首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mono Lake is a hypersaline alkaline lake in the high altitude Great Basin desert of eastern California. Algal productivity of the lake is nitrogen-limited, and a contributing source is derived from benthic nitrogen fixation. Lake level and salinity have fluctuated with natural climatic variations but have also been affected by the diversion of tributary streams. This research examines the influence of varied salinity and lake level on the potential for benthic nitrogen fixation in Mono Lake. A sediment-surface microbial mat community was exposed directly, and in acclimated cultures, to a range of Mono Lake salinities under anaerobic incubations and the activity of nitrogenase assayed by acetylene reduction. Activity was stimulated in light, but also occurred in darkness. Over an experimental salinity range from 50 to 150 g L−1 TDS, nitrogenase activity was reduced by 90 per cent, with the activity persisting at the highest salinity being attributable to dark fixation alone. Between a salinity of 50 g L−1, occurring in Mono Lake over 50 years ago, and 100 g L−1, nitrogenase activity was reduced by nearly half. Changes in the area of the littoral zone at varied lake levels also affect the total amount of potential benthic nitrogen fixation in the lake. An accounting of yearly inputs of nitrogen to Mono Lake suggests N2-fixation could contribute as much as 76–81 percent of the total. Inhibition of nitrogen fixation rates by increased salinity could limit the long-term nutrient supply and benthic primary productivity of this ecosystem.  相似文献   

2.
The main limnological features of Lake Issyk-kul are described. The lake is a large (6,236 km2), deep (zm, 668 m), closed lake in eastern Kirgizia. It lies at ∼1,607 m above sea level, but water-levels have been dropping since the last century. It is slightly saline (salinity, ∼6g L−1), with Na+, Mg2+, Cl and SO 4 2− the dominant ions. Nutrient levels are low and the lake is considered ultra-oligotrophic. Characeae dominate the macrophytes. About 300 and 117 taxa of, respectively, phytoplankton and zooplankton have been identified, withArctodiaptomus salinus the most numerous in the zooplankton. Chironomids dominate the benthos. Several endemic taxa of fish occur, of whichLeuciscus bergi was dominant until the 1970s. The fish fauna has been supplemented by many introduced species. Three mysids were introduced in 1965–8 and are now a significant part of the ecosystem. The present annual fish catch permitted is 320 t. The most important value of the lake is as a recreational resource. To promote and sustain this value requires careful, ongoing management. The most significant threats to the lake are local pollution, visitor pressure, and declining water-levels.  相似文献   

3.
Zooplankton collections were made during 1985, 1986, 1988 and 1989 from 17 lakes in Saskatchewan and 3 in Alberta. Salinity ranged from 2.8 to 269 g L−1 (total filtrable residue). A total of 35 species was present in four taxa: Anostraca (3 species), Cladocera (11), Copepoda (7) and Rotifera (14). Species richness was greatest at salinities <7 g L−1 (15–16 species). Lakes with salinities between 7 and 100 g L−1 generally had 6–8 zooplankton species, while the most saline lakes (>100 g L−1) had 2–5 species. The largest concentrations of zooplankton occurred at <30 g L−1, but some species (Brachionus plicatilis, Hexarthra polyodonta, Artemia franciscana, Diaptomus connexus) were abundant at salinities >50 g L−1. Eurysaline species included the rotifersAsplanchna girodi (3–111 g L−1),Brachionus plicatilis (13–146) andKeratella quadrata (2.8–103).Artemia franciscana (33–269—but absent from Big Quill Lake, 49–82),Daphnia similis (3–104).D. connexus (9–82),Diacyclops thomasi (3–72), andCletocamptus albuquerquensis (17 to 126—but never abundant in the plankton). About half the species were restricted to hyposaline waters (3–20 g L−1), but some (Hexarthra fennica, Moina hutchinsoni, Hexarthra polyodonta) occurred only at intermediate salinities. The latter two species were also only present at high pH values (>9.2). There was a trend of decreasing species richness with increasing salinity. TWINSPAN classification of 94 lake samples (six parameters) based on zooplankton species abundances yielded a dendrogram with 14 ‘indicator’ species characteristic of seven lake groups related partly to a salinity gradient, but with other environmental factors such as water column depth, pH, Secchi disk transparency, water temperature and month sampled also influenced lake separation. *** DIRECT SUPPORT *** A02GG004 00002  相似文献   

