首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three-dimensional stationary in solar-terrestrial system numerical model of the global ionosphere at F-region altitudes is developed. The input parameters are: the structural parameters of empirical thermospheric models (temperature, composition), electric fields, solar UV-radiation spectrum, corpuscular flows at high latitudes. The model includes the calculations of thermospheric circulation, electron density, electron and ion temperatures. The model reproduces the main morphological peculiarities of the distribution of thermospheric circulation and ionospheric plasma parameters. A comparison analysis of the results of the model calculation corresponding to different thermospheric models (DTM, MSIS, Jacchia-77, MSIS-83) is carried out. It is shown, that thermospheric circulation systems are the effective indicator of faithfulness of thermospheric models.  相似文献   

2.
Longitudinal variation in E- and F-region ionospheric trends   总被引:1,自引:0,他引:1  
A novel technique is used to examine northern hemisphere midlatitude longitudinal variations in ionospheric long-term trends. Differences in hour-by-hour monthly median ionospheric parameters between equilatitudinal observatory pairs are analysed for long-term trends, thus eliminating at source the large solar cycle and geomagnetic variability that normally hinders ionospheric trend calculations. The results confirm the finding of Bremer [1998. Trends in the ionsopheric E- and F-regions over Europe. Annales Geophysicae 16, 698–996] that there are longitudinal variations in the F-region altitude trend across Europe, but suggest the influence of a stationary wave-like feature between 3°W and 104°E. Possible causes such as scaling errors, insufficient account of changes in ionisation underlying the F-region, varying gravity wave fluxes, and secular change in the geomagnetic field are ruled out. The data suggest that the longitudinal variation may reflect long-term changes in a large-scale stationary feature induced via non-migrating tides induced by latent heat release in the troposphere.Significant differences in the long-term trend of E-region peak plasma frequency between observatories were also found. These E-region differential trends varied with solar zenith angle reaching over 0.3 MHz per decade between Juliusruh and Moscow at midday in summer.  相似文献   

3.
Various characteristics of anomalous nighttime enhancement in ionospheric electron content (IEC) at Lunping (14.08°N geomagnetic), a station near the crest of the equatorial anomaly, have been presented by considering the IEC data for the 21st solar cycle. Out of a total of 1053 enhancements, 354 occur in pre-midnight and 699 occur in post-midnight hours, which indicates an overall dominance of post-midnight events at Lunping. The occurrence is more frequent during summer, less during the equinox and least during winter months. All the characteristics of the enhancements have seasonal dependencies and they reach their maximum values during summer months. The occurrence of the pre-midnight events show positive and post-midnight events show negative correlation with solar activity. The results have been discussed and compared with those at low-latitude stations in India and Hawaii and at the mid-latitude station, Tokyo.  相似文献   

4.
During the Conjugate Point Experiment (COPEX) campaign performed at Boa Vista (2.80°N;60.70°W, dip angle 21.7°N) from October to December 2002, 15 medium-scale gravity waves in the OHNIR airglow images were observed. Using a Keogram image analysis, we estimate their parameters. Most of the waves propagate to Northwest, indicating that their main sources are Southeast of Boa Vista. Quasi-simultaneous plasma bubble activities in the OI 630 nm images were observed in seven cases. The distances between the bubble depletions have a linear relationship with the wavelengths of the gravity waves observed in the mesosphere, which suggests a direct contribution of the mesospheric medium-scale gravity waves in seeding the equatorial plasma bubbles.  相似文献   

5.
Long series of simultaneous VHF scintillation observations at two stations situated in near magnetic east-west direction in the vicinity of the dip equator in the Indian region have been employed to investigate the night-time ionospheric plasma zonal drifts. The drifts are found to be predominantly easterly. On comparing the magnitudes of the drifts with those results derived earlier by HF fading technique, monitoring signals from two satellites at a station and spaced receiver experiment, their associations with the season and the degree of solar activity are discussed. On a broader scale, the annual mean sunspot number is shown to have a direct control on the derived drift, the positive relationship even on day to day basis with the solar flux is established. However, the relationship, as understood by the slope of the best fit line, in the Indian region (0.27) is found to be weaker when compared with the similar slope (0.45) in the American sector. There appears to be no geomagnetic activity control on the estimated drifts.  相似文献   

