首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we improve the previous work on the MHD Alfvén wave oscillation model for the neutron star (NS) kHz quasi‐periodic oscillations (QPOs), and compare the model with the updated twin kHz QPO data. For the 17 NS X‐ray sources with the simultaneously detected twin kHz QPO frequencies, the stellar mass M and radius R constraints are given by means of the derived parameter A in the model, which is associated with the averaged mass density of the star as 〈ρ 〉 = 3M /(4πR3) ≃ 2.4 × 1014 (A /0.7)2 g/cm3, and we also compare the MR constraints with the stellar equations of state. Moreover, we also discuss the theoretical maximum kHz QPO frequency and maximum twin peak separation, and some expectations on SAX J1808.4–3658 are mentioned, such as its highest kHz QPO frequency ∼ 870 Hz, which is about 1.4–1.5 times less than those of the other known kHz QPO sources. The estimated magnetic fields for both Z sources (about Eddington accretion rate ) and Atoll sources (∼ 1% ) are approximately ∼109 G and ∼108 G, respectively. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The Machian models of isotropic expanding universes according to the “inertia-free” gravo-dynamics imply the equations between the instantan values H0 and q0 of the HUBBLE parameter H, the acceleration q, and the matter density o. Therefore, in Machian universes with linear expansion q0 = 0 the energy integral E = -1/2ϵc2 is zero and the matter density becomes (with H02R02 = c2/3) (f0 the Newtonian gravitational constant). This is the critical density in general relativistic cosmology.  相似文献   

3.
We consider the spatially flat Friedmann model For atp, especially, if p ≥ 1, this is called power-law inflation. For the Lagrangian L = Rm with p = − (m − 1) (2m − 1)/(m − 2) power-law inflation is an exact solution, as it is for Einstein gravity with a minimally coupled scalar field ϕ in an exponential potential V(ϕ) = exp (μϕ) and also for the higher-dimensional Einstein equation with a special Kaluza-Klein ansatz. The synchronized coordinates are not adapted to allow a closed-form solution, so we write The general solutions reads Q(a) = (ab + C)f/b with free integration constant C (C = 0 gives exact power-law inflation) and m-dependent values b and f: f = −2 + 1/p, b = (4m − 5)/(m − 1). Finally, special solutions for the closed and open Friedmann model are found.  相似文献   

4.
Observations in polarized emission reveal the existence of large‐scale coherent magnetic fields in a wide range of spiral galaxies. Radio‐polarization data show that these fields are strongly inclined towards the radial direction, with pitch angles up to 35° and thus cannot be explained by differential rotation alone. Global dynamo models describe the generation of the radial magnetic field from the underlying turbulence via the so called α ‐effect. However, these global models still rely on crude assumptions about the small‐scale turbulence. To overcome these restrictions we perform fully dynamical MHD simulations of interstellar turbulence driven by supernova explosions. From our simulations we extract profiles of the contributing diagonal elements of the dynamo α ‐tensor as functions of galactic height. We also measure the coefficients describing vertical pumping and find that the ratio between these two effects has been overestimated in earlier analytical work, where dynamo action seemed impossible. In contradiction to these models based on isolated remnants we always find the pumping to be directed inward. In addition we observe that depends on whether clustering in terms of superbubbles is taken into account. Finally, we apply a test field method to derive a quantitative measure of the turbulent magnetic diffusivity which we determine to be ∼2 kpckms–1. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Considering a plasma with an initially weak large scale field subject to nonhelical turbulent stirring, Zeldovich (1957), for two‐dimensions, followed by others for three dimensions, have presented formulae of the form 〈b2〉 = f(RM) . Such “Zeldovich relations” have sometimes been interpreted to provide steady‐state relations between the energy associated with the fluctuating magnetic field and that associated with a large scale or mean field multiplied by a function f that depends on spatial dimension and a magnetic Reynolds number RM. Here we dissect the origin of these relations and pinpoint pitfalls that show why they are inapplicable to realistic, dynamical MHD turbulence and that they disagree with many numerical simulations. For 2D, we show that when the total magnetic field is determined by a vector potential, the standard Zeldovich relation applies only transiently, characterizing a maximum possible value that the field energy can reach before necessarily decaying. In 3D, we show that the standard Zeldovich relations are derived by balancing subdominant terms. In contrast, balancing the dominant terms shows that the fluctuating field can grow to a value independent of RM and the initially imposed , as seen in numerical simulations. We also emphasize that these Zeldovich relations of nonhelical turbulence imply nothing about the amount mean field growth in a helical dynamo. In short, by re‐analyzing the origin of the Zeldovich relations, we highlight that they are inapplicable to realistic steady‐states of large RM MHD turbulence. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We formulate the canonical equations of motion for particles with an (post-HEWTON ian) interaction potential and the HAMILTON ian form of our MACH ian dynamics without inertia.  相似文献   

