysed. The results showed that the onset of the spring bloom was highly dependent on water column stability. Phytoplankton growth was limited by nutrient availability in the summer due to the strong thermocline. The combined effects of P-limitation and vertical mixing in the autumn restrained the further increase of phytoplankton biomass in the surface layer. The low phytoplankton biomass in winter was caused by vertical dispersion due to intense mixing. Compared with the availability of nutrients, temperature did not seem to cause direct effects on phytoplankton biomass and its size structure. Although interactions of many different environmental factors affected phytoplankton distributions, hydrodynamic conditions seemed to be the dominant factor. Phytoplankton size structure was determined mainly by the size-differential capacity in acquiring resource. Short time scale events, such as the spring bloom and the extension of Yangtze River plume, can have substantial influences, both on the total Chl a concentration and on the size structure of the phytoplankton.  相似文献   

10.
Nutrients migrating from agrocenoses through drainage effluents are retained in a field pond. Studies were carried out concerning the effectiveness of this process in an aquatic environment in the conditions of development of phytoplankton and submersed and floating-leaved macrophytes (1987), in the state of phytoplankton dominance (1988), and, in a swamp environment, in the state of dominance of emergent macrophytes (1991).The greatest effectiveness of this process was found in the conditions of development of aquatic plants, i.e. submersed and folating-leaved macrophytes and phytoplankton. In the warm season of 1987 the retention of nutrients (in g · m–2) was: TN — 7.20, TP — 3.5, K — 3.80, Ca — 119, and Mg — 8.2. When the euglenoid phytoplankton dominated, the level of retention was slightly higher and the export of Norg was also noted (3.27 g · m–2 season–1). In the case of dominance of emergent macrophytes, a reduction in the TN load, particularly in N-NO3 (by 3.67 m–2 season–1), occurred, though at the same time a release of P, K, and Mg was noted. The export exceeded the import of TP by 0.44, K by 15.3, and Mg by 1.4 g · m–1. The conditions for the functioning of a field pond as a sink for nutrients migrating from agroecosystems to surface waters were determined.  相似文献   

11.
The seasonal and interannual variability in the phytoplankton community in Liverpool Bay between 2003 and 2009 has been examined using results from high frequency, in situ measurements combined with discrete samples collected at one location in the bay. The spring phytoplankton bloom (up to 29.4 mg chlorophyll m−3) is an annual feature at the study site and its timing may vary by up to 50 days between years. The variability in the underwater light climate and turbulent mixing are identified as key factors controlling the timing of phytoplankton blooms. Modelled average annual gross and net production are estimated to be 223 and 56 g C m−2 year−1, respectively. Light microscope counts showed that the phytoplankton community is dominated by diatoms, with dinoflagellates appearing annually for short periods of time between July and October. The zooplankton community at the study site is dominated by copepods and use of a fine mesh (80 μm) resulted in higher abundances of copepods determined (up to 2.5 × 106 ind. m−2) than has previously reported for this location. There is a strong seasonal cycle in copepod biomass and copepods greater than 270 μm contribute less than 10% of the total biomass. Seasonal trends in copepod biomass lag those in the phytoplankton community with a delay of 3 to 4 months between the maximum phytoplankton biomass and the maximum copepod biomass. Grazing by copepods exceeds net primary production at the site and indicates that an additional advective supply of carbon is required to support the copepod community.  相似文献   

12.
Bacterioplankton productivity, numbers, and cell specific activity were studied in nearshore waters of the southeastern U.S. continental shelf during seasons of maximum freshwater discharge. In April 1984, coastal waters were stratified from normal spring discharge and typical northeastward wind stress. In April 1985, shelf waters were vertically homogeneous due to below normal runoff and southwestward wind stress. In 1984, nearshore bacterial productivity ranged from 7.0 to 14.7 × 106 cells l−1 h−1 and midshelf rates were 40–50% less. In 1985, nearshore productivity ranged from 0.9 to 2.4 × 106 cells 1−1 h−1, and productivity was extremely patchy over the entire shelf. The cell-specific activity (thymidine incorporation per cell) suggests that although productivity was high in 1984, only a fraction of the bacterioplankton was actively growing or incorporating thymidine (0.9–2.9 × 10−21 mol cell−1 h−1). In 1985, a higher percentage of cells appeared to be active and incorporating thymidine (5–13 × 10−21mol cell−1h−1) even though productivity was low. Hydrographic conditions along the southeastern coastline may have had a significant impact on the overall community structure and carbon flow through the microbial food web. When coastal waters were stratified in 1984, bacterial biomass was a significant percentage (35–320%) of the phytoplankton biomass. During vertically homogeneous conditions of 1985, bacterial production and biomass were a small percentage (2–13%) of the phytoplankton production and biomass across the shelf. The interannual variation in the microbial food web was attributed to the interannual variability of the southeastern U.S. hydrology due to changes in freshwater discharge and wind direction and intensity. The ecological implications of these results extend to the potential impact of seasonal microbial food webs on nearshore allochothonous and autochothonous organics before removal from the southeastern U.S. coastline.  相似文献   

