首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
Global navigation satellite systems (GNSS) data are a fundamental source of information for achieving a better understanding of geophysical and climate-related phenomena. However, discontinuities in the coordinate time series might be a severe limiting factor for the reliable estimate of long-term trends. A methodological approach has been adapted from Rodionov (Geophys Res Lett 31:L09204, 2004; Geophys Res Lett 31:L12707, 2006) and from Rodionov and Overland (J Marine Sci 62:328–332, 2005) to identify both the epoch of occurrence and the magnitude of jumps corrupting GNSS data sets without any a priori information on these quantities. The procedure is based on the Sequential t test Analysis of Regime Shifts (STARS) (Rodionov in Geophys Res Lett 31:L09204, 2004). The method has been tested against a synthetic data set characterized by typical features exhibited by real GNSS time series, such as linear trend, seasonal cycle, jumps, missing epochs and a combination of white and flicker noise. The results show that the offsets identified by the algorithm are split into 48 % of true-positive, 28 % of false-positive and 24 % of false-negative events. The procedure has then been applied to GPS coordinate time series of stations located in the southeastern Po Plain, in Italy. The series span more than 15 years and are affected by offsets of different nature. The methodology proves to be effective, as confirmed by the comparison between the corrected GPS time series and those obtained by other observation techniques.  相似文献   

2.
GRACE时变重力位系数误差的改进去相关算法   总被引:6,自引:1,他引:5  
GRACE卫星时变重力场模型的高阶位系数存在较大误差,用它反演的重力场结果中表现为严重的条带噪声。Swenson提出的滑动窗多项式拟合去相关误差方法在赤道两侧区域取得了显著效果,但其在文献中并没有说明实现的具体步骤,因而许多学者在利用其思想进行滤波时并没有达到其文献中的滤波效果。针对滑动窗的特点,使用反向边界延拓技术,对滑动窗去相关误差数据处理方法作了改进。改进的滑动窗去相关误差方法应用于GRACE时变重力场模型时,在赤道两侧区域取得了显著的去条带误差效果,并利用全球地面资料同化系统GLDAS土壤湿度资料验证该方法的正确性。  相似文献   

3.
Reducing errors in the GRACE gravity solutions using regularization   总被引:1,自引:0,他引:1  
The nature of the gravity field inverse problem amplifies the noise in the GRACE data, which creeps into the mid and high degree and order harmonic coefficients of the Earth’s monthly gravity fields provided by GRACE. Due to the use of imperfect background models and data noise, these errors are manifested as north-south striping in the monthly global maps of equivalent water heights. In order to reduce these errors, this study investigates the use of the L-curve method with Tikhonov regularization. L-curve is a popular aid for determining a suitable value of the regularization parameter when solving linear discrete ill-posed problems using Tikhonov regularization. However, the computational effort required to determine the L-curve is prohibitively high for a large-scale problem like GRACE. This study implements a parameter-choice method, using Lanczos bidiagonalization which is a computationally inexpensive approximation to L-curve. Lanczos bidiagonalization is implemented with orthogonal transformation in a parallel computing environment and projects a large estimation problem on a problem of the size of about 2 orders of magnitude smaller for computing the regularization parameter. Errors in the GRACE solution time series have certain characteristics that vary depending on the ground track coverage of the solutions. These errors increase with increasing degree and order. In addition, certain resonant and near-resonant harmonic coefficients have higher errors as compared with the other coefficients. Using the knowledge of these characteristics, this study designs a regularization matrix that provides a constraint on the geopotential coefficients as a function of its degree and order. This regularization matrix is then used to compute the appropriate regularization parameter for each monthly solution. A 7-year time-series of the candidate regularized solutions (Mar 2003–Feb 2010) show markedly reduced error stripes compared with the unconstrained GRACE release 4 solutions (RL04) from the Center for Space Research (CSR). Post-fit residual analysis shows that the regularized solutions fit the data to within the noise level of GRACE. A time series of filtered hydrological model is used to confirm that signal attenuation for basins in the Total Runoff Integrating Pathways (TRIP) database over 320 km radii is less than 1 cm equivalent water height RMS, which is within the noise level of GRACE.  相似文献   