7.
Using the 3-dimensional ASH code, we have studied numerically the instabilities that occur in stellar radiation zones in presence of large-scale magnetic fields, rotation and large-scale shear. We confirm that some configurations are linearly unstable, as predicted by Tayler and collaborators, and we determine the saturation level of the instability. We find that rotation modifies the peak of the most unstable wave number of the poloidal instability but not its growth rate as much as in the case of the m = 1 toroidal instability for which it is changed to σ = /Ω. Further in the case with rotation and shear, we found no sign of the dynamo mechanism suggested recently by Spruit even though we possess the essential ingredients (Tayler's m = 1 instability and a large scale shear) supposedly at work. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
A general method is proposed to solve in the linear approximation the fourth-order gravitational equations, which stem from Lagrangians $ \text{Q} = 1 ‐ g\left( {R + \frac{1}{2}aR^2 + bR_{av} R^{av} } \right) ‐ x\text{Q}. $ The metric of a static spherically symmetric body and the metric of a straight infinitely thin cosmic string are given.  相似文献   

9.
Abstract— Microscopic planar deformation features (PDFs) in quartz grains are diagnostic of shock meta-morphism during hypervelocity impact cratering. Measurements of the poles of sets of PDFs and the optic axis of 25 quartz grains were carried out for a sample of the Loftarsten deposit from the Lockne area, Sweden. The most abundant PDFs observed in the sample from the Lockne area correspond to those found at known impact craters (i.e., ω (1013} and π (1012). This study confirms the previous suggestion that the Lockne structure is an impact crater. The Loftarsten is, therefore, interpreted as the final stage of resurge deposition after a marine impact at Lockne in the Middle Ordovician.  相似文献   

10.
The neutrino-pair radiation by electrons in a non-quantizing magnetic field B is investigated. For a relativistic degenerate electron gas the emissivity of this process is mainly given by \documentclass{article}\pagestyle{empty}\begin{document}$ \varepsilon _r = 5 \times 10^{15} (pF/mc)^{4/3} \,B_{13}^{2/3} T_y^{12/8} \,{\rm erg} \times {\rm cm}^{ - 3} \times {\rm sec}^{- 1} $\end{document} where pF is the electron Fermi momentum. Under typical neutron star conditions at B ∼ 1013G neutrino synchrotron radiation appears to be one of the most effective mechanisms of neutrino energy loss in the envelopes of neutron stars; this mechanism may also compete with other known neutrino production mechanisms in the neutron star cores if pion condensate or quark matter is absent.  相似文献   