6.
The paper presents a study of solar and magnetic activity effects on VHF ionospheric scintillations recorded during three and half years at Bhopal, a station near the northern crest of the equatorial anomaly in India. During E- (equinox) and D- (winter) months, scintillations occur mainly in the pre-midnight period whereas during J- (summer) months their occurrence is larger in the post-midnight period. Very intense scintillations (>20 dB) mainly occur in the pre-midnight period, and in the post-midnight period, the scintillations are generally moderate (5–10 dB) or weak (<5 dB). The nocturnal scintillation occurrence decreases with the decrease in solar activity from 1989 to 1992. Monthly mean scintillation occurrence changes according to solar activity during E- and D-months but not so during J-months. The effects of magnetic activity on scintillations vary with season and, in general, inhibit the scintillation occurrence in the pre-midnight period and enhance it a little in the post-midnight period, especially after 0300 hours IST (Indian Standard Time). For most of the severe magnetic storms in which Dst goes below −125 nT and the recovery phase starts in the post-midnight to dawn local time sector, strong post-midnight scintillations, which sometimes extend for several hours beyond the local sunrise, are observed.  相似文献   

7.
a¶rt;a ma nu an u u (SID) u nu n a (a n¶rt; au) mu 1965–1975 . u u SID na¶rt;am nau, mum u nm R.  相似文献   

8.
Results of studying the ionospheric response to solar flares, obtained based on the incoherent scatter radar observations of the GPS signals and as a result of the model simulations, are presented. The method, based on the effect of partial “shadowing” of the atmosphere by the globe, has been used to analyze the GPS data. This method made it possible to estimate the value of a change in the electron content in the upper ionosphere during the solar flare of July 14, 2000. It has been shown that a flare can cause a decrease in the electron content at heights of the upper ionosphere (h > 300 km) according to the GPS data. Similar effects in the formation of a negative disturbance in the ionospheric F region were also observed during the solar flares of May 21 and 23, 1967, at the Arecibo incoherent scatter radar. The mechanism by which negative disturbances are formed in the upper ionosphere during solar flares has been studied based on the theoretical model of the ionosphere-plasmasphere coupling. It has been shown that an intense ejection of O+ ions into the above located plasmasphere under the action of a sharp increase in the ion production rate and the thermal expansion of the ionospheric plasma cause the formation of a negative disturbance in the electron concentration in the upper ionosphere.  相似文献   

9.
The equatorial ionospheric response to 228 isolated, rapid-onset auroral substorms (as defined from the auroral electrojet index AE) was found from enhancements of the virtual (minimum) height of the F-region (hF) in the declining phase of a solar cycle (1980-85). The responses, found for three longitudinal sectors at the equator: Africa (Ouagadougou and Dakar), Asia (Manila) and America (Huancayo), were compared with the response close to the auroral source region at Yakutsk (northern Siberia). The auroral substorm onsets were centered at 17 and 15 UT at sunspot maximum (1980-82) and minimum (1983-85), preceding by 3–5 h the period of post-sunset height rise in the African sector whereas other sectors were in the early afternoon (Huancayo) and morning (Manila). The African response, particularly at Ouagadougou, was distinctly different from other sectors. In the sunspot maximum years (1980-81) the auroral surges were followed after about 3 h by a sharp depression (hF<0) in the post-sunset height rise, with a period of little or no response (hF=0) in 1982. A response polarity reversal (hF>0) was noted in this sector for sunspot minimum (1983-85) when large hF enhancements were observed at the sunset region. The responses in the Asian and American sector were positive except for a case in Huancayo when response was negative, following an auroral surge before the sunset at this station. It appears that the aurorally generated large-scale travelling ionospheric disturbances (LSTIDs), which first cause positive height enhancements in a sub-auroral location (Yakutsk), subsequently affect the unstable post-sunset ionosphere in the equatorial Africa.  相似文献   