4.
A sliding window technique is used to create daily-sampled Gravity Recovery and Climate Experiment (GRACE) solutions with the same background processing as the official CSR RL04 monthly series. By estimating over shorter time spans, more frequent solutions are made using uncorrelated data, allowing for higher frequency resolution in addition to daily sampling. Using these data sets, high-frequency GRACE errors are computed using two different techniques: assuming the GRACE high-frequency signal in a quiet area of the ocean is the true error, and computing the variance of differences between multiple high-frequency GRACE series from different centers. While the signal-to-noise ratios prove to be sufficiently high for confidence at annual and lower frequencies, at frequencies above 3 cycles/year the signal-to-noise ratios in the large hydrological basins looked at here are near 1.0. Comparisons with the GLDAS hydrological model and high frequency GRACE series developed at other centers confirm CSR GRACE RL04’s poor ability to accurately and reliably measure hydrological signal above 3–9 cycles/year, due to the low power of the large-scale hydrological signal typical at those frequencies compared to the GRACE errors.  相似文献   

5.
赫林  李建成  褚永海 《测绘学报》2017,46(7):815-823
GRACE、GOCE卫星重力计划的实施,对确定高精度重力场模型具有重要贡献。联合GRACE、GOCE卫星数据建立的重力场模型和我国均匀分布的649个GPS/水准数据可以确定我国高程基准重力位,但我国高程基准对应的参考面为似大地水准面,是非等位面,将似大地水准面转化为大地水准面后确定的大地水准面重力位为62 636 854.395 3m~2s~(-2),为提高高阶项对确定大地水准面的贡献,利用高分辨率重力场模型EGM2008扩展GRACE/GOCE模型至2190阶,同时将重力场模型和GPS/水准数据统一到同一参考框架和潮汐系统,最后利用扩展后的模型确定的我国大地水准面重力位为62 636 852.751 8m~2s~(-2)。其中组合模型TIM_R4+EGM2008确定的我国85高程基准重力位值62 636 852.704 5m~2s~(-2)精度最高。重力场模型截断误差对确定我国大地水准面的影响约16cm,潮汐系统影响约4~6cm。  相似文献   

6.
There are two spurious jumps in the atmospheric part of the Gravity Recovery and Climate Experiment-Atmosphere and Ocean De-aliasing level 1B (GRACE-AOD1B) products, which occurred in January-February of the years 2006 and 2010, as a result of the vertical level and horizontal resolution changes in the ECMWFop (European Centre for Medium-Range Weather Forecasts operational analysis). These jumps cause a systematic error in the estimation of mass changes from GRACE time-variable level 2 products, since GRACE-AOD1B mass variations are removed during the computation of GRACE level 2. In this short note, the potential impact of using an improved set of 6-hourly atmospheric de-aliasing products on the computations of linear trends as well as the amplitude of annual and semi-annual mass changes from GRACE is assessed. These improvements result from 1) employing a modified 3D integration approach (ITG3D), and 2) using long-term consistent atmospheric fields from the ECMWF reanalysis (ERA-Interim). The monthly averages of the new ITG3D-ERA-Interim de-aliasing products are then compared to the atmospheric part of GRACE-AOD1B, covering January 2003 to December 2010. These comparisons include the 33 world largest river basins along with Greenland and Antarctica ice sheets. The results indicate a considerable difference in total atmospheric mass derived from the two products over some of the mentioned regions. We suggest that future GRACE studies consider these through updating uncertainty budgets or by applying corrections to estimated trends and amplitudes/phases.  相似文献   

7.
Following an earlier recognition of degraded monthly geopotential recovery from GRACE (Gravity Recovery And Climate Experiment) due to prolonged passage through a short repeat (low order resonant) orbit, we extend these insights also to CHAMP (CHAllenging Minisatellite Payload) and GOCE (Gravity field and steady state Ocean Circulation Explorer). We show wide track-density variations over time for these orbits in both latitude and longitude, and estimate that geopotential recovery will be as widely affected as well within all these regimes, with lesser track density leading to poorer recoveries. We then use recent models of atmospheric density to estimate the future orbit of GRACE and warn of degraded performance as other low order resonances are encountered in GRACE’s free fall. Finally implications for the GOCE orbit are discussed.  相似文献   

8.
Observations of spatio-temporal variations in the geopotential using the GRACE satellites have been used to estimate recent mass fluxes from polar ice sheets and glaciers. However, these estimates have not considered the potential bias associated with the migration of water that accompanies the ice melt. This migration is driven by the diminished gravitational attraction of the melting ice reservoir, and this migration, as well as the crustal loading it induces, will contribute to the observed geopotential anomaly. The extent to which this contribution contaminates the ice mass flux estimates depends on how far the smoothing filters applied to the GRACE data extend beyond the ice margins into the ocean. Using the Antarctic Peninsula as a case study, we estimate the magnitude of this bias for a range of melt areas and Gaussian smoothing filter radii. We conclude that GRACE estimates of ice mass loss over the Antarctic Peninsula are systematically overestimating the loss by up to 10  $\%$ for filter radii of less than 500 km.  相似文献   

