共查询到20条相似文献,搜索用时 11 毫秒
1.
D. Koutroumpa 《Astronomische Nachrichten》2012,333(4):341-346
About 15 years ago, charge exchange (CX) X‐ray emission was discovered in comet observations, and was identified as the radiative decay of excited states of highly‐charge solar wind ions populated in collisions with neutral cometary material. This non‐thermal X‐ray emission mechanism is now generally acknowledged in planetary environments (e.g. Mars, Earth), as well as interstellar atoms sweeping through the heliosphere. In this paper I present the most recent improvements made in simulations of the heliospheric CX X‐ray emission. The model results are compared to X‐ray data from Suzaku, XMM‐Newton and Chandra spanning over a 10‐year period, and some conclusions are drawn on the heliospheric contribution to the diffuse soft X‐ray background. The solar system CX X‐ray sources can serve as prototypes in terms of modeling and diagnostics to more distant astrophysical objects where CX emission signatures are being discovered (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
2.
V. Tatischeff 《Astronomische Nachrichten》2012,333(4):361-364
Hadronic cosmic rays of energies below about 100 MeV nucleon–1 are thought to be an important component of the Galactic ecosystem. However, since these particles cannot be detected near Earth due to the solar modulation effect, their composition and flux in the interstellar medium are very uncertain. Atomic interactions of low‐energy cosmic rays with interstellar gas can produce a characteristic nonthermal X‐ray emission comprising very broad lines from de‐excitations in fast ions following charge exchange. We suggest that broad lines at ∼0.57 and ∼0.65 keV could be detected from a dark molecular cloud in the local interstellar medium. These lines would be produced by fast oxygen ions of kinetic energies around 1 MeV nucleon–1 (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
3.
Charge exchange (CX), both onto ions in the solar wind and potentially in other astrophysical contexts, can create X‐ray emission lines largely indistinguishable from those created in collisional or photoionized plasmas. The prime distinguishing characteristic is in the distinctly different line ratios generated by the CX process. A complete astrophysical model of the process would require a vast number of atomic calculations; we describe here an approximate approach that will allow astronomers to evaluate the likely contribution of CX to an observed spectrum. The method relies upon an approximate calculation of the CX cross section paired with detailed atomic structure calculations used to determine the emission lines. Simulated spectra based on observed solar wind CX data are shown for both current (Suzaku) and near‐term (Astro‐H) missions (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
4.
M.R. Collier F.S. Porter D.G. Sibeck J.A. Carter M.P. Chiao Dj. Chornay T. Cravens M. Galeazzi J.W. Keller D. Koutroumpa K. Kuntz A.M. Read I.P. Robertson S. Sembay S. Snowden N. Thomas 《Astronomische Nachrichten》2012,333(4):378-382
We describe current progress in the development of a prototype wide field‐of‐view soft X‐ray imager that employs Lobster‐eye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof‐of‐concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the ESA AXIOM mission (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
5.
R. Lallement 《Astronomische Nachrichten》2012,333(4):347-350
Charge‐transfer (CT) X‐ray emission may occur at interfaces between a partially neutral gas and gas possessing high ions, provided there is a relative motion between those two phases. The CTX surface brightness from distant objects must be taken into account if it is not far below other “classical” emission sources, especially the thermal emission from the hot phase. I discuss those conditions and potential spectroscopic or photometric diagnostics. I also mention potential indirect effects of the CT reactions by means of pickup ion production, acceleration and subsequent modification of interface and plasma properties (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
6.
