首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Another look at the calculation of fallout tephra volumes   总被引:9,自引:2,他引:9  
The calculation of volumes of fallout tephra layers is difficult because of the nonlinear dependence of thickness on area and because of the extrapolations required at the vent and in distal regions. Calculation using the trapezoidal rule, straight lines on log-log plots of area versus thickness, straight lines on plots of log thickness versus area1/2, and the crystal-concentration method are reviewed and the problems with each method discussed. The method using straight lines on plots of log thickness versus area1/2 is the most geologically reasonable because most deposits thin exponentially from source and therefore plot as straight lines using these coordinates. Errors and uncertainties in previous derivations for using this method are discussed and more general formulas presented. The method is also used to gain perspective on the missing distal volumes calculated by the crystal-concentration method compared to those calculated based only on isopach data.  相似文献   

2.
3.
Sea‐bed diffractions are frequently observed for several of the fields in the Norwegian Sea and the Barents Sea. This is a challenge in time lapse seismic analysis, since diffracted multiples are difficult to remove by processing and therefore is a major source of poor time lapse data quality. In this work we test if the diffractions can be used for enhanced 4D interpretation. By analysing the time‐shift of the sea‐bed diffraction hyperbola between the base and monitor it is tested if changes in water velocity and tides can be estimated. Two models using time lapse diffraction analysis are tested: the first one simply adds time‐shifts for the two branches of the diffraction hyperbola and this average time‐shift is then used to estimate the water velocity change. The other method uses an inversion method based on the diffraction equation for a point diffractor to estimate the velocity change. In‐line common‐midpoint shifts are estimated by subtracting the time‐shifts of both hyperbola branches followed by direct inversion. The diffraction based time‐shifts are compared to time‐shifts estimated by standard cross‐correlation of the sea‐bed reflection. The averaging method gives slightly higher uncertainties, while the inversion using an exact traveltime equation gives similar uncertainties compared to the sea‐bed reflection method.  相似文献   

4.
Since the 1970s, multiple reconstruction techniques have been proposed and are currently used, to extrapolate and quantify eruptive parameters from sampled tephra fall deposit datasets. Atmospheric transport and deposition processes strongly control the spatial distribution of tephra deposit; therefore, a large uncertainty affects mass derived estimations especially for fall layer that are not well exposed. This paper has two main aims: the first is to analyse the sensitivity to the deposit sampling strategy of reconstruction techniques. The second is to assess whether there are differences between the modelled values for emitted mass and grainsize, versus values estimated from the deposits. We find significant differences and propose a new correction strategy. A numerical approach is demonstrated by simulating with a dispersal code a mild explosive event occurring at Mt. Etna on 24 November 2006. Eruptive parameters are reconstructed by an inversion information collected after the eruption. A full synthetic deposit is created by integrating the deposited mass computed by the model over the computational domain (i.e., an area of 7.5 × 104 km 2). A statistical analysis based on 2000 sampling tests of 50 sampling points shows a large variability, up to 50 % for all the reconstruction techniques. Moreover, for some test examples Power Law errors are larger than estimated uncertainty. A similar analysis, on simulated grain-size classes, shows how spatial sampling limitations strongly reduce the utility of available information on the total grain size distribution. For example, information on particles coarser than ?(?4) is completely lost when sampling at 1.5 km from the vent for all columns with heights less than 2000 m above the vent. To correct for this effect an optimal sampling strategy and a new reconstruction method are presented. A sensitivity study shows that our method can be extended to a wide range of eruptive scenarios including those in which aggregation processes are important. The new correction method allows an estimate of the deficiency for each simulated class in calculated mass deposited, providing reliable estimation of uncertainties in the reconstructed total (whole deposit) grainsize distribution.  相似文献   

5.
The energy cone concept has been adopted to describe some kinds of surge deposits. The energy cone parameters (height and slope) are evaluated through a regression technique which utilizes deposit thicknesses and the correspondent quotes and heights of the energy cone. The regression also allows to evaluate a coefficient of proportionality linking the deposit thickness to the distance between topographic surface and energy line for a given eruption. Moreover, if an accurate topography is available (in this case a reconstruction of a digitalized topography of the Phlegrean Fields and of the Vesuvius), the energy cone parameters, obtained by the backfitted technique, can be used to evaluate the order of magnitude of the deposit volumes.The hazard map for a surge localized at the Solfatara (Phlegraean Fields, Naples) has been computed. The values of the energy cone parameters and the volume have been assumed to be equal to those estimated with the regression technique applied to a past surge eruption in the same area.  相似文献   

