首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An experimental and theoretical investigation of the effect of pressure on the solubility of FeO in molten iron has been carried out. Analyses of shock-wave compression data on iron oxides combined with measurements of the FeO bond length in “metallic” oxides suggest that the partial molar volume of FeO(V*) dissolved in molten iron is substantially smaller than that of molten wüstite. Hence the effect of high pressure should be to increase the solubility of FeO in molten iron at a given temperature. This inference is confirmed by an experimental investigation of the effect of pressure on the position of the FeFeO eutectic. Thermodynamic calculations based on these experiments yield an estimate forV* which is in reasonable agreement with the theoretical estimates. The experimental value ofV* is used to calculate the effect of high pressure upon the FeFeO phase diagram. Solubility of FeO in molten iron increases sharply with pressure, the liquid immiscibility region contracts and disappears around 20 GPa and it is predicted that the FeFeO phase diagram should resemble a simple eutectic system above about 20 GPa. Analogous calculations predict that the solubility of FeO in molten iron in equilibrium with magnesiowüstite (Mg0.8Fe0.2)O at 2500°C increase from 14 mol.%(P = 0) to above 25 mol.% at 20 GPa. If the core formed by segregation of metallic iron originally dispersed throughout the earth, it seems inevitable that it would dissolved large amounts of FeO, thereby accounting for the observation that the density of the outer core is substantially smaller than that of pure iron under correspondingP, T conditions.  相似文献   

2.
The purposes of this study were to assess if Lake Apopka (FL, USA) was autotrophic or heterotrophic based on the partial pressure of dissolved carbon dioxide (pCO2) in the surface water and to evaluate factors that influence the long-term changes in pCO2. Monthly average pH, alkalinity and other limnological variables collected between 1987 and 2006 were used to estimate dissolved inorganic carbon (DIC), pCO2 and CO2 flux between surface water and atmosphere. Results indicated that average pCO2 in the surface water was 196 μatm, well below the atmospheric pCO2. Direct measurements of DIC concentration on three sampling dates in 2009 also supported pCO2 undersaturation in Lake Apopka. Supersaturation in CO2 occurred in this lake in only 13% of the samples from the 20-year record. The surface-water pCO2 was inversely related to Chl a concentrations. Average annual CO2 flux was 28.2 g C m−2 year−1 from the atmosphere to the lake water and correlated significantly with Chl a concentration, indicating that biological carbon sequestration led to the low dissolved CO2 concentration. Low pCO2 and high invasion rates of atmospheric CO2 in Lake Apopka indicated persistent autotrophy. High rates of nutrient loading and primary production, a high buffering capacity, a lack of allochthonous loading of organic matter, and the dominance of a planktivorous–benthivorous fish food web have supported long-term net autotrophy in this shallow subtropical eutrophic lake. Our results also showed that lake restoration by the means of nutrient reduction resulted in significantly lower total phosphorus (TP) and Chl a concentrations, and higher pCO2.  相似文献   

3.
During the recent 1983 eruption of Kilauea Volcano in Hawaii, a field measurement of electrical resistivity was made in an 1118°C molten lava flow. A probe containing a four electrode. Wenner aray was inserted into the molten basaltic lava flow at a point about 100 m from the erupting vent. The probe indicated an electrical resistivity of approximately 40 ohm-m for the freshly-erupted molten lava. This value is consistent with existing, but sparce, laboratory data for molten rock in this temperature range. This work was performed by Sandia National Laboratories supported by the U.S. Department of Energy under contract number DE-ACO4-76DPO0789.  相似文献   

4.
广东新丰江水库表层水体CO2分压及其影响因素   总被引:1,自引:1,他引:1  
于2012年7月和2013年1月定点采集新丰江水库表层水样,测定水样的理化及生物学参数,计算水体中二氧化碳分压(p(CO_2))大小并分析其时空变化,探讨新丰江水库p(CO_2)的影响因素及其CO_2源/汇机制.结果表明:丰水期p(CO_2)变化范围为16~3545μatm,均值为999μatm,从水库上游到坝前p(CO_2)逐渐升高;枯水期p(CO_2)变化范围为399~1355μatm,均值为756μatm,从水库上游到坝前p(CO_2)呈下降趋势.丰水期p(CO_2)受温度影响较小,与营养盐(NO-3、DSi)浓度呈正相关,与叶绿素a(Chl.a)、溶解有机碳(DOC)浓度呈负相关,与溶解无机碳(DIC)浓度没有明显相关性;枯水期p(CO_2)受温度影响也较小,受碳酸盐体系的影响,与NO-3、DSi、Chl.a、DIC浓度呈正相关,与DOC浓度没有明显相关性.新丰江水库相对于大气来说是一个通量值偏低的CO_2源.  相似文献   