11.
Collapse calculations indicate that the hot young neutron stars rotate differentially so that strong toroidal magnetic field components should exist in the outer shell where also the Hall effect appears to be important when the Hall parameter = ωBτ exceeds unity. The amplitudes of the induced toroidal magnetic fields are limited by the current‐induced Tayler instability. An important characteristics of the Hall effect is its distinct dependence on the sign of the magnetic field. We find for fast rotation that positive (negative) Hall parameters essentially reduce (increase) the stability domain. It is thus concluded that the toroidal field belts in young neutron stars induced by their differential rotation should have different amplitudes in both hemispheres which later are frozen in. Due to the effect of magnetic suppression of the heat conductivity also the brightness of the two hemispheres should be different. As a possible example for our scenario the isolated neutron star RBS 1223 is considered which has been found to exhibit different X‐ray brightness at both hemispheres (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We search for stellar and substellar companions of young nearby stars to investigate stellar multiplicity and formation of stellar and substellar companions. We detect common proper‐motion companions of stars via multi‐epoch imaging. Their companionship is finally confirmed with photometry and spectroscopy. Here we report the discovery of a new co‐moving (13 σ) stellar companion ∼17.8 arcsec (350AU in projected separation) north of the nearby star HD141272 (21 pc).With EMMI/NTT optical spectroscopy we determined the spectral type of the companion to be M3±0.5V. The derived spectral type as well as the near infrared photometry of the companion are both fully consistent with a M dwarf located at the distance of HD141272 (21 pc). Furthermore the photometry data rules out the pre‐main sequence status, since the system is consistent with the ZAMS of the Pleiades. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
White, pale-yellow and brown deposits occur on surfaces of fragments of the Norton County enstatite achondrite. X-ray powder analysis of these materials indicates that they consist of several calcium-bearing minerals: portlandite [Ca(OH)2], vaterite (CaCO3, hexagonal), calcite (CaCO3, trigonal) and bassanite (CaSO4-1/2 H2O). We suggest that these minerals formed by weathering of oldhamite (CaS), which we found to occur in Norton County. The occurrence of portlandite suggests that at low temperatures and in the terrestrial environment, hydrolysis of oldhamite is the most important first step in the weathering sequence. Subsequent carbonation of portlandite is thought to produce vaterite, and vaterite in turn might transform into calcite. Thus, we suggest a weathering sequence in the terrestrial environment of oldhamite portlandite vaterite calcite. The mineral bassanite is clearly also a terrestrial weathering product but its precise mode of origïn is somewhat uncertain: in the system CaSO4-H2O, bassanite forms from gypsum at about 100 °C (an unlikely high T for the weathering environment of Norton County).  相似文献   

14.
The strange non-evidence of the solar-neutrino current by the experiments of DAVIS et al. postulates a fundamental revision of the theory of weak interactions and of its relations to gravitation theory. (We assume that the astrophysical stellar models are not completely wrong.) – Our paper is based on PAULI 's grand hypothesis about the connection between weak and gravitational interactions. According to PAULI and BLACKETT the (dimensionless) gravitation constant is the square of the (dimensionless) FERMI -interaction constant and according to the hypotheses of PAULI, DE BROGLIE , and JORDAN the RIEMANN -EINSTEIN gravitational metric gik is fusioned by the four independent WEYL ian neutrino fields (β-neutrinos and β-antineutrinos, μ-neutrinos and μ-antineutrinos). This fusion gives four reference tetrads hiA(xl) as neutrino-current vectors, firstly. Then, the metric gik is defined by the equation gik = ηAB hiAhηB according to EINSTEIN 's theory of tele-parallelism in RIEMANN ian space-times. The relation of the gravitation field theory to FERMI 's theory of weak interactions becomes evident in our reference-tetrads theory of gravitation (TREDER 1967, 1971). – According to this theory the coupling of the gravitation potential hiA with the matter Tιi is given by a potential-like (FERMI -like) interaction term. In this interaction term two WEYL spinor-fields are operating on the matter-tensor, simultanously. Therefore, the gravitation coupling constant is PAULI 's square of the FERMI -constant. Besides of the fusion of the RIEMANN -EINSTEIN metric gik by four WEYL spinors we are able to construct a conformal flat metric ĝik = ϕ2ηik by fusion from each two WEYL spinors. (This hypothesis is in connection with our interpretation of EINSTEIN 's hermitian field theory as a unified field-theory of the gravitational metric gik and a WEYL spinor field [TREDER 1972].) Moreover, from the reference-tetrads theory is resulting that the WEYL spinors in the “new metric” ĝik are interacting with the DIRAC matter current by a FERMI -like interaction term and that these WEYL spinors fulfil a wave equation in the vacuum. Therefore, we have a long-range interaction with the radiced gravitational constant \documentclass{article}\pagestyle{empty}\begin{document}$ \sqrt {\frac{{tm^2 }}{{hc}}} $\end{document} as a coupling constant. That means, we have a long-range interaction which is 1018 times stronger than the gravitation interaction. – However, according to the algebraic structure of the conform-flat this long-range interaction is effective for the neutrino currents, only. And for these neutrinos the interaction is giving an EINSTEIN -like redshift of its frequences. The characteristic quantity of this “EINSTEIN shift” is a second gravitation radius â of each body: N = number of baryons, m = mass of a baryon.) This radius â is 1018 times larger than the EINSTEIN -SCHWARZSCHILD gravitation radius a = fM/c2: But, this big “weak radius” â has a meaning for the neutrinos, only.–The determination of the exterior and of the interior “metrics” ĝik is given by an “ansatz” which is analogous to the ansatz for determination of strong gravitational fields in our tetrads theory. That is by an ansatz which includes the “self-absorption” of the field by the matter. For all celestial bodies the “weak radius” â is much greater than its geometrical dimension. Therefore, a total EINSTEIN redshift of the neutrino frequences v is resulting according to the geometrical meaning of our long-range weak interaction potential ĝik = ϕ2ηik. That means, the cosmic neutrino radiation becomes very weak and unable for nuclear reactions. Theoretically, our hypothesis means an ansatz for unitary theory of gravitation and of weak interaction. This unitary field theory is firstly based on EINSTEIN 's hermitian field theory and secondly based on our reference-tetrads theory of gravitation.  相似文献   