6.
A study of pyroclastic deposits from the 1815 Tambora eruption reveals two distinct phases of activity, i.e., four initial tephra falls followed by generation of pyroclastic flows and the production of major co-ignimbrite ash fall. The first explosive event produced minor ash fall from phreatomagmatic explosions (F-1 layer). The second event was a Plinian eruption (F-2) correlated to the large explosion of 5 April 1815, which produced a column height of 33 km with an eruption rate of 1.1 × 108 kg/s. The third event occurred during the lull in major activity from 5 to 10 April and produced minor ash fall (F-3). The fourth event produced a 43-km-high Plinian eruption column with an eruption rate of 2.8 × 108 kg/s during the climax of activity on 10 April. Although very energetic, the Plinian events were of short duration (2.8 h each) and total erupted volume of the early (F-1 to F-4) fall deposits is only 1.8 km3 (DRE, dense rock equivalent). An abrupt change in style of activity occurred at end of the second Plinian event with onset of pyroclastic flow and surge generation. At least seven pyroclastic flows were generated, which spread over most of the volcano and Sanggar peninsula and entered the ocean. The volume of pyroclastic flow deposits on land is 2.6 km3 DRE. Coastal exposures show that pyroclastic flows entering the sea became highly fines depleted, resulting in mass loss of about 32%, in addition to 8% glass elutriation, as indicated by component fractionation. The subaqueous pyroclastic flows have thus lost about 40% of mass compared to the original erupted mixture. Pyroclastic flows and surges from this phase of the eruption are stratigraphically equivalent to a major ash fall deposit (F-5) present beyond the flow and surge zone at 40 km from the source and in distal areas. The F-5 fall deposit forms a larger proportion of the total tephra fall with increasing distance from source and represents about 80% of the total at a distance of 90 km and 92% of the total tephra fall from the 1815 eruption. The field relations indicate that the 20-km3 (DRE) F-5 deposit is a co-ignimbrite ash fall, generated largely during entrance of pyroclastic flows into the ocean. Based on the observed 40% fines depletion and component fractionation from the flows, the large volume of the F-5 co-ignimbrite ash requires eruption of 50 km3 (DRE, 1.4 × 1014 kg) pyroclastic flows.  相似文献   

7.
Forward modelling of the crustal structure of the eastern Honshu Island, Japan, was made based on the group velocities ofPL-waves in the period range of 20–30 s. The observed values of group velocity were obtained by appling the multiple filter technique to the seismograms for earthquakes with the epicentral distance ranging from 500 to 1000 km. The theoretical values were calculated using Oliver and Major's method to find the best fit dispersion curve in the least-squares sense. The obtained structural model has considerably high crustal velocities compared to other previous models. It was shown that thePL-wave group velocity in the period range of interest was most sensitive to seismic velocities of the center of the crust. Numerical experiments confirmed the applicability of the approximation methods employed to obtain both observed and theoretical group velocities.  相似文献   

8.
Models are presented for the cooling of tephra during fallout from explosive eruption columns. All tephra particles are assumed to be spherical and heat loss is considered to occur by radiation and forced convection. Grainsize is the most important control on the cooling. Clasts larger than 25 cm diameter suffer little heat loss, whereas clasts smaller than 1.6 cm diameter are completely cold on deposition. Large clasts form a well-developed chilled margin during fallout and a breadcrust texture can result if vesiculation of the hot interior occurs. The results of these calculations are combined with a model for fallout from the margins of an eruption column to predict the proximal temperature variation with distance from the vent in the deposits. Temperatures high enough for dense welding in proximal fallout deposits can extend from a few hundred metres to nearly 2 km. Extent of the welded facies increases with column height, mean grainsize and magmatic temperature. Welded fallout deposits are only predicted to occur for high temperature silicic and intermediate magmas with temperatures >850°C. These predictions are in good agreement with observations, in that welded fallout deposits have only been documented in high temperature dacites, rhyolites and panellerites. A postulated fallout origin for welded rocks that can be traced significantly further than 2 km from vent must be suspect.  相似文献   