5.
A model of the carbon dioxide system in nature is derived and is used to further our understanding of the factors which control this system in the oceans, the atmosphere, and the sediments.  相似文献   

6.
Exsolution microstructures including ilmenite±garnet in clinopyroxene and rutile in garnet are common in clinopyroxenite and eclogite from the Sulu ultrahigh-pressure (UHP) terrane. In order to understand the phase relations and Ti solubility in both garnet and clinopyroxene in a natural TiO2-bearing system, several experiments at 5-15 GPa, 1000-1400°C were carried out using the multianvil high-pressure apparatus. The Hujianlin ilmenite-rich garnet clinopyroxenite showing exsolution microstructure was selected as starting material, because it closely approaches a composition lying in the TiO2-CaO-MgO-FeO-Al2O3-SiO2 system. Except for minor melt in one experiment at 1400°C and 5 GPa, other run products contain majoritic garnet+clinopyroxene±ilmenite (or rutile) and exhibit neoblastic texture. With increasing pressure, Ti and Ca, Mg and Si contents of neoblastic garnet increase with decreasing Al. The principal coupled substitutions are Ca2+Ti4+→2Al3+ and Si4+Mg2+→2Al3+ responding to majorite component increase. Titanium solubility (0.8-4.5 wt% as TiO2) in garnet and GrtTi/CpxTi ratio have a pronounced positive correlation with pressure between 5 and 15 GPa. On the other hand, the coexisting clinopyroxene contains low Ti (0.17-0.53 wt% as TiO2), and shows no significant pressure effect. Rutile exsolution in garnet is coupled to that of pyroxene exsolution; both are exsolved from majoritic garnet on decompression. Therefore, the amount of such exsolved lamellae is a potential indicator of high-pressure metamorphism in exhumed rocks, whereas the TiO2 content of clinopyroxene coexisting with garnet is not sensitive to pressure change.  相似文献   

7.
为揭示岩溶湿地表层水体二氧化碳分压(pCO2)的时空分布规律及其扩散通量,以我国最大的岩溶湿地贵州威宁草海为研究对象,分别于2019年7月(丰水期)和12月(枯水期)通过网格布点法,系统采集草海表层湿地水体,测定水样理化指标和离子组成,利用PHREEQCI软件计算水体pCO2,并基于Cole提出的气体扩散模型估算水-气界面二氧化碳(CO2)的扩散通量.结果表明:草海湿地表层水体丰水期pCO2的变化范围为0.44~645.65μatm,平均值为(55.94±124.73)μatm;枯水期变化范围为35.48~707.95μatm,平均值为(310.46±173.54)μatm;丰水期水体整体pCO2低于枯水期,空间上两期水体均呈现东部区域及河流入湖口处pCO2较高,而中西部区域pCO2欠饱和的特征.水-气界面CO2的扩散通量在丰水期变化范围为-43.27~27.16 mmol/(m2·d),平均值(-34.49±12.93)mmol/(m2·d),枯水期变化范围为-33.36~28.15 mmol/(m2·d),平均值(-8.02±15.85)mmol/(m2·d),与其他岩溶湖库相比,水生植物丰富的草海在两个极端水文期CO2扩散通量相对较低,总体表现为大气CO2的汇.  相似文献   

8.
Fourier transform infrared (FTIR) microanalysis of pseudotachylytes (i.e. friction-induced melts produced by seismic slip) from the Nojima fault (Japan) reveals that earthquakes almost instantaneously expel 99 wt.% of the wall rock CO2 content. Carbon is exsolved because it is supersaturated in the friction melts. By extrapolation to a crustal-scale fault rupture, large events such as the M7.2 Kobe earthquake (1995) may yield a total production of 1.8 to 3.4 × 103 tons CO2 within a few seconds. This extraordinary release of CO2 can cause a flash fluid pressure increase in the fault plane, and therefore enhance earthquake slip or trigger aftershocks; it may also explain the anomalous discharge of carbon monitored in nearby fault springs after large earthquakes. Because carbon saturation in silicate melts is pressure-dependent, FTIR can be used as a new tool to constrain the maximum depth of pseudotachylyte formation in exhumed faults.  相似文献   

9.
Summary The new, more reliable data on transmisson function of the atmosphere in the region of 12–18 carbon dioxide absorption band are obtained. The radiation chart for calculations of atmospheric heat radiation is built on the base of this data. The dependence of atmospheric heat radiation on CO2 and H2O contents and also on temperature vertical distribution is investigated with the help of the radiation chart. It is shown, that the heat radiation of the atmosphere almost doesn't depend on variations of carbon dioxide content in the atmosphere. The income of atmospheric heat radiation in the region of spectra from 12 to 18 in integrated atmospheric radiation is determined.
, 12–18. . , . , . 12–18 .
  相似文献   