9.
Simulated estimation of hydrological loads from GRACE   总被引:2,自引:1,他引:1  
Four different basin functions are developed to estimate water storage variations within individual river basins from time variations in the Stokes coefficients now available from the GRACE mission. The four basin functions are evaluated using simulated data. Basin functions differ in how they minimize effects of three major error sources: measurement error; leakage of signal from one region to another; and errors in the atmospheric pressure field removed during GRACE data processing. Three of the basin functions are constant in time, while the fourth changes monthly using information about the signal (hydrologic and oceanic load variations). To test basin functions performance, Stokes coefficient variations from land and ocean models are synthesized, and error levels 50 and 100 times greater than pre-launch GRACE error estimate are used to corrupt them. Errors at 50 times pre-launch estimates approximately simulate current GRACE data. GRACE recovery of water storage variations is attempted for five different river basins (Amazon, Mississippi, Lena, Huang He and Oranje), representing a variety of sizes, locations, and signal variance. In the large basins (Amazon, Mississippi and Lena), water storage variations are recovered successfully at both error levels. As the error level increases from 50 to 100 times, basin functions change their shape, yielding less atmospheric pressure error and more leakage error. Amplitude spectra of measurement and atmospheric pressure errors have different shapes, but the best results are obtained when both are used in basin function design. When high-quality information about the signal is available, for example from climate and ocean models, changing the basin function each month can reduce leakage error and improve estimates of time variable water storage within basins.  相似文献   

10.
We discuss a new method for approximately decorrelating and non-isotropically filtering the monthly gravity fields provided by the gravity recovery and climate experiment (GRACE) twin-satellite mission. The procedure is more efficient than conventional Gaussian-type isotropic filters in reducing stripes and spurious patterns, while retaining the signal magnitudes. One of the problems that users of GRACE level 2 monthly gravity field solutions fight is the effect of increasing noise in higher frequencies. Simply truncating the spherical harmonic solution at low degrees causes the loss of a significant portion of signal, which is not an option if one is interested in geophysical phenomena on a scale of few hundred to few thousand km. The common approach is to filter the published solutions, that is to convolve them with an isotropic kernel that allows an interpretation as smoothed averaging. The downside of this approach is an amplitude bias and the fact that it neither accounts for the variable data density that increases towards the poles where the orbits converge nor for the anisotropic error correlation structure that the solutions exhibit. Here a relatively simple regularization procedure will be outlined, which allows one to take the latter two effects into account, on the basis of published level 2 products. This leads to a series of approximate decorrelation transformations applied to the monthly solutions, which enable a successive smoothing to reduce the noise in the higher frequencies. This smoothing effect may be used to generate solutions that behave, on average over all possible directions, very close to Gaussian-type filtered ones. The localizing and smoothing properties of our non-isotropic kernels are compared with Gaussian kernels in terms of the kernel variance and the resulting amplitude bias for a standard signal. Examples involving real GRACE level 2 fields as well as geophysical models are used to demonstrate the techniques. With the new method, we find that the characteristic striping pattern in the GRACE solutions are much more reduced than Gaussian-filtered solutions of comparable signal amplitude and root mean square.  相似文献   

11.
利用2003-1~2013-12的GRACE月重力场数据来计算新疆天山地区陆地水储量的变化,采用去相关滤波和300 km高斯滤波相结合的方法来滤除GRACE数据中的噪声,同时采用尺度因子的方法来减小GRACE后处理误差的影响,并利用Paulson模型结果来扣除由冰川均衡调整(GIA)对水储量反演结果的影响,把得到的最终结果与同期GLDAS、CPC水文模型进行了验证分析。结果表明,GRACE反演结果与两个水文模型的模拟结果变化趋势基本一致,在2003~2013年间,研究区域的水储量整体上呈现下降趋势,速率为-0.54±0.27 mm/a左右,但期间水储量变化波动较大,在2008年10月份左右,该区域水储量较同期呈现明显减小,这与该时段的干旱事件相一致。  相似文献   

12.
针对GRACE Level2卫星时变重力数据后处理方法如何评价的问题,该文以中国数字地震观测网络获得的青藏高原地区地面重力变化图像为参考,基于平均结构相似性等图像相似度指标,研究了与该区域地面重力观测同期、不同后处理方法得到的GRACE卫星重力变化图像的可靠性。结果显示,GRACE卫星重力和地面重力观测结果具有一定的可比性,滑动窗口去相关滤波和高斯400 km滤波的组合方法可以获得最优的处理效果。本文的方法和结论对GRACE及GRACE Follow-On卫星重力数据应用中后处理方法和参数的选取有一定的借鉴意义。  相似文献   