15.
Liouville's theorem for radiation, of which the generalized étendue is a consequence, implies 2 d2 d2 A = constant along the ray path, where is the refractive index and d2 and d2 A are the ranges, respectively, of solid angle and of area that define a ray (actually a bundle of rays). Implications of this concept on the propagation of radio waves from the actual to the apparent source in the solar corona (i.e., the scatter image of the true source) are discussed. The implications for sources of fundamental plasma radiation include: (1)The observed solid angle (defining the directivity) and apparent area A of the source are compatible with Liouville's theorem only if the apparent source (the scatter image of the true source) corresponds to the envelope of subsources with a small filling factor f. (2) The brightness temperature T Bof the actual source is greater than that of the apparent source by f -1. (3) For sources of fundamental plasma radiation the factor f is very small ( 10-2). (4) A long-standing discrepancy between the observed low value of T B at meter/decameter wavelengths for the quiet Sun and the known coronal temperature may be resolved by noting that the implied coronal temperature is given by T B f and that the factor f must be significantly less than unity.A brief discussion is included of the relation between Liouville's theorem, the generalized étendue, Milne's laws, occupation numbers, extension in phase, and suppression of emission by a medium with refractive index unequal to unity.  相似文献   

16.
Abstract— Solid metal/liquid metal partition coefficients for Ag and Pd were determined experimentally as a function of the S concentration of the metallic liquid. Silver is incompatible in solid metal and strongly sensitive to the S content of the metallic liquid; partition coefficients for Ag decrease more than an order of magnitude with increasing S content of the metallic liquid and can be expressed as: where k(Ag) is the molar solid metal/liquid metal partition coefficient and XS is the molar S content of the metallic liquid. The partition coefficient of Pd is less variable but changes from modestly incompatible to modestly compatible in solid metal with increasing S content of the metallic liquid: With these new partition coefficients for Pd and a fractional crystallization model, Pd abundance trends recorded in iron meteorite groups are modeled successfully. Measured Ag distribution between troilite-rich nodules and adjacent metal in iron meteorites also agree well with experimental solid metal/liquid metal equilibrium values. However, observed Pd metal/nodule distributions do not agree with experimentally determined partition coefficients, which suggests a more complex history than simple solid metal/liquid metal equilibrium.  相似文献   

17.
Abstract The 9 km diameter Red Wing Creek structure, North Dakota, is located within the oil-rich Williston Basin at 47°36′N and 103°33′W. Earlier geophysical studies indicated that this subsurface structure has a central uplift, surrounded by an annular crater moat, and a raised rim. Breccias were encountered during drilling between ~2000 and 2800 m depth in the central uplift area, and the presence of shatter cone fragments in drill core samples was suggested to indicate an impact origin of the Red Wing Creek structure. We studied the petrographic and geochemical characteristics of samples of well cuttings from two boreholes at the center of the structure: the True Oil 22–27 Burlington Northern and True Oil 11–27 Burlington Northern wells. We found planar deformation features (PDFs) in quartz with up to three sets of different crystallographic orientations in sandstone- and siltstone-dominated samples from the True Oil 11–27 borehole. U-stage measurements of the crystallographic orientations of the PDFs showed the occurrence of the shock-characteristic (0001), and orientations, with a dominance of (0001) and orientations. The relative frequencies of the orientations indicate a shock pressure of at least 12–20 GPa. These results provide unambiguous evidence for shock metamorphism at Red Wing Creek and confirm that the structure was formed by impact.  相似文献   

