首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Rare earth elements (REEs) in the suspended particulate matter (SPM) of the Mandovi estuary indicated that the mean total-REEs (∑REE) and light REE to heavy REE ratios are lower than that of the average suspended sediment in World Rivers and Post-Archean average Australian shale. High ∑REE were associated with high SPM/low salinity and also with high SPM/high salinity. Although the ∑REE broadly agree with SPM levels at each station, their seasonal distributions along transect are different. SPM increased seaward in the estuary both during the monsoon and pre-monsoon, but consistently low at all stations during the post-monsoon. The mean ∑REE decreased marginally seaward and was <25% at sea-end station than at river-end station. Spatial variations in ∑REE are maximum (64%) during the pre-monsoon. Strong to moderate correlation of ∑REE with Al, Fe and Mn in all seasons indicates adsorption and co-precipitation of REEs with aluminosilicate phases and Fe, Mn-oxyhydroxides. The ratio of mean ∑REE in sediment/SPM is low during the monsoon (1.27), followed by pre-monsoon (1.5) and post-monsoon (1.62). The middle REE- and heavy REE-enriched patterns with positive Ce and Eu anomalies are characteristic at every station and season, both in SPM and sediment. They also exhibit tetrad effect with distinct third and fourth tetrads. Fe-Mn ore dust is the most dominant source for REEs. However, the seasonal changes in the supply of detrital silicates, Fe-Mn ore dust and particulates resuspended from bottom sediments diluted the overall effect of salinity on fractionation and distribution of REEs in the estuary.  相似文献   

2.
The distribution and geochemical composition of suspended-particulate matter (SPM) in the East China Sea (ECS) were investigated during the summer period of high continental runoff to elucidate SPM sources, distribution and cross-shelf transport. The spatial variability of SPM distribution (0.3–6.5 mg l−1) and geochemical composition (POC, Al, Si, Fe, Mn, Ca, Mg and K) in the ECS was pronounced during summer when the continental fluxes of freshwater and terrestrial materials were highest during the year. Under the influences of Changjiang runoff, Kuroshio intrusion, surface production and bottom resuspension, the distribution generally showed strong gradients decreasing seaward for both biogenic and lithogenic materials. Particulate organic carbon was enriched in surface water (mean ∼18%) due to the influence of biological productivity, and was diluted by resuspended and/or laterally-transported materials in bottom water (mean 9.4%). The abundance of lithogenic elements (Al, Si, Fe, Mn) increased toward the bottom, and the distribution correlations were highly significant. Particulate CaCO3 distribution provided evidence that the SPM of the bottom water in the northern part of the study area was likely mixed with sediments originally derived from Huanghe. A distinct benthic nepheloid layer (BNL) was present in all seaward transects of the ECS shelf. Sediment resuspension may be caused by tidal fluctuation and other forcing and be regarded as the principal agent in the formation of BNL. This BNL was likely responsible for the transport of biogenic and lithogenic particles across or along the ECS shelf. Total inventories of SPM, POC and PN are 46, 2.8 and 0.4 Tg, respectively, measured over the total area of 0.45 × 106 km2 of the ECS shelf. Their mean residence times are about 27, 13 and 11 days, respectively. The inventory of SPM in the water column was higher in the northernmost and southernmost transects and lower in the middle transects, reflecting the influences of terrestrial inputs from Changjiang and/or resuspended materials from Huanghe deposits in the north and perhaps from Minjiang and/or Taiwan’s rivers in the south. The distribution and transport patterns of SPM and geochemical elements strongly indicate that continental sources and cross-shelf transport modulate ECS particulate matter in summer.  相似文献   

3.
2008年11月末在青岛近海和胶州湾11个站点采集表层和底层海水中的悬浮颗粒物(SPM)样品,经消解后用等离子体发射光谱法测定了Al、Ca、Fe、Mg、Mn、Ti和Ba、Co、Cr、Cu、Ni、Pb、Sr、V、Zn共15个金属元素以及P的含量,结合SPM和元素含量聚类分析的结果探讨了秋末冬初青岛近海SPM的来源以及金属元素组成的影响因素.SPM含量范围在1.7~16.1mg/L之间,平均为7.9 mg/L;SPM来源以陆源风化产物为主,生物生产有较小的贡献.SPM中Ti、Fe、Mn、Mg、Al、V、Co、Sr和Ni的含量相对恒定,且主要受陆源输入的控制;Ca和P除受陆源影响外,生物生产亦有附加贡献.离陆地相对较远的区域表层海水SPM中Pb、Zn和Ba、Cr、Cu的含量较高,特别是Pb和Zn的富集因子较大,可能受到了潜在的污染影响.Ti的恒定性以及与SPM的良好相关性代表着在青岛近海可用Ti作为颗粒物陆源指示元素,且优于Al.  相似文献   

