共查询到15条相似文献,搜索用时 62 毫秒
1.
高空间分辨率遥感影像能够充分地描述地表覆盖空间异质性,可用于提取地面目标物。然而高空间分辨率在像元尺度的目标提取时易产生"椒盐效应"问题,面向对象的小尺度影像分割也受此效应影响;而大尺度的影像分割造成较小目标的遗漏。本文提出了一种针对高空间分辨率遥感影像的多尺度分割优化组合算法MOCA(Multi-scale-segmentation Optimal Composition Algorithm),基于后验概率信息熵指标选择影像中每个地面目标的最优分割尺度并集成组合,获得高空间分辨率遥感影像的多尺度分割优化组合结果。本文使用F指标和BCI(Bidirectional Consistency Index)两种指标评估地面目标物提取精度,并将MOCA与同类多尺度分割方法进行比较。实验结果表明,本文提出的MOCA算法可实现多个分割尺度的最优组合,并获得较高的地面目标物提取精度。 相似文献
2.
由于高空间分辨率遥感影像自身的复杂性,传统的分水岭分割方法难以取得令人满意的效果。本文提出一种改进分水岭变换的高分辨率遥感影像多尺度分割方法,在抑制分水岭过分割现象的同时,还能实现对遥感影像的多尺度分割。该方法充分考虑了高分辨率遥感影像的多光谱和多尺度特性,首先,利用各向异性扩散滤波技术对影像进行平滑滤波,目的是在滤除各种噪声的同时还能保持影像的边缘特征和重要的细节信息;然后,提取影像的多尺度形态学梯度,并从梯度图像中提取标记;接着进行基于标记的分水岭变换;最后,利用改进的快速区域合并算法实现对影像的多尺度分割。实验表明,改进的算法能有效地抑制分水岭的过分割现象,对高分辨率遥感影像有较好的分割性能。 相似文献
3.
多尺度分割是面向对象遥感影像分析的关键性基础步骤,影像分割过程中尺度参数的选择直接关系到面向对象影像分析的质量和精度。本文首先从理论层面将遥感影像分割的尺度界定为基于统计的原始影像全局或局部特征的一种定量化估计,并在算法层面上将多尺度分割算法的尺度参数概括为空间尺度分割参数(类别或斑块间的空间距离)、属性尺度分割参数(类别或斑块间的属性距离)和合并阈值参数(斑块大小或斑块像元数目);接着,提出了基于谱空间统计的高分辨率影像分割尺度估计方法;最后,以均值漂移多尺度分割算法为例,采用高空间分辨率的Ikonos、Quickbird和航空影像数据,对本文提出的基于谱空间统计的高分辨率影像分割尺度估计方法进行了验证。结果表明,该方法在一定程度上不仅避免了高分辨率遥感影像分割尺度参数选择的主观性和盲目性,还提高了面向对象影像分析的自动化程度,具有可行性和有效性。 相似文献
4.
克里格法的土壤水分遥感尺度转换 总被引:2,自引:0,他引:2
尺度效应往往会制约着定量遥感反演的精度,对地学信息进行空问尺度转换是生产实践的必然要求,而常用的尺度转换模型多利用光谱数据进行差值计算,不适合升尺度和降尺度转换.白于土壤含水量数据具有区域变化量的随机性和结构性特点,本文以15m分辨率的ASTER图像像元为基本单元,采用点克里格法完成ASTER 15m至7.5m分辨率的土壤含水量数据降尺度转换,从分维数的相似程度上来看,转换结果是合理的;并利用块状克里格法对地面实测样点数据进行点到7.5m分辨率的面数据升尺度转换,将升尺度和降尺度转换结果与实测样点均值相比较,结果表明:7.5m分辨率的实测样点土壤水均值误差在1.5782 -5.019之间,块状克里格法获取的升尺度土壤含水量数据与点克里格法获取的降尺度土壤含水量数据之间误差则为1.2825- 5.0481,可见克里格法考虑了点与周边的关系,所获得的土壤含水量值要优于未考虑空间异质性的土壤含水量平均值. 相似文献
5.
面向对象解译技术在高分辨率遥感影像信息提取中得到广泛应用,但影像分割的基础问题仍严重制约其自动化水平,尤其是分割参数选择。因此,本文以广泛使用的分型网络演化分割算法为例,开展尺度参数选择研究。借鉴对遥感影像分辨率敏感的局部方差指标,引入边长和面积权重,构造加权局部方差(WLV)指标,对多个分割结果进行评价,进而实现最佳尺度参数选择。在珠江区域2.5 m的SPOT 5融合影像上进行实验,通过计算最佳分割结果与人工分割结果的相似度对WLV进行定量验证。此外,还对WLV在分割对象最小为一个像元、最大为整景影像的全范围尺度参数的变化规律进行了实验,结果表明:在WLV随尺度参数的变化曲线中,不同极大值点的分割结果反映了实验区不同景观层级上的斑块,其中第1个极大值点对应的分割结果能够较好地反映影像的最小可识别单元。 相似文献
6.