18.
For a given family of orbits f(x,y) = c * which can be traced by a material point of unit in an inertial frame it is known that all potentials V(x,y) giving rise to this family satisfy a homogeneous, linear in V(x,y), second order partial differential equation (Bozis,1984). The present paper offers an analogous equation in a synodic system Oxy, rotating with angular velocity . The new equation, which relates the synodic potential function (x,y), = –V(x, y) + % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSqaaSqaai% aaigdaaeaacaaIYaaaaaaa!3780!\[\tfrac{1}{2}\]2(x 2 + y 2) to the given family f(x,y) = c *, is again of the second order in (x,y) but nonlinear.As an application, some simple compatible pairs of functions (x,y) and f(x, y) are found, for appropriate values of , by adequately determining coefficients both in and f.  相似文献   

19.
By considering the relativistic expression for isothermal NS cores,T·e /2 = constant, we have shown that some of the standard equations of state, when applied to NS cores, correspond to constancy of some adiabatic exponents. It has been shown that the equation of state,P=KE, corresponds to 1 = to 2 = 3 1 +K and the equation of state, dP/dE=K, corresponds to 3 1 +K. The conditions under which different equations of state represent isothermal cores have been obtained: For isothermal NS, the local temperatureT, can be expressed in terms of pressureP, energy densityE, and rest mass density . For example: (a)P =KE :T = constant × (E/); (b)P=KE :T = constant × (P/); (c) dP/dE =K :T K ; (d) = 2 :T = constant × (P/E); and (e) = 3 :T = constant × (P/)1/2. Equation of state corresponding to = 2 is obtained as:P=E/ln(K/E) and the equation corresponding to = 3 comes out as:E=P ln(K/P). Core-envelope models can be developed for these two cases. When core equation corresponding to = 2 or = 3 is used in the core, we can ensure the continuity of dP/dE at the core-envelope boundary, along with the continuity ofP, E, , and . The parameters of isothermal NS cores corresponding to the cases = 2 and = 3, have been obtained. The maximum mass of these NS cores comes out to be 2.7 .  相似文献   

20.
A novel methodology for evaluating the field of anisotropically scattered radiation within a homogeneous slab atmosphere of arbitrary optical thickness is provided. It departs from the traditional radiative transfer approach in first considering that the atmosphere is illuminated by an isotropic light source. From the solution of this problem, it subsequently proceeds to that for the more conventional case of monodirectional illumination. The azimuthal dependence of the field is separated in the usual manner by an harmonic expansion, leaving a problem in four dimensions (=optical depth, 0=thickness, , =directions of incidence and scattering) which, as is well known, is numerically extremely inconvenient. Two auxiliary radiative transfer formulations of increasing dimensionality are considered: (i) a transfer equation for the newly introduced functionb m(,,0) with Sobolev's function m(,0) playing the role of a source-function. Because the incident direction does not intervene, m is simply expressed as a single integral term involvingb m. For bottom illumination, an analogous equation holds for the other new functionh m(,,0). However, simple reciprocity relations link the two functions so that it is only necessary to considerb m; (ii) a transfer equation for the other new functiona m(,,,0) with a source-function provided by Sobolev's functionD m(,,0). For bottom illumination, another functionf m(,,,0) is introduced; by a similar argument using reciprocity relations,f m is reduced toa m rendering necessary only the consideration ofa m. However, a fundamental decomposition formula is obtained which shows thata m is expressible algebraically in terms of functions of a single angular variable. The functions m andD m are shown to be the values in the horizontal plane ofb m anda m, respectively. The other auxiliary functionsX m andY m are also expressed algebraically in terms ofb m. These results enable one to proceed to the final step of evaluating the radiation field for monodirectional illumination. The above reductions toalgebraic relations involving only the functionb m appear to be more advantageous than Sobolev's (1972) recent approach; they also circumvent some basic numerical difficulties in it. We believe the present approach may likewise prove to be superior to most (if not all) other methods of solution known heretofore.This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory under Contract No. NAS-7-100 sponsored by the National Aeronautics and Space Administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号