首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Astronomical Institute, Russian Academy of Sciences. Translated fromAstrofizika, Vol. 35, No. 1, pp. 131–149, July–August, 1991.  相似文献   

3.
The observed properties of astrophysical jets are reviewed, and the techniques used to estimate the parameters of the underlying beams are described. This information is then used in a theoretical treatement of the Kelvin-Helmholtz instability of the flows, and the relevance of this instability to the persistence of the observed structures is emphasised.  相似文献   

4.
In the Beltrami flow field, the rate of change of vorticity covariance has been discussed in the presence of magnetic field.  相似文献   

5.
It is shown that Birkeland current and vorticity in the magnetosphere are intimately related, suggesting the importance of taking explicit account of vorticity, particularly velocity shear, when considering magnetospheric motions. An equation of motion for the magnetosphere coupled to the ionosphere is derived. It is suggested that experience with MHD fluids generally might fruitfully be brought to bear on certain problems in the magnetosphere to answer the question, not ‘why a sheet of Birkeland current,’ but rather ‘why a localised velocity shear.’  相似文献   

6.
Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach.  相似文献   

7.
We consider the acceleration of energetic particles by Fermi processes (i.e., diffusive shock acceleration, second order Fermi acceleration, and gradual shear acceleration) in relativistic astrophysical jets, with particular attention given to recent progress in the field of viscous shear acceleration. We analyze the associated acceleration timescales and the resulting particle distributions, and discuss the relevance of these processes for the acceleration of charged particles in the jets of AGN, GRBs and microquasars, showing that multi-component powerlaw-type particle distributions are likely to occur.  相似文献   

8.
9.
David Stevenson 《Icarus》1974,22(4):403-415
The origin and maintenance of planetary magnetic fields are discussed. The discussion is not limited to dynamo theories although these are almost universally favored. Thermoelectric currents are found to be a possible alternative for Jupiter. Two energy sources for dynamos are considered: convection and precessionally induced fluid flow. The earth is the most favorabl planet for a precessionally driven dynamo, although Neptune is a possibility. Jupiter is likely to have a convectionally driven dynamo, as may Saturn, but the relevant properties of Saturn are not yet well known. Conclusions for each planet are given.  相似文献   

10.
The combination of accretion disks and supersonic jets is used to model many active astrophysical objects, viz., young stars, relativistic stars, and active galactic nuclei. However, existing theories on the physical processes by which these structures transfer angular momentum and energy from disks to jets through viscous or magnetic torques are still relatively approximate. Global stationary solutions do not permit understanding the formation and stability of these structures; and global numerical simulations that include both the disk and jet physics are often limited to relatively short time scales and astrophysically out-of-range values of viscosity and resistivity parameters that are instead crucial to defining the coupling of the inflow/outflow dynamics. Along these lines we discuss self-consistent time-dependent simulations of the launching of supersonic jets by magnetized accretion disks, using high resolution numerical techniques. We shall concentrate on the effects of the disk physical parameters, and discuss under which conditions steady state solutions of the type proposed in the self-similar models of Blandford and Payne can be reached and maintained in a self-consistent nonlinear stationary state.  相似文献   

11.
We explain in simple terms why a rotating and magnetized outflow forms a core with a jet and show numerical simulations which substantiate this argument. The outflow from a solar-type inefficient magnetic rotator is found to be very weakly collimated while the outflow from a ten times faster rotating YSO is shown to produce a tightly collimated jet. This gives rise to an evolutionary scenario for stellar outflows. We also propose a two-component model consisting of a wind outflow from a central object and a faster rotating outflow launched from a surrounding accretion disk which plays the role of the flow collimator.  相似文献   

12.
This Ph.D. Thesis was presented on 16 July 2007 and awarded with the highest honours at the University of the Basque country, Spain. This work was advised by Professor Agustin Sánchez-Lavega.  相似文献   