I.P. Robertson T.E. Cravens D.G. Sibeck M.R. Collier K.D. Kuntz 《Astronomische Nachrichten》2012,333(4):309-312
On 2001 March 31 a coronal mass ejection pushed the subsolar magnetopause to the vicinity of geosynchronous orbit at 6.6 RE. The NASA/GSFC Community Coordinated Modeling Center (CCMC) employed a global magnetohydrodynamic (MHD) model to simulate the solar wind‐magnetosphere interaction during the peak of this geomagnetic storm. Robertson et al. then modeled the expected soft X‐ray emission due to solar wind charge exchange with geocoronal neutrals in the dayside cusp and magnetosheath. The locations of the bow shock, magnetopause and cusps were clearly evident in their simulations. Another geomagnetic storm took place on 2000 July 14 (Bastille Day). We again modeled X‐ray emission due to solar wind charge exchange, but this time as observed from a moving spacecraft. This paper discusses the impact of spacecraft location on observed X‐ray emission and the degree to which the locations of the bow shock and magnetopause can be detected in images (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
7.
What are the origins of the soft X‐ray line emission from non‐AGN galaxies? XMM‐Newton RGS spectra of nearby non‐AGN galaxies (including starforming ones: M82, NGC 253, M51, M83, M61, NGC 4631, M94, NGC 2903, and the Antennae galaxies, as well as the inner bulge of M31) have been analyzed. In particular, the Kα triplet of O VII shows that the resonance line is typically weaker than the forbidden and/or inter‐combination lines. This suggests that a substantial fraction of the emission may not arise directly from optically thin thermal plasma, as commonly assumed, and may instead originate at its interface with neutral gas via charge exchange. This latter origin naturally explains the observed spatial correlation of the emission with various tracers of cool gas in some of the galaxies. However, alternative scenarios, such as the resonance scattering by the plasma and the relic photo‐ionization by AGNs in the recent past, cannot be ruled out, at least in some cases, and are being examined. Such X‐ray spectroscopic studies are important to the understanding of the relationship of the emission to various high‐energy feedback processes in galaxies (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
8.
Charge‐transfer is the main process linking neutrals and charged particles in the interaction regions of neutral (or partly ionized) gas with a plasma. In this paper we illustrate the importance of charge‐transfer with respect to the dynamics and the structure of neutral gas‐plasma interfaces. We consider the following phenomena: (1) the heliospheric interface ‐ region where the solar wind plasma interacts with the partly‐ionized local interstellar medium (LISM) and (2) neutral interstellar clouds embedded in a hot, tenuous plasma such as the million degree gas that fills the so‐called “Local Bubble”. In (1), we discuss several effects in the outer heliosphere caused by charge exchange of interstellar neutral atoms and plasma protons. In (2) we describe the role of charge exchange in the formation of a transition region between the cloud and the surrounding plasma based on a two‐component model of the cloud‐plasma interaction. In the model the cloud consists of relatively cold and dense atomic hydrogen gas, surrounded by hot, low density, fully ionized plasma. We discuss the structure of the cloud‐plasma interface and the effect of charge exchange on the lifetime of interstellar clouds. Charge transfer between neutral atoms and minor ions in the plasma produces X‐ray emission. Assuming standard abundances of minor ions in the hot gas surrounding the cold interstellar cloud, we estimate the X‐ray emissivity consecutive to the charge transfer reactions. Our model shows that the charge‐transfer X‐ray emission from the neutral cloud‐plasma interface may be comparable to the diffuse thermal X‐ray emission from the million degree gas cavity itself (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
9.
K. Dennerl C.M. Lisse A. Bhardwaj D.J. Christian S.J. Wolk D. Bodewits T.H. Zurbuchen M. Combi S. Lepri 《Astronomische Nachrichten》2012,333(4):324-334
While X‐ray astronomy began in 1962 and has made fast progress since then in expanding our knowledge about where in the Universe X‐rays are generated by which processes, it took one generation before the importance of a fundamentally different process was recognized. This happened in our immediate neighborhood, when in 1996 comets were discovered as a new class of X‐ray sources, directing our attention to charge exchange reactions. Charge exchange is fundamentally different from other processes which lead to the generation of X‐rays, because the X‐rays are not produced by hot electrons, but by ions picking up electrons from cold gas. Thus it opens up a new window, making it possible to detect cool gas in X‐rays (like in comets), while all the other processes require extremely high temperatures or otherwise extreme conditions. After having been overlooked for a long time, the astrophysical importance of charge exchange for the generation of X‐rays is now receiving increased general attention. In our solar system, charge exchange induced X‐rays have now been established to originate in comets, in all the planets from Venus to Jupiter, and even in the heliosphere itself. In addition to that, evidence for this X‐ray emission mechanism has been found at various locations across the Universe. Here we summarize the current knowledge about solar system X‐rays resulting from charge exchange processes (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
10.