13.
各向异性组合滤波法反演陆地水储量变化   总被引:2,自引:1,他引:1  
超能芳  王正涛  孙健 《测绘学报》2015,44(2):174-182
地球时变重力场模型反演陆地水储量变化已为全球气候变化研究作出巨大贡献,考虑到时变重力场模型球谐系数中存在相关性,其高阶次项具有较大的误差,需采用最优的滤波方法进行空间平滑。本文提出一种新的各向异性组合滤波方法,其基本思想是将改进的高斯滤波法与均方根(root mean square,RMS)滤波法组合,即对球谐系数的低阶次采用改进的高斯滤波法,而高阶次采用RMS滤波法。首先分析了最新的GRACE RL05系列时变重力场模型系数误差特性,基于全球水储量变化反演结果,分析比较了高斯滤波、改进的高斯滤波、RMS滤波和DDK滤波与本文提出的组合滤波法的有效性及精度,并利用模型结果进行了验证,计算结果表明,组合滤波法的中误差最小。研究结果表明,本文提出的组合法相比于先前的滤波方法,可有效地过滤高阶次的噪声,消除南北条带误差,同时减少信号泄漏,提高信噪比,保留更多有效的地球物理信号,进而提高反演精度。  相似文献   

14.
We present an improved mascon approach to transform monthly spherical harmonic solutions based on GRACE satellite data into mass anomaly estimates in Greenland. The GRACE-based spherical harmonic coefficients are used to synthesize gravity anomalies at satellite altitude, which are then inverted into mass anomalies per mascon. The limited spectral content of the gravity anomalies is properly accounted for by applying a low-pass filter as part of the inversion procedure to make the functional model spectrally consistent with the data. The full error covariance matrices of the monthly GRACE solutions are properly propagated using the law of covariance propagation. Using numerical experiments, we demonstrate the importance of a proper data weighting and of the spectral consistency between functional model and data. The developed methodology is applied to process real GRACE level-2 data (CSR RL05). The obtained mass anomaly estimates are integrated over five drainage systems, as well as over entire Greenland. We find that the statistically optimal data weighting reduces random noise by 35–69%, depending on the drainage system. The obtained mass anomaly time-series are de-trended to eliminate the contribution of ice discharge and are compared with de-trended surface mass balance (SMB) time-series computed with the Regional Atmospheric Climate Model (RACMO 2.3). We show that when using a statistically optimal data weighting in GRACE data processing, the discrepancies between GRACE-based estimates of SMB and modelled SMB are reduced by 24–47%.  相似文献   

15.
地球重力场和海洋环流探测(gravity field and steady-state ocean circulation explorer,GOCE)卫星重力梯度数据有色噪声和低频系统误差的滤波处理是反演高精度地球重力场的一个关键问题。针对GOCE卫星重力梯度数据的滤波处理,基于移动平均(moving average,MA)方法和CPR(circle per revolution)经验参数方法设计了两类低频系统误差滤波器,并分别将这两类滤波器与基于自回归移动平均(auto-regressive and moving average,ARMA)模型设计的有色噪声滤波器组合起来形成级联滤波器。为了分析滤波器处理的实际效果,基于空域最小二乘法采用70 d的GOCE观测数据,并联合重力恢复与气候实验(gravity recovery and climate experiment,GRACE)数据分别反演了224阶次的重力场模型GOGR-MA(MA+ARMA级联滤波)和GOGR-CPR(CPR+ARMA级联滤波)。将反演模型与采用同期数据求解的第一代GOCE系列模型及GOCE和GRACE联合模...  相似文献   

16.
本文研究了卫星测高误差对海洋重力场探测的影响,导出了卫星测高随机误差在海洋重力异常推估过程中的误差传播公式,实验分析了卫星测高随机误差在多种测量分辨率下对重力异常推估值影响的大小,可为我国未来的测高卫星系统论证设计提供技术参考。  相似文献   

17.
GRACE时变重力场滤波方法   总被引:1,自引:1,他引:0  
针对GRACE时变重力场模型高阶项误差较大导致的"南-北"条带噪声,该文利用模拟的GRACE数据分析了去相关滤波、Gaussian滤波、组合滤波和平滑先验信息滤波方法对噪声的滤除效果和对真实信号的衰减程度。实验表明:4种滤波算法均能有效降低条带噪声,但单独使用去相关滤波时效果较差,需与其他算法结合使用;Guass滤波和组合滤波在减小噪声条带的同时,也在一定程度上牺牲了空间分辨率;平滑先验信息滤波在移除噪声、保留有效信号方面比其他3种算法有较为明显的优势。  相似文献   