4.
An overview of recent changes in salinity in the surface waters of the Aral sea basin is given. Total dissolved salts (salinity) in most waters are higher than admissible values for drinking water, and ionic composition has changed with time. Salinity of the ‘Big Sea’ of the Aral was 48 g L−1 in 1998, but has decreased to below 21 g L−1 in the ‘Small Sea’ due to the building of a new dam between the two parts of the Aral Sea.  相似文献   

5.
The northern Great Plains of Canada stretch from the Precambrian Shield near Winnipeg, Manitoba, westward for ∼1,700 km to the Rocky Mountains foothills. This vast region of flat to gently rolling terrain contains a very large number of salt lakes. Major ion chemical data on ∼500 of them are available. Although the average brine (salinity, 37 ppt) is a Na+−SO4 2− type of water, the lakes exhibit a wide range of salinities and ionic compositions. This diversity is confirmed by Q-mode cluster analysis; it identified thirteen major water chemistry types. Most ions display distinct trends, both spatially and with increasing salinity. All dissolved components increase with increasing salinity, but at different rates. The relative proportions of Ca2+ and HCO3 +CO3 2− ions show a strong decrease with increasing brine salinity, whereas SO4 2− ions increase with increasing salinity. The ionic proportions of Na+, Mg2+, K+ and Cl exhibit no significant relationship with salinity. R-mode factor analysis of the lake water chemistry, combined with selected environmental parameters, identifies groundwater composition, climate, and the elevation of the lake within the drainage system as most important in controlling brine chemistry and salinity on a regional basis. Variability in source of ions, reaction processes and products are undoubtedly key factors in helping to explain brine chemistry of an individual basin or variation from a local perspective, but these factors are generally poorly understood and not quantified on a regional basis. Palliser Triangle Global Change Project Contribution Number 3.  相似文献   

6.
In order to assess the recent anthropogenic environmental changes in Lake Kitaura, central Japan, changes during the past few centuries were reconstructed from results of radiometric and tephrochlonological age determination, magnetic susceptibility measurements, total organic carbon analyses, total nitrogen analyses and fossil diatom analyses on a sediment core from the lake. A total of six major and sub-zones are recognized according to the diatom fossil assemblages, and we discuss aquatic environmental change in Lake Kitaura mainly based on these diatom assemblage change. Zone Ia and Zone Ib (older than AD 1707) are marine to brackish. In Zone IIa (AD␣1707–AD 1836), most of the brackish diatoms disappeared, and were replaced by freshwater species indicating a decrease in salinity. We interpret the salinity decrease in Zone I–IIa as a sea-level fall during the Little Ice Age. The salinity of the lake decreased to near freshwater conditions in Zone IIb (AD 1836–AD 1970), which could arise from alteration in River Tone or development of a sandspit in the mouth of River Tone in addition to sea-level change. In Zone IIIa (AD 1970–AD 1987), the diatom assemblage indicates a freshwater environment, and sedimentation rates increase rapidly. These changes reflect sedimentary environment change and an ecosystem transition due to the construction of the tide gate. In Zone IIIb (AD 1987–AD 2002), the diatom flux (valves cm−2 y−1) increased and species composition changed. The changes in Zone IIIb show a good agreement with limnological monitoring data gathered from the lake. These paleolimnological data suggest that the recent human-induced changes of the aquatic environment of the lake after the 1970s exceed rates during the period concerned in this study.  相似文献   

7.
Seasonal changes of soluble reactive phosphorus concentrations in sediments of Fuente de Piedra, a saline lake, have been observed and linked to salinity changes. Phosphate availability in sediments was studied in the laboratory under different salinities, from 10 to 70 g L−1. Changes in adsorption of dissolved phosphate appear to be controlled by salinity variations. The adsorption coefficient increases with salinity and the amount of phosphorus adsorbed ranged between 10 and 30 per cent of the total. Salinity-modulated adsorption is proposed as the primary mechanism explaining the seasonal dynamics of phosphorus in this saline lake and its effects on progressive eutrophication.  相似文献   