13.
In order to study the sediment response to different addition of organic matter, we added cultures of the dinoflagellates Scrippsiella hangoei and Woloszynskia halophila and the diatom Pauliella taeniata to aquaria containing natural sediment. The biomass added was 1550–3260 mg C m−2, and in the control, no biomass was added (n=3). Oxygen profiles at the sediment–water interface and inorganic nutrients in the near bottom water were determined once a week. In the additions of P. taeniata and W. halophila the sediment quickly became anoxic, and subsequently there was a flux of >1 mmol PO43− m−2 d−1 out of the sediment in these treatments. The majority of the released P came from P stored in the sediment and not from the organic phosphorus added. The result was very different for the S. hangoei addition. This species underwent a life cycle change to form temporary cysts. During this process there was a net uptake of nutrients. After the formation of cysts the concentration of inorganic nutrient was similar to that of the control. Cysts generally survive for long periods in the sediment (months to years) before germinating, but can also be permanently buried in the sediment. The novel idea presented here is that the phytoplankton composition may directly affect sediment processes such as oxygen consumption and phosphorus release, through species-specific life cycle changes and yields of resting stages produced prior to sedimentation. This can be an important aspect of nutrient cycling in eutrophic waters, like the Baltic Sea, where there is large year-to-year difference in the amount of resting stages settling at the sea floor, mainly due to differences in abundance of diatoms and dinoflagellates during the spring bloom. If yields of resting stages change, e.g. due to changes in the phytoplankton community, it may lead to alterations in the biogeochemical cycling of nutrients.  相似文献   

14.
During July and August 1981 subsurface intrusion of upwelled nutrient-rich Gulf Stream water was the dominant process affecting temporal and spatial changes in phytoplankton biomass and productivity of the southeastern United States continental shelf between 29 and 32°N latitude. Intruded waters in the study area covered as much as 101 km including virtually all of the middle and outer shelf and approximately 50% of the inner shelf area.Within 2 weeks following a large intrusion event in late July, middle shelf primary production and Chl a reached 3 to 4 gC m d−1 and 75 mg m, respectively. At the peak of the bloom 80% of the water column primary production occurred below the surface mixed-layer, and new primary production (i.e., NO3-supported) exceeded 90% of the total. Chl a-normalized photosynthetic rates were very high as evidenced by high mean assimilation number (15.5 mg C mg Chl a−1 h−1), high mean α (14 mg C mg Chl a−1 Ein−1 m), and no photoinhibition. As a result of the high photosynthetic rates, mean light-utilization index (Ψ) was 2 to 3 times higher than reported for temperature sub-arctic and arctic waters.The results imply a seasonal (June to August) middle shelf production of 150 g C m−1, about 15% higher than previous estimates of annual production on the middle shelf. Intrusions of the scale we observed in 1981 may not occur every summer. However, when such events do occur, they are by far the most important processes controlling summer phytoplankton dynamics of the middle and outer shelf and of the inner shelf in the southern half of the study area.  相似文献   