Massimiliano Galeazzi Meng Chiao Michael R. Collier Thomas Cravens Dimitra Koutroumpa Kip D. Kuntz Susan Lepri Dan McCammon Frederick S. Porter Krishna Prasai Ina Robertson Steve Snowden Youaraj Uprety 《Experimental Astronomy》2011,32(2):83-99
The Diffuse X-rays from the Local galaxy (DXL) mission is an approved sounding rocket project with a first launch scheduled around December 2012. Its goal is to identify and separate the X-ray emission generated by solar wind charge exchange from that of the local hot bubble to improve our understanding of both. With 1,000 cm2 proportional counters and grasp of about 10 cm2 sr both in the 1/4 and 3/4 keV bands, DXL will achieve in a 5-min flight what cannot be achieved by current and future X-ray satellites. 相似文献
11.
We report on the diffuse X‐ray emission from the Galactic Centre (GCDX) observed with the X‐ray Imaging Spectrometer (XIS) on board the Suzaku satellite. The highly accurate energy calibration and extremely low background of the XIS provide many new facts on the GCDX. These are (1) the origin of the lines at 6.7 and 7.0 keV is collisional excitation in a hot plasma, (2) the discovery of new SNR and super‐bubble candidates, (3) most of the 6.4 keV line is X‐ray fluorescence, and (4) time variability of the 6.4 keV line is found from the Sgr B2 complex. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
12.
S. Sembay G. Branduardi‐Raymont J.P. Eastwood D.G. Sibeck A. Abbey P. Brown J.A. Carter C.M. Carr C. Forsyth D. Kataria S. Kemble S. Milan C.J. Owen A.M. Read L. Peacocke C.S. Arridge A.J. Coates M.R. Collier S.W.H. Cowley A.N. Fazakerley G. Fraser G.H. Jones R. Lallement M. Lester F.S. Porter T. Yeoman 《Astronomische Nachrichten》2012,333(4):388-392
AXIOM (Advanced X‐ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide‐field soft X‐ray imaging and spectroscopy of the magnetosheath, magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X‐ray emission from the interaction of high charge‐state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near‐interplanetary space (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
13.
D. Bodewits D.J. Christian J.A. Carter K. Dennerl I. Ewing R. Hoekstra S.T. Lepri C.M. Lisse S.J. Wolk 《Astronomische Nachrichten》2012,333(4):335-340
Since the initial discovery of cometary charge exchange emission, more than 20 comets have been observed with a variety of X‐ray and UV observatories. This observational sample offers a broad variety of comets, solar wind environments and observational conditions. It clearly demonstrates that solar wind charge exchange emission provides a wealth of diagnostics, which are visible as spatial, temporal, and spectral emission features. We review the possibilities and limitations of each of those in this contribution (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
14.
We review a selection of recent papers describing solar wind charge exchange emission occurring in the Earth's exosphere as seen by the X‐ray observatory XMM‐Newton. We discuss the detection of this emission, the occurrence with respect to the solar cycle and solar activity, and various spectral signatures observed. We also describe a model developed to predict the X‐ray signal from exospheric charge exchange as would be detected by XMM‐Newton, given the upstream solar wind conditions obtained from in situ solar wind monitors (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
15.