10.
11.
12.
Andesitic–dacitic volcanoes exhibit a large variety of eruption styles, including explosive eruptions, endogenous and exogenous dome growth, and kilometer-long lava flows. The rheology of these lavas can be investigated through field observations of flow and dome morphology, but this approach integrates the properties of lava over a wide range of temperatures. Another approach is through laboratory experiments; however, previous studies have used higher shear stresses and strain rates than are appropriate to lava flows. We measured the apparent viscosity of several lavas from Santiaguito and Bezymianny volcanoes by uniaxial compression, between 1,109 and 1,315?K, at low shear stress (0.085 to 0.42?MPa), low strain rate (between 1.1?×?10?8 and 1.9?×?10?5?s?1), and up to 43.7 % total deformation. The results show a strong variability of the apparent viscosity between different samples, which can be ascribed to differences in initial porosity and crystallinity. Deformation occurs primarily by compaction, with some cracking and/or vesicle coalescence. Our experiments yield apparent viscosities more than 1 order of magnitude lower than predicted by models based on experiments at higher strain rates. At lava flow conditions, no evidence of a yield strength is observed, and the apparent viscosity is best approached by a strain rate- and temperature-dependent power law equation. The best fit for Santiaguito lava, for temperatures between 1,164 and 1,226?K and strain rates lower than 1.8?×?10?4?s?1, is $ \log {\eta_{\text{app}}} = - 0.738 + 9.24 \times {10^3}{/}T(K) - 0.654 \cdot \log \dot{\varepsilon } $ where η app is apparent viscosity and $ \dot{\varepsilon } $ is strain rate. This equation also reproduced 45 data for a sample from Bezymianny with a root mean square deviation of 0.19 log unit Pa?s. Applying the rheological model to lava flow conditions at Santiaguito yields calculated apparent viscosities that are in reasonable agreement with field observations and suggests that internal shear heating may be significant ongoing heat source within these flows, enabling highly viscous lava to travel long distances.  相似文献   

13.
Modeling oil biodegradation is an important step in predicting the long term fate of oil on beaches. Unfortunately, existing models do not account mechanistically for environmental factors, such as pore water nutrient concentration, affecting oil biodegradation, rather in an empirical way. We present herein a numerical model, BIOB, to simulate the biodegradation of insoluble attached hydrocarbon. The model was used to simulate an experimental oil spill on a sand beach. The biodegradation kinetic parameters were estimated by fitting the model to the experimental data of alkanes and aromatics. It was found that parameter values are comparable to their counterparts for the biodegradation of dissolved organic matter. The biodegradation of aromatics was highly affected by the decay of aromatic biomass, probably due to its low growth rate. Numerical simulations revealed that the biodegradation rate increases by 3–4 folds when the nutrient concentration is increased from 0.2 to 2.0 mg N/L.  相似文献   

14.
Mean growing season soil PCO2 data were obtained for 19 regions of the world in nine countries. Bivariate and multiple linear regression analysis with soil log(PCO2) as the dependent variable and TEMP, PRECIP, log(AET), and log(PET) as the four climatic independent variables demonstrated that AET was the best independent predictor of soil PCO2. An improved soil PCO2-AET model was developed by assuming (1) that as AET approaches zero, soil PCO2 approaches the atmospheric value and (2) that there is an upper limit to soil PCO2 at very high AET. This model has the form log(PCO2) = ?3·47 + 2·09 (1 ?e?0·0172 AET) where AET is in mm. It explains 67 per cent of the initial variation in the soil PCO2 data, predicts a soil log(PCO2) of ? 3·47 at AET = 0, and an upper limit of 3·5 per cent (log(PCO2) = ? 1·45) for mean growing season soil PCO2 at AET values of 2000 mm and above. The results of this study suggest that soil PCO2 levels in tropical areas are, on average, higher than those in temperate, alpine, and arctic regions.  相似文献   