4.
The concentration of suspended particulate matter (SPM), sedimentation flux, and various forms of phosphorus and silica in turbidity maximum zone (TMZ) in the Changjiang (Yangtze) estuary was studied. Based on the budget of P and Si, their mass balances in the TMZ were calculated. Results show that the variation in concentration of dissolved inorganic silicon (DISi) was mainly controlled by seawater dilution, while that of dissolved inorganic phosphorus (DIP) was considerably affected by the buffering of suspended matter and sediment. Our experiments showed that the sedimentation fluxes of SPM and particulate inorganic phosphorus (PIP), total particulate phosphorus (TPP), particulate inorganic silicon (PISi), and biological silicon (BSi) in the TMZ were 238.4 g m−2 d−1 and 28.3, 43.1, 79.0, 63.0 mg m−2 d−1, respectively. In addition, a simple method to estimate the ratio of resuspension of sediment in the TMZ was established, with which the rate in surface and bottom waters of the TMZ accounted for 55.7 and 66.1% of the total SPM, respectively, indicating that the sediment resuspension in the TMZ influenced significantly the mass balances of P and Si. Particulate adsorbed P (60.8%) and 35.5% of total particulate P discharged from the river were filtered and then deposited in the TMZ. The input flux of PIP from the river mouth was 55.9% of that of DIP, being important as biologically available P, while that of PISi was only 3.5% of DISi, showing that particulate adsorbed Si was much less important than particulate adsorbed P.  相似文献   

5.
Temperature, pH, total alkalinity, dissolved oxygen, silicate, nitrate, phosphate and the Mn, Fe and Al contents of suspended particulate matter (SPM) were measured in the Rimouski River estuary as functions of chlorinity during the period May—September 1980.At any given time, total alkalinity (TA) is conservative within the estuary with respect to chlorinity. However, the total alkalinity (TA) of the freshwater is related to river flow. This is attributed to dilution of the river water with bicarbonate-poor rainwater.Generally, pH follows the same pattern observed for TA in freshwater. Dissolved oxygen is usually more concentrated in freshwater and decreases linearly with increasing chlorinity. Freshwater is always saturated or supersaturated with respect to O2. Seasonal fluctuations are attributed to temperature variations.There is no evidence for removal of soluble silicate from the freshwater entering the sea. The concentration of silicate in the freshwater is strongly influenced by rainfall. Soil leaching, conditioned by high rainfall increases the concentration of soluble silicate in freshwater. Nitrate behaves similarly whereas phosphate is complicated by the presence of sewage.Analysis of the Mn, Fe and Al contained in the SPM indicates dilution of river-borne particles rich in Mn by others less rich in this element. A decrease in Mn content with increasing chlorinity and SPM concentration as well as increasing concentrations of SPM with increasing chlorinity indicate that the composition is controlled primarily by physical mixing of material from two sources rather than by chemical processes. Within the analytical precision the Fe/Al ratio does not vary with the chlorinity.  相似文献   

6.
The chemical and mineralogical composition of suspended particle suites has been used to assess off-shelf transport on the West African shelves of Liberia and Sierra Leone. Using the ratios of Si/Al, Fe/Al, Mg/Al and Mn/Al as tracers, it was possible to detect shelf-derived materials in slope waters. In the majority of cases, these inputs could not have been detected using particle mass or light scattering measurements and could only be measured by using the chemical signatures of the particulate matter. At the time of sampling, the suspensate which had been moved seaward over the slope was detected adjacent to submarine canyons and highly turbid areas on the outer shelf. The chemical and mineralogical composition of the suspensates, and sediments in the adjacent eastern Atlantic basin are similar to those found in the water column seaward of the West African continental shelves and yet distinct from the Sahelian dust which is considered the major source of sedimentary material for the tropical and semi-tropical areas of the deep eastern basin. These findings suggest that materials from this shelf area could be a more important input to the deep sea than was previously realised.  相似文献   