A.M.T. Pollock 《Astronomische Nachrichten》2012,333(4):351-354
Charge exchange occurs between charged ions with enough energy to overcome Coulomb repulsion, a condition satisfied for collisions at velocities like those of the winds driven from hot stars by radiation pressure. X‐ray line ratios in some hot stars are inconsistent with those expected from thermal plasmas excited by electron impact. Ion‐ion interactions including charge exchange might be responsible instead if high‐velocity collisions between ions are enabled by the presence of a magnetic field in the wind, suggesting a possible alternative mechanism to the widely accepted instability‐driven shock model. The nature of a plasma in charge‐exchange equilibrium is yet to be determined (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
16.
C. Motch 《Astronomische Nachrichten》2008,329(2):166-169
The landscape of Galactic X‐ray sources made of accreting binaries, isolated objects and active stellar coronae has been significantly modified by the advent of the Chandra, XMM‐Newton and INTEGRAL satellites. New types of relatively low X‐ray luminosity X‐ray binaries have been unveiled in the Galactic disc, while deep observations of the central regions have revealed large numbers of X‐ray binaries of so far poorly constrained nature. Because of the high spatial resolution needed and faint X‐ray luminosities generally emitted, studying the dependency of the X‐ray source composition with parent stellar population, Galactic disc, bulge, nuclear bulge, etc., is only practicable in our Galaxy. The evolutionary links between low LX X‐ray binaries and classical X‐ray luminous accreting systems are still open in many cases. In addition, the important question of the nature of the compact sources contributing to the Galactic ridge hard X‐ray emission remains unresolved. We review the most important results gathered by XMM‐Newton over the last years in this domain and show how future observations could be instrumental in addressing several of these issues. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
17.
We review the most important findings on AGN physics and cosmological evolution as obtained by extragalactic X‐ray surveys and associated multiwavelength observations. We briefly discuss the perspectives for future enterprises and in particular the scientific case for an extremely deep (2–3 Ms) XMM survey. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
18.
A. Georgakakis 《Astronomische Nachrichten》2008,329(2):174-177
This paper shows that our understanding of the statistical properties of X‐ray selected normal galaxies (e.g. X‐ray luminosity function) can be significantly improved by combining a wide‐area XMM‐Newton survey with the moderare resolution and high S/N optical spectroscopy of the SDSS. Such a combined dataset has the potential to minimise uncertainties that affect existing normal galaxy samples at X‐rays, such as small number statistics, cosmic variance, AGN contamination and incompleteness at bright X‐ray luminosities. It is demonstrated that a 100 deg2 XMM‐Newton survey in the SDSS area to the limit fX(0.5–2 keV) ≈ 5 × 10–15 erg cm–2 s–1 will detect over 400 X‐ray selected normal galaxies with excellent control over systematic biases, thereby providing tight contraints on the X‐ray luminosity function at z ≈ 0.1. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
19.
We present a spatial analysis of the soft X‐ray and Hα emissions from the outflow of the starburst galaxy M82. We find that the two emissions are tightly correlated on various scales. The O VII triplet of M82, as resolved by X‐ray grating observations of XMM‐Newton, is dominated by the forbidden line, inconsistent with the thermal prediction. The O VII triplet also shows some spatial variations. We discuss three possible explanations for the observed O VII triplet, including the charge exchange at interfaces between the hot outflow and neutral cool gas, a collisional non‐equilibrium‐ionization recombining plasma, and resonance scattering (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
20.
F. Haberl 《Astronomische Nachrichten》2010,331(2):239-240
The workshop “Supersoft X‐ray Sources – New Developments” brought together observers and theoretician to discuss the present status and unsolved problems of supersoft source research. A large part of the workshop was devoted to optical novae and their supersoft state. Large samples of supersoft X‐ray sources were presented from nearby galaxies, as well as extensive monitoring campaigns ofbright individual sources. The theoretical modelling oflight curves and high‐resolution X‐ray spectra are well underway, but details are often not yet understood (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献