15.
FAMOUS basalt 527-1-1 (a high-Mg oceanic pillow basalt) has three generations of spinel which can be distinguished petrographically and chemically. The first generation (Group I) have reaction coronas and are high in Al2O3. The second generation (Group II) have no reaction coronas and are high in Cr2O3 and the third generation (Group III) are small, late-stage spinels with intermediate Al2O3 and Cr2O3. Experimental synthesis of spinels from fused rock powder of this basalt was carried out at temperatures of 1175–1270°C and oxygen fugacities of 10?5.5 to 10?10 atm at 1 atm pressure. Spinel is the liquidus phase at oxygen fugacities of 10?8.5 atm and higher but it does not crystallize at any temperature at oxygen fugacities less than 10?9.5. The composition of our spinels synthesized at 1230–1250°C and 10?9 atmfO2 are most similar to the high-Cr spinels (Group II) found in the rock. Spinels synthesized at 1200°C and 10?8.5 atmO2 are chemically similar to the Group III spinels in 527-1-1. We did not synthesize spinel at any temperature or oxygen fugacity that are similar to the high-Al (Group I) spinel found in 527-1-1. These results indicate that the high-Cr (Group II) spinel is the liquidus phase in 527-1-1 at low pressure and Group III spinel crystallize below the liquidus (~1200°C) after eruption of the basalt on the sea floor. The high-Al spinel (Group I) could have crystallized at high pressure or from a magma enriched in Al and perhaps Mg compared to 527-1-1.  相似文献   

16.
Increase in the nighttime high-latitude nonthermal emissions in the mesosphere and lower thermosphere in the 4.3 and 15 μm CO2 bands during solar proton events has been estimated for the first time. The estimations have been performed for protons with energies not lower than 1 MeV precipitating into the atmosphere. A strong increase in the 4.3 μm emission can be anticipated during the above events; however, a substantial increase in the 15 μm emission is improbable. The 4.3 μm emission can increase only above approximately 80 km regardless of the energy of precipitating protons. The excitation of CO2 vibrational states, transitions from which generate the 4.3 μm emission, is caused by the vibrational excitation of N2 molecules due to collisions with secondary electrons, produced during solar proton events, and the following transfer of this excitation to CO2(0001) molecules during N2-CO2 collisions. Original Russian Text ? V.P. Ogibalov, S.N. Khvorostovskii, G.M. Shved, 2006, published in Geomagnetizm i Aeronomiya, 2006, Vol. 46, No. 2, pp. 159–167.  相似文献   

17.
 The role of carbon dioxide in the dynamics of magma ascent in explosive eruptions is investigated by means of numerical modeling. The model is steady, one-dimensional, and isothermal; it calculates the separated flow of gas and a homogeneous mixture of liquid magma and crystals. The magma properties are calculated on the basis of magma composition and crystal content and are allowed to change along the conduit due to pressure decrease and gas exsolution. The effect of the presence of a two-component (water + carbon dioxide) exsolving gas phase is investigated by performing a parametric study on the CO2/(H2O+CO2) ratio, which is allowed to vary from 0 to 0.5 at either constant total volatile or constant water content. The relatively insoluble carbon dioxide component plays an important role in the location of the volatile-saturation and magma-fragmentation levels and in the distribution of the flow variables in the volcanic conduit. In detail, the results show that an increase of the proportion of carbon dioxide produces a decrease of the mass flow rate, pressure, and exit mixture density, and an increase of the exit gas volume fraction and depth of the fragmentation level. A relevant result is the different role played by water and carbon dioxide in the eruption dynamics; an increasing amount of water produces an increase of the mass flow rate, and an increasing amount of carbon dioxide produces a decrease. Even small amounts of carbon dioxide have major consequences on the eruption dynamics, implying that the multicomponent nature of the volcanic gas must be taken into account in the prediction of the eruption scenario and the forecasting of volcanic hazard. Received: 6 March 1998 / Accepted: 28 October 1998  相似文献   

18.
19.
We present and analyse a fully coupled physical–biogeochemical model of the uptake and release of carbon dioxide in the Baltic Sea. The modelling includes the interaction between physical (stratification, temperature, salinity, penetration of solar radiation, and ice), chemical (total alkalinity, pH, dissolved inorganic carbon, oxygen, and nutrients), and biological processes (plankton and dissolved organic carbon (DOC)). These processes have been built into an advanced process-oriented coupled basin ocean model that has been extensively explored and validated for the Baltic Sea.  相似文献   

20.
The concentration of greenhouse gases – particularly carbon dioxide (CO2) – in the atmosphere has been on the rise in the past decades. One of the methods which have been proposed to help reduce anthropogenic CO2 emissions is the capture of CO2from large, stationary point sources and storage in deep geological formations. The caprock is an impermeable geological layer which prevents the leakage of stored CO2, and its integrity is of utmost importance for storage security. Due to the high pressure build-up during injection, the caprock in the vicinity of the well is particularly at risk of fracturing. Biofilms could be used as biobarriers which help prevent the leakage of CO2 through the caprock in injection well vicinity by blocking leakage pathways. The biofilm could also protect well cement from corrosion by CO2-rich brine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号