7.
Water column concentrations of total suspended solids (TSS), particulate organic carbon (POC) and particulate nitrogen (PN) were measured at three different depths in four different locations bracketing the estuarine turbidity maximum (ETM) along the main channel of a temperate riverine estuary (Winyah Bay, South Carolina, USA). Measurements were carried out over full tidal cycle (over 24 h). Salinity, temperature, current magnitude and direction were also monitored at the same time throughout the water column. Tidally averaged net fluxes of salt, TSS, POC and PN were calculated by combining the current measurements with the concentration data. Under the extreme low river discharge conditions that characterized the study period, net landward fluxes of salt were measured in the lower part of the study area, suggesting that the landward transport through the main channel of the estuary was probably balanced by export out through the sides. In contrast, the net fluxes of salt in the upper reaches of the study area were near zero, indicating a closed salt balance in this part of the estuary. In contrast to salt, the net fluxes of TSS, POC and PN in the deeper parts of the water column were consistently landward at all four sites in Winyah Bay indicating the non-conservative behavior of particulate components and their active transport up the estuary in the region around the ETM.The carbon contents (%POC), carbon:nitrogen ratios (org[C:N]a) and stable carbon isotopic compositions (δ13CPOC) of the suspended particles varied significantly with depth, location and tidal stage. Tidally averaged compositions showed a significant increase up the estuary in the %POC and org[C:N]a values of suspended particles consistent with the preferential landward transport of carbon-rich particles with higher vascular plant debris content. The combination of tidal resuspension and flood-dominated flow appeared to be responsible for the hydrodynamic sorting of particles along the estuary that resulted in denser, organic-poor particles being transported landward less efficiently. The elemental and isotopic compositions indicated that vascular C3 plants and estuarine algae were the major sources of the particulate organic matter of all the samples, without any significant contributions from salt marsh C4 vegetation (Spartina alterniflora) and/or marine phytoplankton.  相似文献   

8.
Suspended particulate matter (SPM) collected at regular stations from the Mandovi and Zuari estuaries indicates that the peaks of high SPM coincide with peaks of high rainfall and low salinity and also with peaks of moderate/low rainfall coupled with high salinity during the monsoon. The estuarine turbidity maximum (ETM) is a characteristic feature, it occurs in the channel accompanying spring tide during the monsoon and pre-monsoon, and shifts to the bay on neap tide during post-monsoon. ETM remains at the same position in the Mandovi River, both during the monsoon and pre-monsoon, whereas in Zuari it stretched upstream during monsoon and migrates seaward of the channel during pre-monsoon. The ETM coincides with the freshwater–seawater interface during the monsoon and is formed by the interaction between tidal currents and river flows. The ETM during pre-monsoon is associated with high salinities and is generated by tidal and wind-induced currents. The turbidity maximum on neap tide during post-monsoon may be due to the erosion and resuspension of sediments from the emergent tidal flats and transport of these turbid waters into the bay. Funneling effect of the narrowing bay in the Zuari estuary and associated physical processes effectively enhance the magnitude of the currents and transports sediments to the channel. SPM retention percentage indicates that the estuarine channel is prone to siltation.  相似文献   

9.
Twenty-seven samples of suspended sediments collected on Millipore filters from the St. Lawrence estuary were directly analysed for Si, Al, Ca, Mg, Na, K, Fe, Ti, Mn, Ni, Co, Cu, Cr and Zn by X-ray fluorescence using standards prepared from suspended matter collected by continuous flow centrifugation. Calibration curves prepared from the analysis of these standards could be directly used in calculating the weight percent of elements for the unknown samples, if the weight of the total suspended matter on the filters did not exceed 25 mg.  相似文献   