13.
We discuss nonlinear mode-mode coupling phenomena in cosmic plasmas. Four problems are considered: (1) nonlinear three-wave processes in the planetary magnetosphere involving the interaction of auroral Langmuir, Alfvén and whistler waves, (2) nonlinear three-wave processes in the solar wind involving the modulation of Langmuir and electromagnetic waves by ion-acoustic waves, (3) order and chaos in nonlinear four-wave processes in cosmic plasmas, and (4) regular and chaotic dynamics of the relativistic Langmuir turbulence and its application to pulsar and AGN emissions. The observational evidence in support of nonlinear wave-wave interactions in space and astrophysical plasmas is presented.  相似文献   

14.
15.
The effect of mode-coupling on the temporal variation of the linearly unstable magnetic mode is investigated for weakly unstable dynamos. It is shown that the nonlinear coupling of the unstable mode to itself is the dominant effect which stabilizes the mode at a certain amplitude rather than the coupling to other damped modes.  相似文献   

16.
The birefringent effects of photon–pseudo-scalar boson (Goldstone) particle mixing in intergalactic magnetic field are calculated for cosmological objects. We use the recent results of PVLAS collaboration that reported recently the observation of a rotation of the polarization plane of light propagating through a transverse static magnetic field. Such result was interpreted as arising due to conversion of photon into pseudo-scalar with coupling strength   g ∼ 4 × 10−6 GeV−1  . This result contradicts to data of stellar evolution that excluded standard axion model and seems to claim existence of supersymmetry (SUSY) pseudo-scalars. We estimate the intergalactic magnetic field magnitude as ∼10−16 G based on Hatsemekers et al. observations of extreme-scale alignments of quasar polarization vectors. We analysed some additional results of astronomical observations that could be explained by axion interpretation of the PVLAS data: a sharp steepening of the quasi-stellar object (QSO) continuum shortward of ≃1100 Å, observed circular polarization of active galactic nuclei (AGNs) and QSOs, discrepancy between observed intrinsic polarization of stars in the Local Bubble and stellar spectral classification. The observed polarization of stars in the Local Bubble cannot be explained by interstellar origin.  相似文献   

17.
The gravitational instability of an infinite homogeneous self-gravitating mixture through porous medium in the presence of a variable horizontal magnetic field varying in vertical directions has been considered to include, separately, the effects due to suspended particles and collisions between ionized and neutral components. The dispersion relations in both cases have been obtained. It has been found that Jeans's criterion of instability holds good even if the effects due to suspended particles, collisions, porosity, and variable magnetic field are considered.  相似文献   

18.
19.
A scenario is suggested for the development of astrophysical objects. The equations derived are applied to the protostar—T Tauri star—flare star evolutionary sequence. The ages of the Orion, NGC 2264, and NGC 7000 stellar associations are estimated.Translated from Astrofizika, Vol. 37, No. 1, pp. 83–96, January–February, 1994.In conclusion, I wish to thank Professor L. V. Mirzoyan for very useful critical remarks, allowance for which considerably influenced the quality of this paper.  相似文献   

20.
We review the statistical properties of the main populations of radio sources, as emerging from radio and millimeter sky surveys. Recent determinations of local luminosity functions are presented and compared with earlier estimates still in widespread use. A number of unresolved issues are discussed. These include: the (possibly luminosity-dependent) decline of source space densities at high redshifts; the possible dichotomies between evolutionary properties of low- versus high-luminosity and of flat- versus steep-spectrum AGN-powered radio sources; and the nature of sources accounting for the upturn of source counts at sub-milli-Jansky (mJy) levels. It is shown that straightforward extrapolations of evolutionary models, accounting for both the far-IR counts and redshift distributions of star-forming galaxies, match the radio source counts at flux-density levels of tens of μJy remarkably well. We consider the statistical properties of rare but physically very interesting classes of sources, such as GHz Peak Spectrum and ADAF/ADIOS sources, and radio afterglows of γ-ray bursts. We also discuss the exploitation of large-area radio surveys to investigate large-scale structure through studies of clustering and the Integrated Sachs–Wolfe effect. Finally, we briefly describe the potential of the new and forthcoming generations of radio telescopes. A compendium of source counts at different frequencies is given in Supplementary Material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号