8.
Macroinvertebrate communities were studied in two saline tributaries of the Hopkins River, western Victoria. Monthly sampling from May to August, 1990, showed the mean salinity of Bushy Creek was 5 g L−1 while in Back Creek mean salinity varied from 9 to 20 g L−1 between sites. Macroinvertebrate species richness and relative abundance were measured on each sampling occasion. Cluster analysis showed that community composition varied between creeks and between sites within a creek. Bushy Creek sites were more similar to each other than to Back Creek sites. A negative relationship was found between site salinity and species richness over the range 4 to 26 g L−1, although there was a wide range of salinity (up to 12 g L−1) over which the relationship of species richness to salinity was not clear cut. The effects of salinity on species richness in stream communities appear to be similar to that described elsewhere in salt lakes.  相似文献   

9.
Lake Chapala, located 120 km northeast of Colima Volcano, lies at the north and northeast of the Citala rift in the Trans-Mexican Volcanic Belt. It belongs to the watershed of the Lerma River, which originates from the Mexico City area, 450 km to the east. Sediment cores, 0.5–2 m long, were collected from the lake. Magnetic susceptibility of the lake sediments generally ranges from 400 to 800 × 10−9 m3 kg−1; but in some layers it exceeds 1000 or 1500 × 10−9 m3 kg−1. The magnetic susceptibility vertical profiles display a thin peak (2–5 cm) or a double peak with magnetic susceptibility > 2000 × 10−9 m3 kg−1. Scanning electron microscope analysis shows that the main mineral responsible for the magnetic susceptibility is titano-magnetite, which is relatively abundant in the magnetic layers. In most of the cores, the layer with magnetic susceptibility > 2000 × 10−9 m3 kg−1 is coarser grained than the directly under and overlying sediments, which are composed of fine silt. But not all coarser levels are magnetic nor are all magnetic levels bound to coarser layers. The high titano-magnetic concentration probably originates from volcanic ash falls. Sedimentation rates, evaluated for several sites by means of the 210Pb and 137Cs methods, allow a date approximation (between 1535 and 1670) for the strong magnetic layer deposition. Since important eruptions of Colima Volcano, with ash fall, were reported from 1576 to 1623, the main peak of magnetic susceptibility in the sediment profiles is assumed to be related to these events. The main magnetic layer extends to greater depth in the profiles of the eastern part of the lake plain than at the west. It can, therefore, be suggested that a relative subsidence occurs in the eastern part of the lake; the axis of the eastern plain overlaps the area displaying the maximum subsidence rate and seems therefore to correspond to the prolongation of Citala rift.  相似文献   

10.
Freshwater Lake Ulubat (z mean = 1.5–2.0 m and Area = ~138 km2), NW Anatolia, Turkey was filled in by fine-to-medium-grain silts during the late Holocene. Deposition in Lake Ulubat has been 1.6 cm year−1 for the last 50 years, but the sedimentation rate over the last ~1,600 years was lower (0.37 mm year−1). The organic matter and carbonate contents of the infill show cyclic changes that reflect environmental fluctuations. The silt-dominated lithology and the vertically uniform heavy metal distributions are probably due to wind-controlled sedimentation in the lake. Heterogeneous mud, derived from a large, mountainous drainage basin, is deposited in the lake mostly during summer, June to October, when conditions are hot and calm. Winter months are stormier and sediments are re-suspended due to the shallow water depth and the effect of waves on the lake bottom. It is likely that re-suspended sediments, particularly fine-grained particles, together with the heavy metals, are transported out of the lake via the outlet, especially during periods of high lake level. This resuspension and removal process probably caused the lake sediments to become silt-dominated and depleted in heavy metals. The role of broad shallow lakes in sequestering sediments and heavy metals can be described more accurately when wind data are considered. Such information may also be helpful for land-use planning in downstream areas.  相似文献   