10.
The dominant physical and chemical processes that control Fe, Mn and Zn are explored by comparing the compositions of sediments and their sources. The MnFe and ZnFe ratios in sediment are found to be largely unaffected by local hydraulic sorting (unlike the actual concentrations of Fe, Mn and Zn) and thus are useful indicators of origin. The sediments in northern Chesapeake Bay have markedly lower MnFe and ZnFe ratios than those found in the Susquehanna River (dissolved plus suspended) under ordinary flow, but not under high flow conditions. Since high flow conditions dominate sediment transport, seaward loss of a major fraction of the river-derived Mn and Zn need not be invoked to reconcile sediment and river compositions. Sediments in the seaward end of the northern bay have higher MnFe and ZnFe ratios than their principal external source, the eroding shore deposits. The excess Zn appears to be derived from the atmosphere; the required depositional flux of Zn is consistent with measurements of the total atmospheric flux. The excess Mn can be explained by remobilization of roughly 5% of the river-borne Mn from sediments in the landward part of the northern bay. Because rare floods influence sediment composition markedly, comparing suspended particles in the river at ordinary stages with resuspended sediment in the estuary would lead to the false interpretation that Mn and Zn were being desorbed in the saltwater.  相似文献   

11.
辽河口海区悬浮体运移扩散动力特征   总被引:1,自引:0,他引:1  
控制着辽河口海区悬浮体运移的主要动力是河流迳流、潮流和余流.它们对最大浑浊带中河水与海水的混合,密度流循环以及悬浮物的沉降和运移共同起作用.悬浮物向海运移与河口区最大浑浊带有关,即与河流迳流、潮流和余流作用所控制的悬浮物数量有关。悬浮物向海运移似乎遵循两个周期:1.小潮—大湖周期;2.河流迳流丰枯周期.最大运移发生在大潮期和河流迳流丰水期。  相似文献   

12.
The concentrations of dissolved aluminum (Al) in the upper St. Lawrence Estuary were determined during periods of high and intermediate river-discharge. Laboratory experiments simulating estuarine processes were also conducted in order to examine possible mechanisms controlling the Al distribution. During the high river-discharge, the Al concentration at river end-member was 1.63 µM and decreased exponentially with increasing salinity. An almost complete removal of dissolved Al was observed in the low salinity area up to 10 with an intensive removal in the turbidity maximum zone. Principal mechanisms responsible for the Al removal inferred from the laboratory experiments were flocculation and adsorption onto suspended particulate matter (SPM). During the intermediate river-discharge, the Al concentration was 0.72 µM at the river end-member and again decreased with increasing salinity. However, the removal was less pronounced, being only about 25%. Good fits with model predictions and laboratory experiments suggest that principal removal mechanisms were authigenic aluminosilicate formation and adsorption onto SPM. In the upper St. Lawrence Estuary, Al distribution is controlled by a combination of three removal mechanisms: flocculation, authigenic aluminosilicate formation, and adsorption. Each mechanism can become a dominant factor depending on the concentration level and speciation of dissolved Al in the river water.  相似文献   

13.
Over a 1-year period, field and satellite measurements of surface water turbidity were combined in order to study the dynamics of the turbidity maximum zone (TM) in a macrotidal estuary (the Gironde, France). Four fixed platforms equipped with turbidity sensors calibrated to give the suspended particulate matter (SPM) concentration provided continuous information in the upper estuary. Full resolution data recorded by the moderate resolution imaging spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellite platforms provided information in the central and lower estuary twice a day (depending on cloud cover). Field data were used to validate a recently developed SPM quantification algorithm applied to the MODIS ‘surface reflectance’ product. The algorithm is based on a relationship between the SPM concentration and a reflectance ratio of MODIS bands 2 (near-infrared) and 1 (red). Based on 62 and 75 match-ups identified in 2005 with MODIS Terra and Aqua data, the relative uncertainty of the algorithm applied to these sensors was found to be 22 and 18%, respectively.Field measurements showed the tidal variations of turbidity in the upper estuary, while monthly-averaged MODIS satellite data complemented by field data allowed observing the monthly movements of the TM in the whole estuary. The trapping of fine sediments occurred in the upper estuary during the period of low river flow. This resulted in the formation of a highly concentrated TM during a 4-month period. With increasing river flow, the TM moved rapidly to the central estuary. A part of the TM detached, moved progressively in the lower estuary and was finally either massively exported to the ocean during peak floods or temporary trapped (settled) on intertidal mudflats. The massive export to the ocean was apparently the result of combined favorable environmental conditions: presence of fluid mud near the mouth, high river flow, high tides and limited wind speeds. The mean SPM concentration within surface waters of the whole estuary showed strong seasonal variations but remained almost unchanged on a 1-year-basis. These observations suggest that the masses of suspended sediments exported toward the ocean and supplied by the rivers were almost equivalent during the year investigated (2005). Results show the usefulness of information extracted from combined field and current ocean color satellite data in order to monitor the transport of suspended particles in coastal and estuarine waters.  相似文献   