随着多光谱传感器的广泛运用,利用地物光谱响应特征提取地表信息的技术日益成熟,但是由于地表状况的复杂性和光谱响应的局限性,光谱方法在指示平均大小、空间异向性、空间分布、空间异质性等格局信息方面存在不足,因此挖掘遥感影像的空间格局特征日益受到研究者的重视。已有研究发现,变异参数与地表场景参数存在一定的对应关系,通过变异参数可以实现地表场景参数的提取,因此变异函数分析方法被广泛应用于真实遥感影像格局分析中,具体包括平均尺度提取、周期性格局探测、空间异质性表征与空间异向性描述等地表格局参数量化方面、最佳尺度选择与影像纹理分析等遥感影像信息提取方面。尽管变异函数分析方法在上述应用领域中都发挥了重要作用,但是当前利用变异函数进行遥感影像空间格局分析大多局限于定性描述层面,缺乏精确化的量化描述与分析,限制了变异函数分析方法应用的进一步拓展,究其原因在于对遥感影像格局变异函数分析的内在机制缺乏深入了解。本文回顾了近20年来变异函数分析方法在遥感格局分析领域的主要应用,并对该方法本身的优势和存在的不足进行了总结,可为变异函数这一工具在遥感影像格局分析方面的有效应用提供参考。 相似文献
7.
刘建华 《地球信息科学学报》2010,12(6):850-854
相对单波段灰度影像而言,多波段高空间分辨率遥感影像中可用于边缘检测的光谱信息更加丰富。鉴于Canny算子在灰度图像边缘检测中的优越性能,本文利用输出融合策略对其适用于高空间分辨率遥感影像矢量边缘检测作了改进。基于可视化开发平台VC++.NET,编程实现了福州市航拍的高空间分辨率遥感影像红绿蓝三个标准波段在RGB、IHS、Y IQ、YUV、C IELUV色彩空间中对各种地物矢量边缘信息的有效提取。对高空间分辨率遥感影像矢量边缘各分量的分析认为,由于波谱范围差异的影响,在上述色彩空间中不同地物类型边缘检测时响应程度具有显著的不同。本文研究结果表明,该算法参数设置和色彩空间选择对高空间分辨率遥感影像矢量边缘信息提取有较大的影响。 相似文献
8.
本文从遥感影像多尺度分割的角度分析了同一地区的航片与QuickBird、IKONOS等卫星数据的分割效果,讨论了不同地物和不同影像的最佳分割尺度,以增强对目标物的检测与识别能力,提高现有航空遥感数据及卫星影像数据应用的精度和效率,并对最终分类结果进行了比较。结果表明航片、QuickBird、IKONOS的最佳分割尺度分别为125、100、75,QuickBird的分类精度最高,航片和IKONOS的分类精度次之。因此可认为,航片在实际应用中,可以代替高分辨率卫星影像。 相似文献
9.
城市道路空间舒适度是综合刻画城市道路环境的量化指标之一,可为城市道路规划建设、城市交通优化、城市环境评估等提供参考.本文以街景影像为基础数据,从空间视角阐述了城市道路空间舒适度内涵,构建了城市道路空间舒适度量化指标,建立了以语义分割和等距采样为基础的城市道路空间舒适度测度方法和空间插值方法,最后以南京市局部城区为样区进... 相似文献
10.
基于数学形态学的高空间分辨率遥感影像几何特征提取 总被引:1,自引:0,他引:1
本文结合高空间分辨率遥感影像的特点,利用数学形态学方法,选取具有不同尺度和包含全部方向的结构元素,设计了全方位结构元素多级加权滤波去噪算法和多尺度全方位形态学边缘检测算法,用于高空间分辨率遥感影像的处理;并通过图像边界追踪生成栅格数据对象和矢量数据对象,据此建立了高空间分辨率遥感影像的几何特征提取模型。结果表明:全方位结构元素多级加权滤波去噪算法很好地抑制了图像中的噪声,并保留了图像细节;多尺度全方位形态学边缘检测算法很好地解决了噪声抑制和精细边缘提取的矛盾,检测出的图像边缘比基本的边缘检测算子清晰,而且抗噪性能强。提取的几何特征信息可以结合遥感图像的光谱、纹理、统计等特征用于遥感图像地物识别与分类,也可以在GIS、摄影测量、计算机视觉等领域和气象、农林、地理、海洋、水利、国土资源和环保等行业使用。 相似文献
11.