18.
Simulation study of a follow-on gravity mission to GRACE   总被引:9,自引:3,他引:6  
The gravity recovery and climate experiment (GRACE) has been providing monthly estimates of the Earth’s time-variable gravity field since its launch in March 2002. The GRACE gravity estimates are used to study temporal mass variations on global and regional scales, which are largely caused by a redistribution of water mass in the Earth system. The accuracy of the GRACE gravity fields are primarily limited by the satellite-to-satellite range-rate measurement noise, accelerometer errors, attitude errors, orbit errors, and temporal aliasing caused by un-modeled high-frequency variations in the gravity signal. Recent work by Ball Aerospace & Technologies Corp., Boulder, CO has resulted in the successful development of an interferometric laser ranging system to specifically address the limitations of the K-band microwave ranging system that provides the satellite-to-satellite measurements for the GRACE mission. Full numerical simulations are performed for several possible configurations of a GRACE Follow-On (GFO) mission to determine if a future satellite gravity recovery mission equipped with a laser ranging system will provide better estimates of time-variable gravity, thus benefiting many areas of Earth systems research. The laser ranging system improves the range-rate measurement precision to ~0.6 nm/s as compared to ~0.2 μm/s for the GRACE K-band microwave ranging instrument. Four different mission scenarios are simulated to investigate the effect of the better instrument at two different altitudes. The first pair of simulated missions is flown at GRACE altitude (~480 km) assuming on-board accelerometers with the same noise characteristics as those currently used for GRACE. The second pair of missions is flown at an altitude of ~250 km which requires a drag-free system to prevent satellite re-entry. In addition to allowing a lower satellite altitude, the drag-free system also reduces the errors associated with the accelerometer. All simulated mission scenarios assume a two satellite co-orbiting pair similar to GRACE in a near-polar, near-circular orbit. A method for local time variable gravity recovery through mass concentration blocks (mascons) is used to form simulated gravity estimates for Greenland and the Amazon region for three GFO configurations and GRACE. Simulation results show that the increased precision of the laser does not improve gravity estimation when flown with on-board accelerometers at the same altitude and spacecraft separation as GRACE, even when time-varying background models are not included. This study also shows that only modest improvement is realized for the best-case scenario (laser, low-altitude, drag-free) as compared to GRACE due to temporal aliasing errors. These errors are caused by high-frequency variations in the hydrology signal and imperfections in the atmospheric, oceanographic, and tidal models which are used to remove unwanted signal. This work concludes that applying the updated technologies alone will not immediately advance the accuracy of the gravity estimates. If the scientific objectives of a GFO mission require more accurate gravity estimates, then future work should focus on improvements in the geophysical models, and ways in which the mission design or data processing could reduce the effects of temporal aliasing.  相似文献   

19.
When regional gravity data are used to compute a gravimetric geoid in conjunction with a geopotential model, it is sometimes implied that the terrestrial gravity data correct any erroneous wavelengths present in the geopotential model. This assertion is investigated. The propagation of errors from the low-frequency terrestrial gravity field into the geoid is derived for the spherical Stokes integral, the spheroidal Stokes integral and the Molodensky-modified spheroidal Stokes integral. It is shown that error-free terrestrial gravity data, if used in a spherical cap of limited extent, cannot completely correct the geopotential model. Using a standard norm, it is shown that the spheroidal and Molodensky-modified integration kernels offer a preferable approach. This is because they can filter out a large amount of the low-frequency errors expected to exist in terrestrial gravity anomalies and thus rely more on the low-frequency geopotential model, which currently offers the best source of this information. Received: 11 August 1997 / Accepted: 18 August 1998  相似文献   

20.
A spatiospectral localization method is discussed for processing the global geopotential coefficients from satellite mission data to investigate time-variable gravity. The time-variable mass variation signal usually appears associated with a particular geographical area yielding inherently regional structure, while the dependence of the satellite gravity errors on a geographical region is not so evident. The proposed localization amplifies the signal-to-noise ratio of the (non-stationary) time-variable signals in the geopotential coefficient estimates by localizing the global coefficients to the area where the signal is expected to be largest. The results based on localization of the global satellite gravity coefficients such as Gravity Recovery And Climate Experiment (GRACE) and Gravity and Ocean Circulation Explorer (GOCE) indicate that the coseismic deformation caused by great earthquakes such as the 2004 Sumatra–Andaman earthquake can be detected by the low-low tracking and the gradiometer data within the bandwidths of spherical degrees 15–30 and 25–100, respectively. However, the detection of terrestrial water storage variation by GOCE gradiometer is equivocal even after localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号