14.
In order to understand the hydrodynamic parameters that control the fluvial sediment dynamics on an intertidal mudflat located in a sheltered zone in the upper part (fluvial part) of the macrotidal Seine estuary (France), a two-year field study of high-frequency field measurements was carried out. The bed-level evolution of the mudflat surface was measured from the semi-diurnal period to annual time scales using a high-resolution altimeter. The data showed that the sedimentary patterns on the mudflat were mainly controlled by river flows and tides. During high river flows in winter, sedimentation dominated; suspended particulate matter concentrations were higher, submersion was constant and at semi-diurnal scale, sedimentation duration was more important than erosion due to an asymmetrical tide. By contrast during low river flows in summer, erosion dominated mainly as a result of immersion/emersion of tidal flats during semi-diurnal cycle. From this annual sedimentation–erosion cycle we identify a temporary storage of 10–30% of the fine-grained (<63 μm) river-borne particles on mudflats in the upper section of the fluvial Seine estuary during high river flows.River-related sediment fluxes were estimated from the measurement of fine-grained sedimentation zones in the fluvial part of the estuary. The erosion/sedimentation processes were perennial, and the amounts of contributing sediments were directly related to the solid river load. Our results indicate that mudflats in the fluvial part of the Seine estuary play an important role in the downstream transfer of fine-grained suspended particulate matter (SPM) towards the turbidity maximum and the Rouen docks particularly during low river flows, when roughly 30–50% of the SPM originates from the eroded intertidal flats.  相似文献   

15.
The Neuse River estuary is part of the large Albemarle/Pamlico estuarine/lagoonal system (APES) of North Carolina. Exchange between the APES and the open ocean is restricted to inlets in the Outer Banks barrier islands. Freshwater discharge of the Neuse River is low in relation to the size of its estuary, so that the estuary is normally brackish over most of the area which accumulates fine-grained sediments. Mud (silt + clay) accumulation rates are low ( 6 mm year−1).From the mud distribution and the dynamics of suspended sediment in the estuary it has been inferred that the Neuse retains fines efficiently, with probable episodic (high discharge) losses seaward, to Pamlico Sound.As part of a study of particle transport, deposition, and accumulation in the Neuse estuary, we have collected radiochemical data (10 cores) and chemical data (seven cores) on sediment cores from the main channel of the estuary between New Bern, North Carolina and the estuary mouth. K/Al increases in the lower estuary, consistent with earlier reports of increasing illite in the clay fraction. Landward transport of sediment from Pamlico Sound is the most plausible explanation for the increasing K/Al (illite). A marine sediment source may, therefore, be important for the lower estuary.The distribution of sediment inventories (quantities per cm2 of sediment column) of particle-reactive radionuclides is consistent with the hypothesis of landward sediment transport. Inventories of excess 210Pb, 137Cs, and 239,240Pu are coherent through the estuary and show the effects of particle redistribution processes on regionally uniform inputs. To obtain excess (anthropogenic) Zn and Cu, we use metal/Al normalization to estimate natural backgrounds. Anthropogenic metal inputs are concentrated at the head of the estuary, and sediment inventories of excess Zn and Cu generally decrease seaward. Normalization of the excess Zn and excess Cu inventories to excess 210Pb inventories corrects the raw metal inventories for effects of lithology and sediment redistribution. The normalized excess Zn inventory decreases smoothly seaward, while the normalized excess Cu inventory shows an unexplained mid-estuary maximum. Low normalized inventories of anthropogenic metals at the estuary mouth indicate that little modern riverine sediment is stored there.Increasing K/Al (illite) and decreasing anthropogenic Zn and Cu in the lower estuary are thus both consistent with a predominantly marine sediment source. We conclude that landward transport of muds from Pamlico Sound has contributed significantly to the sediment balance of the lower Neuse estuary.  相似文献   