15.
We examined the effects of freshwater flow and light availability on phytoplankton biomass and production along the Louisiana continental shelf in the region characterized by persistent spring–summer stratification and widespread summer hypoxia. Data were collected on 7 cruises from 2005 to 2007, and spatially-averaged estimates of phytoplankton and light variables were calculated for the study area using Voronoi polygon normalization. Shelf-wide phytoplankton production ranged from 0.47 to 1.75 mg C m−2 d−1 across the 7 cruises. Shelf-wide average light attenuation (kd) ranged from 0.19–1.01 m−1 and strongly covaried with freshwater discharge from the Mississippi and Atchafalaya Rivers (R2=0.67). Interestingly, we observed that the euphotic zone (as defined by the 1% light depth) extended well below the pycnocline and to the bottom across much of the shelf. Shelf-wide average chlorophyll a (chl a) concentrations ranged from 1.4 to 5.9 mg m−3 and, similar to kd, covaried with river discharge (R2=0.83). Also, chl a concentrations were significantly higher in plume versus non-plume regions of the shelf. When integrated through the water-column, shelf-wide average chl a ranged from 26.3 to 47.6 mg m−2, but did not covary with river discharge, nor were plume versus non-plume averages statistically different. The high integrated chl a in the non-plume waters resulted from frequent sub-pycnocline chl a maxima. Phytoplankton production rates were highest in the vicinity of the Mississippi River bird's foot delta, but as with integrated chl a were not statistically different in plume versus non-plume waters across the rest of the shelf. Based on the vertical distribution of light and chl a, a substantial fraction of phytoplankton production occurred below the pycnocline, averaging from 25% to 50% among cruises. These results suggest that freshwater and nutrient inputs regulate shelf-wide kd and, consequently, the vertical distribution of primary production. The substantial below-pycnocline primary production we observed has not been previously quantified for this region, but has important implications about the formation and persistence of hypoxia on the Louisiana continental shelf.  相似文献   

16.
Sediment traps were deployed in the Gulf of Papua in June–July 1997, to determine fluxes of organic matter and inorganic elements from the photic zone to deeper waters at the base of the continental slope and in the northern Coral Sea. Three stations, ranging from 900 to 1500 m depth, had “shallow” traps at 300 m below the water surface and “deep” traps set 100 m above the bottom. Infiltrex II water samplers collected particulate and dissolved organic matter from the Fly, Purari and Kikori rivers, and near-surface water from the shelf of the Gulf of Papua. Samples were analysed for molecular organic biomarkers to estimate the sources of organic carbon and its cycling processes.Dry weight fluxes from the shallow traps ranged from 115 to 181 mg m−2 day−1 and particulate organic carbon (POC) fluxes ranged from 1.2 to 1.9 mM OC m−2 d−1 with molar organic carbon to particulate nitrogen ratios (C/N) ranging from 6.0 to 6.5. Fluxes in deep traps were likely influenced by both early diagenesis and entrapment of resuspended shelf sediments. Dry weight fluxes in deep traps ranged from 106 to 574 mg m−2 day−1 and POC fluxes ranged from 0.6 to 1.5 mM OC m−2 d−1, with C/N ratios ranging from 8.5 to 10.8. 13C/12C ratios were −20.2‰ to −21.7‰ in all trap samples, indicating that most of the settling POC was “marine-derived”. Shallow traps had δ15N values of 6.3‰ to 7.2‰ while the values in deep traps were 4.9–5.0‰, indicating the N-rich near-surface OC was less degraded than that in the deep traps. The biogenic lipids consisted of hydrocarbon, sterol and fatty acid biomarkers indicative of marine zooplankton, phytoplankton and bacteria. Sterol markers for diatoms and dinoflagellates were abundant in the water samples. Highly branched isoprenoid alkenes, usually attributable to diatoms, were also detected in both water and shallow traps. Traces of C26–C34 n-alcohols indicative of land–plant biomarkers, were found in river water samples and in the shallow sediment traps. A large unresolved complex mixture (UCM) of hydrocarbons, and a uniform distribution of n-alkanes, indicative of petroleum hydrocarbons, were also detected in the traps. Hopane and sterane biomarkers detected in the trap oil were characteristic of a marine carbonate source, and the aromatic hydrocarbon composition distinguished at least two different oil signatures.We concluded that mass and POC fluxes were similar to those reported for other continental shelves and marginal oceans in tropical and subtropical regions. There was a dramatic decrease in POC as particles sank, due to zooplankton repackaging and photochemical and bacterial decomposition. Carbon isotopic and biomarker patterns showed most of the POC in the sediment traps was marine-sourced with only traces of terrestrial input. There was a significant flux of petroleum, which may signal the existence of natural petroleum seeps in this region.  相似文献   

17.
Seasonal changes in water quality were measured in samples taken at various distances from shallow water across mudflat to mangroves during flood period and from mangroves across mudflat to shallow water during ebb period in a subtropical mangrove estuary (Zhangjiang Estuary, Fujian, China). The TN (total dissolved nitrogen), TP (total dissolved phosphorus), COD (chemical oxygen demand), and DOC (dissolved organic carbon) contents during the flood period were significantly higher than those during the ebb period. In contrast, the opposite was true for the POC (particulate organic carbon) content and transparency. The mangroves at Zhangjiang Estuary may trap nutrients at rates of 90.5 g N/m2/yr, 2.2 g TP/m2/yr, and 13.7 g C/m2/yr in the form of DOC, and export POC at a rate of 81.8 g/m2/yr. Our results support the hypothesis that the maintenance of estuarine water quality by mangroves occurs during flood periods.  相似文献   