9.
10.
The relationships among the thickness and grain-size of tephra-fall deposits and the volumetric flow rate of their source umbrella clouds are analytically obtained. The logarithm of the ratio of the probability distribution function based on grain size (ln R f) in fall deposits at two localities from the vent (r 1 and r 2, respectively) has a linear relationship with the particle-settling velocity, v, as: where Q is the volumetric flow rate of the umbrella cloud and A is a constant for a given pair of localities. The volumetric flow rate of the umbrella cloud can be estimated from granulometric data using this formula. Generally, the thickness–distance relationship of tephra-fall deposits depends on the initial grain-size distribution and the volumetric flow rate of the umbrella cloud. The empirical relationship of the exponential thinning behaviour can be extrapolated towards infinite distance only for a specific initial grain size which is similar to a log-normal distribution with σ φ=2.5, otherwise it holds only in a limited range of distances. In applying these results to the 1991 eruption of Mt. Pinatubo, it is shown that the volumetric flow rate of the umbrella cloud during the climactic phase of 15 June was approximately 5×1010 m3/s, which is fairly consistent with the expansion rate of the umbrella cloud observed in the satellite images. Received March 20, 1993/Accepted September 11, 1993  相似文献   

11.
A theoretical model of clast fallout from convective eruption columns has been developed which quantifies how the maximum clast size dispersal is determined by column height and wind strength. An eruption column consists of a buoyant convecting region which rises to a heightH B where the column density equals that of the atmosphere. AboveH B the column rises further to a heightH T due to excess momentum. BetweenH T andH B the column is forced laterally into the atmosphere to form an upper umbrella region. Within the eruption column, the vertical and horizontal velocity fields can be calculated from exprimental and theoretical studies and consideration of mass continuity. The centreline vertical velocity falls as a nearly linear function over most of the column's height and the velocity decreases as a gaussian function radially away from the centreline. Both column height and vertical velocity are strong functions of magma discharge rate. From calculations of the velocity field and the terminal fall velocity of clasts, a series of particle support envelopes has been constructed which represents positions where the column vertical velocity and terminal velocity are equal for a clast of specific size and density. The maximum range of a clast is determined in the absence of wind by the maximum width of the clast support envelope.The trajectories of clasts leaving their relevant support envelope at its maximum width have been modelled in columns from 6 to 43 km high with no wind and in a wind field. From these calculations the shapes and areas of maximum grain size contours of the air-fall deposit have been predicted. For the no wind case the theoretical isopleths show good agreement with the Fogo A plinian deposit in the Azores. A diagram has been constructed which plots, for a particular clast size, the maximum range normal to the dispersal axis against the downward range. From the diagram the column height (and hence magma discharge rate) and wind velocity can be determined. Historic plinian eruptions of Santa Maria (1902) and Mount St. Helens (1980) give maximum heights of 34 and 19 km respectively and maximum wind speeds at the tropopause of m/s and 30 m/s respectively. Both estimates are in good agreement with observations. The model has been applied to a number of other plinian deposits, including the ultraplinian phase of theA.D. 180 Taupo eruption in New Zealand which had an estimated column height of 51 km and wind velocity of 27 m/s.  相似文献   

12.
Infrared stimulated luminescence (IRSL) properties of the Old Crow tephra and bracketing loess from the Halfway House site in Central Alaska are investigated in order to test newly developed techniques, including SAR and recently proposed fading corrections. Loess samples investigated show a standard growth of luminescence with regenerative dose while the tephra sample is less sensitive by an order of magnitude and saturates at lower dose. The growth curves obtained using multiple-aliquots regeneration (MAR) saturate at a higher value than those with the single-aliquot regeneration (SAR) protocol. Fading rate determinations for these samples are shown to be imprecise and no noticeable difference was observed between loess and tephra materials. Anomalous fading corrections using an average g value of 5% are applied to the natural test dose signal intensity using the dose rate correction (DRC) method. IRSL ages obtained for loess are in agreement with the expected age while the tephra age is lower than expected, suggesting the measured fading rate is underestimated for this material.  相似文献   