11.
Reservoir sediments are rarely used as environmental archives because of the potential for sediment disturbance by fluctuating water levels. However, rapid rates of sedimentation, proximity to urban centres and often the existence of management records, may make them potentially important resources for reconstructing recent, anthropogenically-derived environmental change. This project assesses the potential of reservoir sedimentary records for reconstructing past atmospheric and drainage basin fluxes of heavy metals (manganese, iron, nickel, copper, zinc and lead) in the southern Pennines, UK. Five reservoirs were selected on the basis of management history and drainage basin characteristics. Multi-parameter analysis showed sediments to be replicable across the ȁ8accumulating zone’ with reasonably consistent rates of sedimentation. Water level fluctuations were not found to detrimentally affect sediment records in the deepwater area of the reservoirs. In fact, spheroidal carbonaceous particle (SCP) profiles show trends in inputs that closely reflect major changes in industrialisation, indicating the reservoir sediments to be excellent records of particulate inputs. Only lead (Pb) and zinc (Zn) were significantly enriched in the reservoir sediment in comparison to background levels. Manganese (Mn), iron (Fe) and to a limited degree, copper (Cu), appeared to be affected by post-deposition mobility. Preliminary calculations of Pb fluxes indicate that over 80% of the current Pb input to the reservoirs is from Pb deposited onto drainage basin soils in the past, rather than from direct atmospheric deposition or natural background inputs. In Howden reservoir, for example, the total Pb flux to deepwater sediment cores in 2000 was 119 mg m−2 a−1. Of this, an estimated 99 mg m−2 a−1 was from anthropogenically-derived Pb, initially deposited onto drainage basin soils and subsequently entering the reservoir via erosion and leaching processes. There is, therefore, no indication that the flux of Pb to the aquatic system is declining in response to reductions in Pb deposition. The ecotoxicological effects of the high and continuing Pb flux to these reservoirs, despite recent decreases in atmospheric deposition, is an area requiring further investigation.  相似文献   

12.
During the past twelve years, Lake Poopo, located on the Bolivian Altiplano, has had two main types of morphometry. Before 1985, its level was low and the depth shallow (maximum 3 m); there was no outlet and a strong salinity gradient existed from north to south. After 1985, the depth doubled, an outlet developed and the salinity became uniform throughout the lake (∼10 g L−1). Before 1985, the phytoplankton was distinguished by a high number of diatom taxa and by the dominance of diatoms in the algal biomass. After 1985, while diatoms were still numerous in terms of species composition, Peridiniales or Chlorophyceae dominated the algal biomass. *** DIRECT SUPPORT *** A02GG003 00002  相似文献   

13.
Groundwater is the major source of drinking water in Nahavand city. However, the groundwater quality at the agricultural areas has been deteriorating in recent years. Ground water quality monitoring is a tool which provides important information for water management and sustainable development of the water resources in Nahavand. Hydrochemical investigations were carried out in an agricultural area in Nahavand, western Iran, to assess chemical composition of groundwater. In this study, 64 representative groundwater samples were collected from different irrigation wells and analyzed for pH, electrical conductivity, major ions, and nitrate. The results of the chemical analysis of the groundwater showed that concentrations of ions vary widely and the most prevalent water type is Ca–Mg–HCO3, followed by other water types: Ca–HCO3, Ca–Na–HCO3, and Na–Cl, which is in relation with their interactions with the geological formations of the basin, dissolution of feldspars and chloride and bicarbonate minerals, and anthropogenic activities. Thirty-seven percent of the water samples showed nitrate (NO3 ) concentrations above the human affected value (13 mg L−1). The phosphorous (P) concentration in groundwater was between 0.11 and 0.90 mg L−1, with an average value of 0.30 mg L−1, with all of the samples over 0.05 mg L−1. The most dominant class C2-S1 (76.5%) was found in the studied area, indicating that sodicity is very low and salinity is medium, and that these waters are suitable for irrigation in almost all soils. Agronomic practices, such as cultivation, cropping, and irrigation water management may decrease the average NO3 concentration in water draining from the soil zone.  相似文献   