10.
Auroral and airglow emissions over Eureka (89° CGM) during the 1997/98 winter show striking variations in relation to solar wind IMF changes. The period January 19 to 22, 1998, was chosen for detailed study, as the IMF was particularly strong and variable. During most of the period, Bz was northward and polar arcs were observed. Several overpasses by DMSP satellites during the four day period provided a clear picture of the particle precipitation producing the polar arcs. The spectral character of these events indicated excitation by electrons of average energy 300 to 500 eV. Only occasionally were electrons of average energy up to 1 keV observed and these appeared transitory from the ground optical data. It is noted that polar arcs appear after sudden changes in IMF By, suggesting IMF control over arc initiation. When By is positive there is arc motion from dawn to dusk, while By is negative the motion is consistently dusk to dawn. F-region (anti-sunward) convections were monitored through the period from 630.0 nm emissions. The convection speed was low (100/150 m/s) when Bz was northward but increased to 500 m/s after Bz turned southward on January 20.  相似文献   

11.
The assumption about the possible influence of a tropospheric source on the nature of the longitudinal statistics variation (relative frequency of observation) of plasma bubbles determined by the He+ density in the upper ionosphere altitudes is tested. To do this, the statistics are comparatively analyzed with a number of characteristics of the ionosphere and thermosphere, the longitudinal changes of which can be related to the DE3 tidal wave generated in the troposphere. Evidence of the possible influence of the troposphere on the longitudinal statistics of plasma bubbles has been obtained. Based on qualitative analysis, it was found that the thermospheric winds modulated by the DE3 tidal wave can link these statistics with processes in the troposphere.  相似文献   

12.
A vortex structure renders additional stability to plasma irregularities stretched along magnetic field lines. Plasma irregularities extended over several tens of kilometers are registered with rocket and satellite equipment in the topside ionosphere. The registered scale of irregularities depends on the spatial and time resolution of the equipment used. Irregular structures were registered in the ionosphere during experiments with barium clouds and jets, when a plasma irregularity separated into strata extended over several meters and several kilometers across the geomagnetic field. It has been indicated that plasma vortices can be generated in an unstable plasma in a situation when its quasi-neutrality is disturbed. Local geomagnetic field disturbances will be caused by the appearance of a proper vortex magnetic field. Plasma vortices can interact in an inhomogeneous plasma with an unstable electron component. Such interactions are related to the transformation of the phase volume of free electrostatic oscillations in the frequency-wave vector space.  相似文献   

13.
Measurements of the changes in phase path of F-region reflections at normal incidence at Kodaikanal (77° 28′E, 10° 14′N, dip 3°N) from February 1991 to February 1993 are used to determine the variation of the equatorial evening F-region vertical drifts (Vz) with season, solar and magnetic activity. It is found that on average, at Kodaikanal, the post-sunset peak in Vz(Vzp) is higher in equinox and local winter months than in local summer. The day-to-day variability in Vzp is highest in summer and lowest in winter. This seasonal trend persists even on magnetically quiet days (Ap\leq14). Vzp is found to increase with 10.7 cm solar flux in all three seasons but tends to saturate for large flux values (>230 units) during local summer and winter months. Magnetic activity [represented by Ap as well as the time-weighted accumulations of ap and ap ()] does not seem to have any statistically significant effect on Vzp, except during equinoctial months of moderate solar activity, when Vzp decreases as magnetic activity increases.  相似文献   

14.
Model results for the ionospheric E region: solar and seasonal changes   总被引:5,自引:0,他引:5  
A new, empirical model for NO densities is developed, to include physically reasonable variations with local time, season, latitude and solar cycle. Model calculations making full allowance for secondary production, and ionising radiations at wavelengths down to 25 Å, then give values for the peak density N mE that are only 6% below the empirical IRI values for summer conditions at solar minimum. At solar maximum the difference increases to 16%. Solar-cycle changes in the EUVAC radiation model seem insufficient to explain the observed changes in N mE, with any reasonable modifications to current atmospheric constants. Hinteregger radiations give the correct change, with results that are just 2% below the IRI values throughout the solar cycle, but give too little ionisation in the E-F valley region. To match the observed solar increase in N mE, the high-flux reference spectrum in the EUVAC model needs an overall increase of about 20% (or 33% if the change is confined to the less well defined radiations at <150 Å). Observed values of N mE show a seasonal anomaly, at mid-latitudes, with densities about 10% higher in winter than in summer (for a constant solar zenith angle). Composition changes in the MSIS86 atmospheric model produce a summer-to-winter change in N mE of about–2% in the northern hemisphere, and +3% in the southern hemisphere. Seasonal changes in NO produce an additional increase of about 5% in winter, near solar minimum, to give an overall seasonal anomaly of 8% in the southern hemisphere. Near solar maximum, reported NO densities suggest a much smaller seasonal change that is insufficient to produce any winter increase in N mE. Other mechanisms, such as the effects of winds or electric fields, seem inadequate to explain the observed change in N mE. It therefore seems possible that current satellite data may underestimate the mean seasonal variation in NO near solar maximum. A not unreasonable change in the data, to give the same 2:1 variation as at solar minimum, can produce a seasonal anomaly in NmE that accounts for 35–70% of the observed effect at all times.  相似文献   