13.
Tephrostratigraphic correlations commonly rely on geochemical composition supported by additional constraints (e.g., multiple stratigraphically ordered tephra, geochronological-stratigraphical constraints, and isotopic determinations), which provide key clues to restrict the number of possible candidates and disambiguate the correlation of a specific tephra among compositionally similar volcanic sources/tephra. However, such additional data may not be available or acquirable, leaving the geochemical data as sole, but challenging viable approach. In this study, two geochronologically poorly constrained late Pleistocene tephra from the eastern Adriatic –from a sand profile on Mljet Island (M-53/2) and from a marine sediment core from Pirovac Bay (PROS 721)– were correlated to known eruptions using only geochemical data (major and trace elements of glass shards), which were treated using both log ratio transformed and raw data. After the statistical treatment of the geochemical data using bivariate plots, linear discrimination analyses and selbal algorithm, the tephra M-53/2 and PROS 721 were suitably correlated with the widespread tephra generated during the Campi Flegrei eruptions of Massereia del Monte (Y-3 marine tephra, 29.0 ± 0.8 ka) and Neapolitan Yellow Tuff (14.5 ± 0.4 ka), respectively. This study showed that the correlation was hardly tenable when using the raw data, as opposed to compositional approach, which yielded satisfactory results. As a consequence, the distribution of Massereia del Monte/Y-3 tephra extended far toward the northeast, while a better chronological model, for reconstructing the paleoenvironmental changes at the Pirovac Bay location and the Holocene sea-level dynamics, could be obtained.  相似文献   

14.
The mass distribution and sorting of tephra produced in the plinian phase of the 1970 Hekla eruption was controlled by the particle size distribution, the height of the eruption column, and velocity of transport. Near the volcano the mass distribution of soluble fluorine was controlled by particle size of the deposits, but approaches the mass distribution of the tephra at longer distances. Adsorbed soluble fluorine reaches a maximum at a distance from the volcano determined by the velocity of the transporting medium.SEM studies show the soluble fluorine to be chemically adsorbed on the surface of tephra particles. The adsorption is shown by experiment to occur at temperatures below 600°C in the cooling eruption column. Evaluation of reactions in the eruption column leads to the conclusion that formation of water soluble compounds adhering to tephra is principally controlled by environmental factors and to a lesser degree by the composition of the volcanic gas phase.  相似文献   

15.
Abstract The late Pleistocene Kamitakara Pyroclastic Flow Deposit (KPFD) and its correlative Kasamori (Ks22) Tephra in central Japan are found to preserve stable thermoremanent magnetization (TRM) and detrital remanent magnetization (DRM), respectively. Untilted site‐mean declinations of the KPFD are characterized by a fairly large scatter with easterly deflection, while those of the Ks22 show significantly smaller deflections. Because northerly paleomagnetic directions consistently characterize shallow marine sediments intercalating the Ks22 layer, the directional discordance is not attributed to different acquisition timing between TRM and DRM, but is probably due to a recent tectonic rotation in central Japan. Large scatter in TRM declinations of the KPFD implies that a number of right‐lateral active faults around the depositional area of the pyroclastic flow raised differential rotation of crustal blocks in central Japan, even during the late Pleistocene.  相似文献   

16.
自由表面多次波压制是海底地震仪(Ocean Bottom Seismometer,OBS)数据处理和成像中的难点,OBS数据多次波能量强,周期长,严重影响深层一次反射波的处理和成像.不同于常规拖缆观测系统,OBS数据站点一般相隔较远,仅仅利用检波点稀疏的波场信息难以压制OBS数据中的自由表面多次波.本文采用拖缆数据与OBS数据联合,利用稀疏反演估计(Estimation of Primaries and Multiples by Sparse Inversion,EPSI)方法,研究了OBS数据自由表面多次波压制理论,分析了OBS多次波产生的机理,详细推导了拖缆数据与OBS数据联合预测OBS多次波的EPSI方法基本原理.通过利用拖缆数据的信息,实现了OBS检波点稀疏数据多次波的压制问题.EPSI方法通过稀疏反演直接估计一次反射波,避免了SRME(Surface Related Multiple Elimination)方法中自适应相减对有效信号的损害,保真了一次反射有效信号,理论模拟OBS数据验证了方法的有效性.  相似文献   