14.
Two saline crater lakes in the basin of Oriental, Puebla-Tlaxcala-Veracruz, were investigated for littoral benthic macroinvertebrates. Fifty taxa were identified with the oligochaetes, amphipods, chironomids and leeches the dominant organisms. These four taxa made up to 99 per cent in both number and biomass.Limnodrilus hoffmeisteri, Hyalella azteca, Tanypus (Apelopia) sp. andStictochironomus sp. were the most abundant organisms. Unlike other saline lakes which have a littoral benthos dominated by chironomids, Alchichica and Atexcac were dominated by oligochaetes (70–73 per cent). The gastropod,Physa sp., was found up to a salinity of 8 g L−1; in other studies, it has been found in lower salinities.L. hoffmeisteri is also a typical inhabitant of freshwater lakes, particularly of deep waters. It was dominant in the shallow, saline waters of the two lakes studied. Salinity did not affect species richness. Alchichica, the most saline of the six crater lakes of Puebla (salinity, 7.4 g L−1), had 30 per cent more species than the freshwater lakes, and double the species number of Atexcac. It seems the main factor controlling species richness and the density and biomass of organisms in Alchichica and Atexcac is the presence of aquatic vegetation. It does this by increasing habitat heterogeneity and providing food and protection against predators.  相似文献   

15.
Stable isotopes (δ18O and δD) are useful tracers for investigating hydrologic and climatic variability on a variety of temporal and spatial scales. Since the early isotopic studies on mountainous glaciers in the late 1960s, a great deal of information has been generated on the isotopic composition of rainfall, snow, ice, surface waters, and lake carbonate sediments across the Tibetan Plateau. However, measurements of δ18O and δD values of lake water are scarce. Here we present a new dataset of δ18O and δD values of lake waters collected from 27 lakes across the plateau during a reconnaissance survey in summer 2009. δ18O and δD values of lake water range from −19.9 to 6.6‰ and from −153 to −16‰, respectively. The average values of δ18O and δD are −6.4 and −72‰, considerably greater than those of precipitation observed in this region. The derived Tibetan lake water line, δD = 5.2δ18O − 38.9, is significantly different from the global meteoric water line. Most of the lakes, including some freshwater lakes, contain water with negative values of d-excess (d). There is a negative correlation between d and total dissolved solids (TDS). Each of these findings indicates that evaporation-induced isotopic enrichment prevails in Tibetan lakes. Moreover, we develop an isotope modeling scheme to calculate E/P ratios for Tibetan lakes, using a combination of existing isotopic fractionation equations and the Rayleigh distillation model. We use the intersection of the local evaporation line and GMWL as a first approximation of δ18O and δD values of lake water inputs to infer an E/P ratio for each lake. Our modeling calculations reveal that although variable from lake to lake, the water budget across the plateau is positive, with an average E/P of 0.52. This is in good agreement with other observational and model data that show varying degrees of increases in lake size from satellite imagery and significant decreases in lake salinity in many lakes on the plateau over the last several decades. Together with the new isotopic dataset, the proposed modeling framework can be used to examine and quantify past changes in a lake’s hydrologic balance from the isotopic record of downcore carbonate sediments in the region.  相似文献   

16.
We analyzed lake sediment deposits and local hydrometric records to assess the potential for developing a high-resolution record of sediment delivery from the Rock Lake catchment, situated in the non-glacierized Front Ranges of the Rocky Mountains, Canada. Rhythmic couplets of silt–clay characterized the clastic sediments recovered from the deep central basin of the lake. Contemporary sediment yield to Rock Lake (10.7 ± 1.8 Mg km−2 year−1) is comparable to other studied Canadian Cordillera lakes that have sedimentary lithologies and absence of glacier cover, but distinct rhythmic deposition is relatively unique to this basin. Spatial patterns of deposition within the lake were assessed by correlating rhythmites between multiple sediment cores and by sub-bottom, acoustic profiling. Bracketed dates for a spatially continuous sequence of eight thick rhythmites were established by correlating laminations between core samples collected more than 30 years apart. We identified a consistent pattern between the rhythmite and hydrometric data series between 1975 and 2006 and determined that specific flooding events caused by summer rainstorms are associated with each of the eight thick rhythmites. We observed a good relationship between rhythmite thickness and total flood volume that exceeded a threshold discharge. Acoustic profiling showed that the lake could be a good candidate for longer-term proxy development. We discuss how some of the methods used in this study could benefit ongoing paleoenvironmental assessments based on lacustrine rhythmite series.  相似文献   

17.
Data are presented on the composition and biomass of the Aral Sea zooplankton in August and October, 1989. As salinity gradually increased, a decrease in zooplankton species composition occurred at a salinity of 25–30 g L−1. Because the Aral has now divided into two water-bodies, the zooplankton communities in these lakes have begun to conform with their individual hydrological and biological regimes.  相似文献   