18.
In the central Skagerrak between Norway and Denmark, the seasonal thermocline tends to be relatively shallow (10 to 15 m) probably due to geostrophic effects. An investigation of phytoplankton distribution in this region in late August 1981 showed the presence of an intense subsurface chlorophyll maximum (up to 30 γ 1 Chl a) at a temperature of <6°C, dominated by coccolithophores and the dinoflagellate, Prorocentrum minimum. Data are presented on the vertical distribution of zooplankton in relation to these phytoplankton populations.  相似文献   

19.
Distribution, abundance and life history characteristics of Mysis relicta were studied in the Feldberg Lake District (Lake Breiter Luzin, Lake Schmaler Luzin, Lake Zansen) located in northeastern Germany. Between July 2001 and November 2002 mysids were collected by vertical net hauls. In order to determine the impact of the current trophic conditions on the distribution of mysids in these lakes, oxygen concentration, total phosphorus, chlorophyll a and water transparency were also measured. All investigated lakes are mesotrophic at present. Lake Breiter Luzin exhibited great seasonal and spatial variations in mysid abundance. Density of adults and juveniles had a mean of 44.9 ± 57.1 and 68.7 ± 99.6 m−2, respectively. Highest abundance of adults was 110.4 ± 76.5 m−2 in summer, lowest abundances of 2.0 ± 4.0 m−2 occurred in spring. For juveniles, highest density of 218.4 ± 174.6 m−2 was detected in summer and lowest of 0.8 ± 1.8 m−2 in winter. No mysids were caught in any of the daytime hauls, but they were widely distributed throughout the water column at night. Size frequency distribution of mysids suggested that reproduction occurred year-round, the most consistent influx of juveniles occurred in early summer and a smaller second cohort in autumn. Highest mysid abundance was 189.2 ± 318.6 adults and 127.0 ± 66.3 juveniles m−2 in Lake Schmaler Luzin, and 59.6 ± 5.6 adults and 79.4 ± 11.2 juveniles m−2 in Lake Zansen. There were great spatial differences in abundance in both lakes.  相似文献   

20.
The Feldberger Haussee, a highly eutrophic stratified hard-water lake located in the eastern part of Germany's Baltic lake district, was selected for a restoration programme combining external nutrient loading reduction and long-term biomanipulation. In 1980 the external phosphorus loading (1.8 g TP m−2 a−1) decreased by 90%, but water quality did not improve significantly within the following 6 years. In 1985 biomanipulation was initiated, with manual removal of cyprinid fish coupled with piscivore introductions as the principal measures. The expected changes in the pelagic community and improvements of water quality occurred after a delay of several years. Despite intensive manual removal of cyprinids and stocking of piscivores, standing stocks of cyprinid fish remained relatively high (130-260 kg ww ha−1) after some years of decline. Compared to the pre-biomanipulation period, mean seasonal (May-September) Daphnia spp. biomass roughly doubled (0.037 g C m−3vs. 0.084 g C m−3). However, the predominance of small (<1 mm) D. cucullata throughout the whole investigation period indicated that planktivory was still substantial. Paired observations between edible phytoplankton biomass and Daphnia spp. indicated that a significant decline in algal stocks would only occur if herbivorous biomass was above a certain threshold (0.2 g C m−3). Reduced external and internal loading in concert with pelagic calcite precipitation were most likely responsible for the decline in lake phosphorus concentrations, thereby substantially improving the water quality of Feldberger Haussee. Although this is not supported by quantitative evidence, we hypothesize that resource-related water quality improvements were caused by changes in the structure of the pelagic community leading to increased calcite precipitation. In agreement with the results of other investigations, we conclude that because stabilising mechanisms such as macrophyte growth were lacking in Feldberger Haussee, biomanipulation in stratified lakes may not be as successful as has been observed in shallow lakes. However, in hard-water lakes, calcite precipitation may act as another stabilising resource-related mechanism. Phosphorus associated with sedimenting calcite particles is insensitive to redox-conditions and may therefore not be re-mobilised from lake sediments even if hypolimnetic oxygen is depleted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号