遥感土地覆被分类的空间尺度响应研究 总被引:2,自引:0,他引:2
不同空间分辨率遥感影像对区域土地覆被类型识别精度的影响是目前土地资源遥感研究中的热点议题。本文基于准同步的卫星传感器影像,以福建省长汀县河田盆地为研究区,结合野外调查的实验样本,依次采用最大似然法(MLC)、支持向量机(SVM)和人工神经网络(ANN)3种分类器,分析土地覆被分类结果在中高空间尺度序列(1~50 m)下的变化响应特征。结果表明:不同空间尺度下的地物分类结果存在显著差异(P<0.05),其中总分类精度和Kappa系数均随影像分辨率的降低而先升高后降低,并于4 m分辨率处达到峰值,该结果与各类地物光谱反射率的空间尺度变化特征密切相关;而不同分类器对各空间尺度影像分类结果的影响程度差异较大(P<0.05),其中SVM的分类精度最优,MLC次之,ANN的结果较差。此外,伴随影像空间分辨率的降低,不同土地覆被类型面积提取结果的变化规律不同,导致同类地物在不同空间尺度下的提取结果出现较大差异,表明在使用多源分辨率遥感数据进行土地监测等相关研究时,其伴随的结果误差不容忽视。 相似文献
12.
自适应滤波的高分辨率遥感影像薄云去除算法 总被引:2,自引:0,他引:2
本文在借鉴遥感影像云雾去除相关研究基础上,提出了一种自适应滤波和非线性灰度变换的高分辨率遥感影像薄云雾消除方法,并与现有的几种效果较好的去云雾方法进行了对比研究。结果表明,本文提出的方法不仅能够有效降低薄云雾遮挡干扰影响,而且可以很好地保持原始影像真实的光谱特性,同时针对不同波段地物光谱特性做相应的灰度变换和融合处理,能够在很大程度上减少遥感影像的细节信息的丢失和保持图像的清晰度,是一种有效去除薄云雾覆盖的方法。 相似文献
13.
针对现有由稀到密的加密匹配算法中,初始匹配点可靠性低将导致迭代匹配拓展过程存在较多误匹配的问题,提出一种基于可靠匹配点约束的遥感影像密集匹配算法.首先,利用SIFT匹配点约束直线匹配获得的同名直线构建虚拟匹配点集,结合虚拟匹配点集和SIFT匹配点集建立初始匹配点集;然后,依次采用局部影像信息和局部几何约束对初始匹配点集... 相似文献
14.
随着高分辨率遥感卫星的产生,传统的融合技术难以达到较好的融合效果,如主成分分析(PrincipalComponents Analysis)变换融合受到融合区域的限制,而传统的小波融合(Wavelet Transformation)算法由于高频直接替换,导致了一定程度的光谱失真,由此本文在分析主成分分析变换和a′Trous小波变换(WT)的基础上,以QuickBird全色和多光谱数据为实验数据,提出了一种将两者相结合的遥感影像融合方法,通过与其他融合方法的定量和视觉比较,结果表明该方法能得到更好的融合效果。 相似文献
15.
分形定量选择遥感影像最佳空间分辨率的方法与实验 总被引:1,自引:0,他引:1
遥感影像观测尺度是遥感信息提取研究的重要内容之一,也是遥感信息提取的焦点。以往,遥感影像尺度特征的分析大多基于地统计学,其主要体现遥感影像中的线性特征,而实质上遥感影像中既存在线性特征,又存在非线性特征。因此,在深入剖析遥感影像尺度效应及分形特征机理的基础上,本文探讨了分形理论定量选择遥感影像最佳空间分辨率(也称最佳像元观测尺度)的方法。以IKONOS全色影像的建筑用地、耕地、林地为研究对象,分别使用FBM、DBM、TPM 3种分形维数计算模型,实现了3种地物在不同空间分辨率下分形维数的计算。实验结果表明,每种地物的分形维数是随空间分辨率的增大,总体呈下降趋势,且在某些特征空间分辨率上会出现拐点。从遥感影像尺度效应分析可知,遥感影像空间格局随尺度的不同,其内部结构也不同。且随着尺度的增大,很多细节将会被忽略,影像的粗糙度也随着降低。而分形维数是目前为止描述对象自相似性和不规则度的唯一基本量化值,其直观上与物体表面的粗糙程度相吻合。因此,这些拐点对应的分形维数对地物的最佳空间分辨率的选择具有一定指示意义。通过本文研究可知,使用分形理论方法研究遥感影像最佳空间分辨率(或最佳像元观测尺度),打破以往观测尺度方法研究范畴,从不同角度去分析遥感影像观测尺度问题对GIS研究与地学应用具有一定的理论和指导意义。 相似文献