15.
Observations from the special UK EISCAT program UFIS are presented. UFIS is a joint UHF-VHF experiment, designed to make simultaneous measurements of enhanced vertical plasma flows in the F-region and topside ionospheres. Three distinct intervals of upward ion flow were observed. During the first event, upward ion fluxes in excess of 1013 m–2 s–1 were detected, with vertical ion velocities reaching 300 ms–1 at 800 km. The upflow was associated with the passage of an auroral arc through the radar field of view. In the F-region, an enhanced and sheared convection electric field on the leading edge of the arc resulted in heating of the ions, whilst at higher altitudes, above the precipitation region, strongly enhanced electron temperatures were observed; such features are commonly associated with the generation of plasma upflows. These observations demonstrate some of the acceleration mechanisms which can exist within the small-scale structure of an auroral arc. A later upflow event was associated with enhanced electron temperatures and only a moderate convection electric field, with no indication of significantly elevated ion temperatures. There was again some evidence of F-region particle precipitation at the time of the upflow, which exhibited vertical ion velocities of similar magnitude to the earlier upflow, suggesting that the behaviour of the electrons might be the dominant factor in this type of event. A third upflow was detected at altitudes above the observing range of the UHF radar, but which was evident in the VHP data from 600 km upwards. Smaller vertical velocities were observed in this event, which was apparently uncorrelated with any features observed at lower altitudes. Limitations imposed by the experimental conditions inhibit the interpretation of this event, although the upflow was again likely related to topside plasma heating.  相似文献   

16.
A statistical analysis of F-region and topside auroral ion upflow events is presented. The study is based on observations from EISCAT Common Programmes (CP) 1 and 2 made between 1984 and 1996, and Common Programme 7 observations taken between 1990 and 1995. The occurrence frequency of ion upflow events (IUEs) is examined over the altitude range 200 to 500 km, using field-aligned observations from CP-1 and CP-2. The study is extended in altitude with vertical measurements from CP-7. Ion upflow events were identified by consideration of both velocity and flux, with threshold values of 100 m s–1 and 1013 m–2 s–1, respectively. The frequency of occurrence of IUEs is seen to increase with increasing altitude. Further analysis of the field-aligned observations reveals that the number and nature of ion upflow events vary diurnally and with season and solar activity. In particular, the diurnal distribution of upflows is strongly dependent on solar cycle. Furthermore, events identified by the velocity selection criterion dominate at solar minimum, whilst events identified by the upward field-aligned flux criterion dominated at solar maximum. The study also provides a quantitative estimate of the proportion of upflows that are associated with enhanced plasma temperature. Between 50 and 60% of upflows are simultaneous with enhanced ion temperature, and approximately 80% of events are associated with either increased F-region ion or electron temperatures.  相似文献   

17.
In contrast to the way that the spreading of irregularities in a plasma is usually considered, the diffusion spreading of irregularities stretched along the geomagnetic field B is examined using a three-dimensional rigorous numerical model of quasi-neutral diffusion in the presence of a magnetic field, in conjunction with the actual height variations of the diffusion and conductivity tensors in the ionosphere. A comparison with the earlier constructed approximate model of unipolar diffusion was made. As in the previous case, the same peculiarities of irregularity spreading in the inhomogeneous background ionospheric plasma were observed. The accuracy of the approximate model for describing the process of spreading of anisotropic ionospheric irregularities is established. Time relaxation effects of real heating-induced ionospheric irregularities on their scale transverse to B are presented using the approximate analytical model for the case of a quasi-homogeneous ionospheric plasma. The calculated results have a vivid physical meaning and can be directly compared with experimental data on the radiophysical observations of artificial heating-induced irregularities created by powerful radio waves in the ionosphere.  相似文献   