16.
We examine the microchemistry of otoliths of cohorts of a fished population of the large catadromous fish, barramundi Lates calcarifer from the estuary of a large tropical river. Barramundi from the estuary of the large, heavily regulated Fitzroy River, north-eastern Australia were analysed by making transects of 87Sr/86Sr isotope and trace metal/Ca ratios from the core to the outer edge. Firstly, we examined the Sr/Ca, Ba/Ca, Mg/Ca and Mn/Ca and 87Sr/86Sr isotope ratios in otoliths of barramundi tagged in either freshwater or estuarine habitats that were caught by the commercial fishery in the estuary. We used 87Sr/86Sr isotope ratios to identify periods of freshwater residency and assess whether trace metal/Ca ratios varied between habitats. Only Sr/Ca consistently varied between known periods of estuarine or freshwater residency. The relationships between trace metal/Ca and river flow, salinity, temperature were examined in fish tagged and recaptured in the estuary. We found weak and inconsistent patterns in relationships between these variables in the majority of fish. These results suggest that both individual movement history within the estuary and the scale of environmental monitoring were reducing our ability to detect any patterns. Finally, we examined fish in the estuary from two dominant age cohorts (4 and 7 year old) before and after a large flood in 2003 to ascertain if the flood had enabled fish from freshwater habitats to migrate to the estuary. There was no difference in the proportion of fish in the estuary that had accessed freshwater after the flood. Instead, we found that larger individuals with of each age cohort were more likely to have spent a period in freshwater. This highlights the need to maintain freshwater flows in rivers. About half the fish examined had accessed freshwater habitats before capture. Of these, all had spent at least their first two months in marine salinity waters before entering freshwater and some did not enter freshwater until four years of age. This contrasts with the results of several previous studies in other parts of the range that found that access to freshwater swamps by larval barramundi was important for enhanced population productivity and recruitment.  相似文献   

17.
Dissolved and particulate trace metals (Cu, Cd, Pb, Zn, Ni, Fe and Mn) measured at six stations along the Scheldt estuary in October/November 1978 are compared with more recent data. Based on Ca content in the suspended matter, three distinct geochemical regions could be distinguished: the upper estuary (salinity 1–7) dominated by fluvial mud, mid-estuary (salinity 7–17) where the composition of the suspended matter remained relatively constant, and the lower estuary where marine mud prevailed. Re-suspension of sediments is the major factor controlling the composition of the particles in the upstream region. Anoxic conditions prevailed in the upper part of the estuary extending to a salinity of 15 in 1978, while at present the seaward boundary of the anoxic water body is located at less saline waters. Furthermore, the present-day metal load is much lower than in 1978. As a consequence of the changed situation, maxima in dissolved concentrations of redox-sensitive metals in the mid/lower estuary have moved as well, which affects the trace metal re-distribution pattern. In the anoxic zone, exchange processes between dissolved and particulate metal fractions were strongly redox regulated, with Fe and Mn as excellent examples. Iron was removed from the dissolved phase in the early stages of mixing resulting in an increase in the suspended particulate matter of the leachable ‘non-residual' Fe fraction from 2 to 3.5%. Due to its slower kinetics, removal of Mn from solution occurred in mid-estuary where oxygen concentrations increased. Cu, Cd and Zn on the contrary were mobilised from the suspended particles during estuarine mixing. External inputs of Pb, and to a lesser extent of Cu, in the lower estuary resulted in the increase of their particulate and the dissolved concentrations. Calculated Kd (distribution coefficient) values were used to assess the redistribution between the dissolved and particulate phase of the investigated metals. Due to the existence of the anoxic water body in the upper estuary, the importance of redox processes in determining the Kd values could be demonstrated. The sequence of Kd values in the upper estuary (Fe, Cd, Zn, Pb > Cu > Ni, Mn) is significantly different from that in the lower estuary (Fe > Mn > Pb, Ni, Zn, Cu, Cd). Thus, in such a dynamic estuary single metal-specific Kd values cannot be used to describe redistribution processes.  相似文献   