18.
A knowledge of pre-disturbance conditions is important for setting realistic restoration targets for lakes. For European waters this is now a requirement of the European Council Water Framework Directive where ecological status must be assessed based on the degree to which present day conditions deviate from reference conditions. Here, we employ palaeolimnological techniques, principally inferences of total phosphorus from diatom assemblages (DI-TP) and classification of diatom composition data from the time slice in sediment cores dated to ~1850 AD, to define chemical and ecological reference conditions, respectively, for a range of UK lake types. The DI-TP results from 169 sites indicate that reference TP values for low alkalinity lakes are typically <10 μg L−1 and in many cases <5 μg L−1, whilst those for medium and high alkalinity lakes are in the range 10–30 and 20–40 μg L−1, respectively. Within the latter two alkalinity types, the deeper waters (>3 m mean depth) generally had lower reference TP concentrations than the shallow sites. A small group of shallow marl lakes had concentrations of ~30 μg L−1. Cluster analysis of diatom composition data from 106 lakes where the key pressure of interest was eutrophication identified three clusters, each associated with particular lake types, suggesting that the typology has ecological relevance, although poor cross matching of the diatom groups and the lake typology at type boundaries highlights the value of a site-specific approach to defining reference conditions. Finally the floristic difference between the reference and present day (surface sample) diatom assemblages of each site was estimated using the squared chord distance dissimilarity coefficient. Only 25 of the 106 lakes experienced insignificant change and the findings indicate that eutrophication has impacted all lake types with >50% of sites exhibiting significant floristic change. The study illustrates the role of the sediment record in determining both chemical and ecological reference conditions, and assessing deviation from the latter. Whilst restoration targets may require modification in the future to account for climate induced alterations, the long temporal perspective offered by palaeolimnology ensures that such changes are assessed against a sound baseline.  相似文献   

19.
Although the Laguna de Mar Chiquita is among the largest saline lakes of the world (2,000–6,000 km2 area), knowledge about it is scarce. Like other large salt lakes, Mar Chiquita undergoes strong inter-annual changes in water level that are primarily linked to the variable expression of three different types of climate throughout its extensive catchment area. Water-level fluctuations and their overall environmental influence, especially on salinity (25–360 g L–1) and biota, have significant results. Comparison of Mar Chiquita with other fluctuating large salt lakes shows an independent long-term pattern of water-level (and salinity) changes. Primary determinants of its limnology are (1) its extensive catchment, (2) the occurrence of three different types of climate on the catchment, (3) the shallowness of the basin and (4) the effects of strong wind, water circulation within the lake, and sediment inputs from rivers. The effects of fluctuation on the lake biota are more evident at the level of dominant organisms at every fluctuation stage and their functions than in overall biodiversity and food-web complexity.  相似文献   

20.
Biomonitoring past salinity changes in an athalassic subarctic lake   总被引:1,自引:0,他引:1  
A short sediment core was taken from a small saline lake located on an intermontane plateau in the central Yukon Territory, Canada. In July 1990, chemical analyses indicated that, although the lake was shallow (Zmax=1.1 m), it was also chemically stratified, with hyposaline (9.9 to 10.0 g L−1) surface waters and slightly mesosaline (22.0 g L−1) deeper waters. The surface water was dominated by Na+ and HCO 3 . To our knowledge, this is the northernmost athalassic saline lake yet recorded. Quantification of algal (diatom, chrysophyte, and pigment) and invertebrate (chironomid, ceratopogonid, andChaoborus) fossils at four stratigraphic levels indicated that the lake sediments preserved numerous biological indicators that could be used to infer recent lake development. Many of the taxa are found in other athalassic salt lakes. The most striking stratigraphic change was a remarkable drop in the species richness of diatoms and invertebrates in the recent sediments, which parallels the elimination of species characteristic of less saline conditions. Halophilous taxa dominate the most recent sediments, indicating the development of more saline conditions. At the same time, a significant shift in chrysophyte cyst composition was observed. Fossil carotenoids and chlorophylls indicated a decrease in total algal abundance in recent sediments, as green and blue-green algae replaced diatoms and chrysophytes. Together, these paleolimnological data suggest a recent shift to drier conditions or increased evaporation in the central Yukon Territory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号