18.
The solar wind, magnetosphere, and ionosphere are intrinsically coupled through magnetic field lines. The electrodynamic state of the high-latitude ionosphere is controlled by several geophysical processes, such as the location and rate of magnetic reconnection at the magnetopause and in the magnetotail, and the energisation and precipitation of solar wind and magnetospheric plasmas. Amongst the most observed ionospheric manifestation of solar wind/magnetospheric processes are the convection bursts associated with the so-called flux transfer events (FTEs), magnetic impulse events (MIEs), and travelling convection vortices (TCVs). Furthermore, the large-scale ionospheric convection configuration has also demonstrated a strong correspondence to variations in the interplanetary medium and substorm activity. This report briefly discusses the progress made over the past decade in studies of these transient convection phenomena and outlines some unsettled questions as well as future research directions.  相似文献   

19.
We have used a global time-dependent magnetohydrodynamic (MHD) simulation of the magnetosphere and particle tracing calculations to determine the access of solar wind ions to the magnetosphere and the access of ionospheric O+ ions to the storm-time near-Earth plasma sheet and ring current during the September 24–25, 1998 magnetic storm. We found that both sources have access to the plasma sheet and ring current throughout the initial phase of the storm. Notably, the dawnside magnetosphere is magnetically open to the solar wind, allowing solar wind H+ ions direct access to the near-Earth plasma sheet and ring current. The supply of O+ ions from the dayside cusp to the plasma sheet varies because of changes in the solar wind dynamic pressure and in the interplanetary magnetic field (IMF). Most significantly, ionospheric O+ from the dayside cusp loses access to the plasma sheet and ring current soon after the southward turning of the IMF, but recovers after the reconfiguration of the magnetosphere following the passage of the magnetic cloud. On average, during the first 3 h after the sudden storm commencement (SSC), the number density of solar wind H+ ions is a factor of 2–5 larger than the number density of ionospheric O+ ions in the plasma sheet and ring current. However, by 04:00 UT, ∼4 h after the SSC, O+ becomes the dominant species in the ring current and carries more energy density than H+ ions in both the plasma sheet and ring current.  相似文献   

20.
In December 1995, a campaign was carried out to study the day-to-day variability in precursor signatures to large-scale ionospheric F-region plasma irregularities, using optical diagnostic techniques, near the magnetic equator in the Brazilian sector. Three instruments were operated simultaneously: (a) an all-sky (180° field of view) imaging system for observing the OI 630 nm nightglow emission at Alcântara (2.5°S, 44.4°W); (b) a digisonde (256-Lowell) at São Luis (2.6°S, 44.2°W); and (c) a multi-channel tilting filter-type zenith photometer for observing the OI 630 nm and mesospheric nightglow emissions at Fortaleza (3.9°S, 38.4°W). During the period December 14–18, 1995 (summer in the southern hemisphere), a good sequence of the OI 630 nm imaging observations on five consecutive nights were obtained, which are presented and discussed in this study. The observing period was geomagnetically quiet to moderate (Kp = 0+ to 5+ Dst = 18 nT to −37 nT). On four nights, out of the five observation nights, the OI 630 nm imaging pictures showed formations of transequatorial north-south aligned intensity depletions, which are the optical signatures of large-scale ionospheric F-region plasma bubbles. However, considerable day-to-day variability in the onset and development of the plasma depleted bands was observed. On one of the nights it appears that the rapid uplifting of the F-layer in the post-sunset period, in conjunction with gravity wave activity at mesospheric heights, resulted in generation of very strong plasma bubble irregularities. One of the nights showed an unusual formation of north-south depleted band in the western sector of the imaging system field of view, but the structure did not show any eastward movement, which is a normal characteristic of plasma bubbles. This type of irregularity structure, which probably can be observed only by wide-angle imaging system, needs more investigations for a better understanding of its behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号