18.
A total of 150 samples were collected at a 10-days' anchor station in the Bornholm basin (55° 31.1′N, 15° 32.1′E) and analyzed for dissolved (< 0.4 μm) and particulate trace metals. For dissolved Mn, large gradients have been found in the vertical distribution with minimum concentrations (< 0.2 μgl?1) in the halocline zone and considerably higher values in the deep waters (up to 50 μgl?1). Ultrafiltration studies indicate that dissolved Mn is probably present as Mn2+ in the oxygenated bottom layer. The primary production process was not evident in the particulate Mn profile; the suspended particulate material (SPM), however, shows a considerable enrichment with depth, apparently due to Mn-oxide precipitation.The distribution of dissolved Fe was rather homogeneous, with average concentrations throughout the water column between 0.86 and 1.1 μgl?1, indicating that the oxidation of Fe2+ ions released from the sediments must already be complete in the very near oxidation boundary layer. Relatively high concentrations of particulate Fe were actually measured in the bottom layer, with the maximum mean of 11.2 μgl?1 at 72 m. Similarly to Mn, the profile of particulate Fe does not reflect the SPM curve of the eutrophic layer. On average, about 70% of the total Fe in surface waters was found to be particulate.The average concentrations of dissolved Zn, Cd and Cu were found to be rather homogeneous in the water column but showed a relatively high variability with time. A simplified model on trace-metal uptake by phytoplankton indicates no significant change in dissolved metal concentrations during the period of investigation. On average, only 1.7% Zn, 3.3% Cd and 9.8% Cu of the total metal concentrations were found in particulate form. SPM analyses showed significant correlations of Zn, Cd and Cu with Fe, indicating that particulate iron is an important carrier for particulate trace metals in Baltic waters.  相似文献   

19.
从分粒级的角度研究大河河口颗粒有机碳的输送特征是深刻理解河口淡咸水混合过程中有机碳的生物地球化学过程的关键。于2011年6月采集了长江口最大浑浊带附近盐度梯度下的表层悬浮颗粒物,采用水淘选方法对其按照水动力直径大小进行了分级分离,分析了这些颗粒物的有机碳含量、稳定碳同位素组成及颗粒物比表面积等参数,讨论了不同粒级颗粒物上有机碳的来源、分布和保存随盐度的变化特点及其影响因素。结果表明,随着盐度的增加和粒径的增大,长江口最大浑浊带附近分级颗粒有机碳逐渐降低,颗粒有机碳含量主要集中在小于32μm的粒级。相对于长江干流,长江口颗粒有机碳含量偏低,可能归因于河口最大浑浊带附近特殊的生物地球化学作用,如细颗粒物絮凝——沉降、微生物分解等。基于蒙特卡洛模拟的三端元混合模型的计算表明长江口分级颗粒有机碳主要来源于河流和三角洲输入,海洋来源贡献较小,三者的平均贡献比例分别为40%、35%和25%。在河口盐度梯度的淡水端,不同粒级颗粒物上三角洲来源的有机碳比例均随着盐度升高而增加,而在咸水端,海源有机碳的贡献比例升高,尤其是在16-32μm粒级,最高达39%。32-63μm粒级的颗粒物单位比表面积有机碳含量均大于1.0mg/m~2,小于32μm的颗粒物单位比表面积有机碳含量均在0.4-1.0mg/m~2的范围之内,符合河流颗粒物的一般特点,同时也说明细颗粒物上的有机碳可能已经发生了一定程度的分解,不过相对于长江口表层沉积物,颗粒物单位比表面积有机碳含量普遍较高,表明这些颗粒有机碳在沉降过程中或沉积之后还要经历进一步的再矿化分解,初步的估算表明,长江所输送的陆源有机碳约71%会在沉积过程中损失掉。本研究有助于深入了解大河河口不同粒级颗粒物在有机碳迁移转化过程中的作用,深化对高浊度河口有机碳生物地球化学过程的认识。  相似文献   

20.
高浑浊度河口沉积物的沉积机理评述   总被引:2,自引:0,他引:2  
该文主要介绍了潮流对沉积作用的影响,沉积物的再悬浮和最大浑浊带的形成机制以及影响沉积物絮凝沉降的因素。潮流是搬运河口泥沙的主要动力,沉积在河口拦门沙的泥沙会在潮流的作用下向河口外继续搬运。沉积物的再悬浮和最大浑浊带密不可分,正是由于沉积物在周期性潮流的作用下引起再悬浮,为最大浑浊带的形成提供了条件。影响沉积物絮凝沉降的因素很多,有内因,也有外因。内因是颗粒物自身的性质;外因如盐度、流速、pH值等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号