17.
The eruption of Novarupta within the Katmai Volcanic Cluster, south-west Alaska, in June 1912 was the most voluminous eruption of the twentieth century but the distal distribution of tephra deposition is inadequately quantified. We present new syntheses of published tephrostratigraphic studies and a large quantity of previously un-investigated historical records. For the first time, we apply a geostatistical technique, indicator kriging, to integrate and interpolate such data. Our results show evidence for tephra deposition across much of Alaska, Yukon, the northern Pacific, western British Columbia and northwestern Washington. The most distal tephra deposition was observed around 2,500?km downwind from the volcano. Associated with tephra deposition are many accounts of acid deposition and consequent impacts on vegetation and human health. Kriging offers several advantages as a means to integrate and present such data. Future eruptions of a scale similar to the 1912 event have the potential to cause widespread disruption. Historical records of tephra deposition extend far beyond the limit of deposition constrained by tephrostratigraphic records. The distal portion of tephra fallout deposits is rarely adequately mapped by tephrostratigraphy alone; contemporaneous reports of fallout can provide important constraints on the extent of impacts following large explosive eruptions.  相似文献   

18.
Tephra fallout from the 2011 Grímsvötn eruption onto Svínafellsjökull, Iceland, created an ice‐ash landscape of a type that is rarely studied but is nevertheless common in glacio‐volcanic regions. We used terrestrial laser scanning (TLS) to measure ice surface topography and absorption at high spatial resolution, confirming ablation rates either reduce or increase under thick (insulating) and thin (reduced albedo) ash deposits, respectively. Fourier transform analysis of the TLS data identified that a three‐fold increase in aerodynamic roughness was attributable to an increase in larger (> 0·2 m) surface features. Moreover, TLS measurements revealed the importance of ash redistribution by meltwater in generating differential melting which modifies roughness and ash patchiness, such that the net effect of these spatial ash–ice feedbacks was to reduce ablation rates by up to 59%. The modulating effects of these previously undocumented feedbacks on ablation rates are, therefore, significant and must be correctly parameterized if ash‐covered glacier mass balances are to be predicted correctly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Volcanic glass shards from three tephra layers at 788, 1457, 1711 m depth in the 2164-m Byrd Station ice core from the West Antarctic Ice Sheet were analysed by electron microprobe. Glass shards within each tephra layer are homogeneous and have peralkaline trachyte compositions. Mt. Takahe, 450 km north-northwest of the drill site is considered the most likely eruptive source, although Toney Mountain, 460 km to the north is also a possible source. Tephra layers in ice cores from the West Antarctic ice sheet may offer a valuable tool for stratigraphic correlation.  相似文献   

20.
Abstract

Agricultural watersheds in the Czech Republic are one of the primary sources of non-point-source phosphorus (P) loads in receiving waters. Since such non-point sources are generally located in headwater catchments, streamflow and P concentration data are sparse. We show how very short daily streamflow and P concentration records can be combined with nearby longer existing daily streamflow records to result in reliable estimates of daily and annual P concentrations and loads. Maintenance of variance streamflow record extension methods (MOVE) can be employed to extend short streamflow records. Constituent load regressions are used to predict daily P constituent loads from streamflow and other time varying characteristics. Annual P loads are then estimated for individual watersheds. Resulting annual P load estimates ranged from 0.21 to 95.4 kg year-1 with a mean value of 11.77 kg year-1. Similarly annual P yield estimates ranged from 0.01 to 0.3 kg ha-1 year-1 with an average yield of 0.07 kg ha-1 year-1. We document how short records of daily streamflow and P concentrations can be combined with a national network of daily streamflow records in the Czech Republic to arrive at meaningful and reliable estimates of annual P loads for small agricultural watersheds.

Citation Beránková, T., Vogel, R. M., Fiala, D. & Rosendorf, P. (2010) Estimation of phosphorus loads with sparse data for agricultural watersheds in the Czech Republic. Hydrol. Sci. J. 55(8), 1417–1426.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号