首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We review a selection of recent papers describing solar wind charge exchange emission occurring in the Earth's exosphere as seen by the X‐ray observatory XMM‐Newton. We discuss the detection of this emission, the occurrence with respect to the solar cycle and solar activity, and various spectral signatures observed. We also describe a model developed to predict the X‐ray signal from exospheric charge exchange as would be detected by XMM‐Newton, given the upstream solar wind conditions obtained from in situ solar wind monitors (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Since the initial discovery of cometary charge exchange emission, more than 20 comets have been observed with a variety of X‐ray and UV observatories. This observational sample offers a broad variety of comets, solar wind environments and observational conditions. It clearly demonstrates that solar wind charge exchange emission provides a wealth of diagnostics, which are visible as spatial, temporal, and spectral emission features. We review the possibilities and limitations of each of those in this contribution (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Charge‐exchange (CE) emission produces features which are detectable with the current X‐ray instrumentation in the brightest near galaxies. We describe these aspects in the observed X‐ray spectra of the star forming galaxies M82 and NGC 3256, from the Suzaku and XMM‐Newton telescopes. Emission from both ions (O, C) and neutrals (Mg, Si) is recognised. We also describe how microcalorimeter instrumentation on future missions will improve CE observations (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
About 15 years ago, charge exchange (CX) X‐ray emission was discovered in comet observations, and was identified as the radiative decay of excited states of highly‐charge solar wind ions populated in collisions with neutral cometary material. This non‐thermal X‐ray emission mechanism is now generally acknowledged in planetary environments (e.g. Mars, Earth), as well as interstellar atoms sweeping through the heliosphere. In this paper I present the most recent improvements made in simulations of the heliospheric CX X‐ray emission. The model results are compared to X‐ray data from Suzaku, XMM‐Newton and Chandra spanning over a 10‐year period, and some conclusions are drawn on the heliospheric contribution to the diffuse soft X‐ray background. The solar system CX X‐ray sources can serve as prototypes in terms of modeling and diagnostics to more distant astrophysical objects where CX emission signatures are being discovered (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
AXIOM (Advanced X‐ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide‐field soft X‐ray imaging and spectroscopy of the magnetosheath, magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X‐ray emission from the interaction of high charge‐state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near‐interplanetary space (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
While X‐ray astronomy began in 1962 and has made fast progress since then in expanding our knowledge about where in the Universe X‐rays are generated by which processes, it took one generation before the importance of a fundamentally different process was recognized. This happened in our immediate neighborhood, when in 1996 comets were discovered as a new class of X‐ray sources, directing our attention to charge exchange reactions. Charge exchange is fundamentally different from other processes which lead to the generation of X‐rays, because the X‐rays are not produced by hot electrons, but by ions picking up electrons from cold gas. Thus it opens up a new window, making it possible to detect cool gas in X‐rays (like in comets), while all the other processes require extremely high temperatures or otherwise extreme conditions. After having been overlooked for a long time, the astrophysical importance of charge exchange for the generation of X‐rays is now receiving increased general attention. In our solar system, charge exchange induced X‐rays have now been established to originate in comets, in all the planets from Venus to Jupiter, and even in the heliosphere itself. In addition to that, evidence for this X‐ray emission mechanism has been found at various locations across the Universe. Here we summarize the current knowledge about solar system X‐rays resulting from charge exchange processes (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Lisse  C. M.  Dennerl  K.  Englhauser  J.  Trümper  J.  Marshall  F. E.  Petre  R.  Valinia  A.  Kellett  B. J.  Bingham  R. 《Earth, Moon, and Planets》1997,77(3):283-291
The discovery of X-ray emission from comets has created a number of questions about the physical mechanism producing the radiation. There are now a variety of explanations for the emission, from thermal bremsstrahlung of electrons off neutrals or dust, to charge exchange induced emission from solar wind ions, to scattering of solar X-rays from attogram dust, to reconnection of solar magnetic field lines. In an effort to understand this new phenomenon, we observed but failed to detect in the X-ray the very dusty and active comet C/Hale-Bopp 1995 O1 over a two year period, September 1996 to December 1997, using the ROSAT HRI imaging photometer at 0.1–2.0 keV and the ASCA SIS imaging spectrometer at 0.5–10.0 keV. The results of our Hale-Bopp non-detections, when combined with spectroscopic imaging 0.08–1.0 keV observations of the comet by EUVE and BeppoSAX, show that the emission has the same spectral shape and strong variability seen in other comets. Comparison of the ROSAT photometry of the comet to our ROSAT database of 8 comets strongly suggests that the overall X-ray faintness of the comet was due to an emission mechanism coupled to gas, and not dust, in the comet’s coma. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Charge exchange (CX), both onto ions in the solar wind and potentially in other astrophysical contexts, can create X‐ray emission lines largely indistinguishable from those created in collisional or photoionized plasmas. The prime distinguishing characteristic is in the distinctly different line ratios generated by the CX process. A complete astrophysical model of the process would require a vast number of atomic calculations; we describe here an approximate approach that will allow astronomers to evaluate the likely contribution of CX to an observed spectrum. The method relies upon an approximate calculation of the CX cross section paired with detailed atomic structure calculations used to determine the emission lines. Simulated spectra based on observed solar wind CX data are shown for both current (Suzaku) and near‐term (Astro‐H) missions (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Comet C/ 1857 D1 (d'Arrest) is one of a large number of comets with parabolic orbits. Given that there are sufficient observations of the comet, 299 in right ascension and 279 in declination, it proves possible to calculate a better orbit. The calculations are based on a 12th order predictor‐corrector method. The comet's orbit is highly elliptical, e = 0.99982 and, from calculated mean errors, statistically different from a parabola. The comet will not return for at least 44000 years and thus represents no immediate NEO threat (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We report on partially overlapping XMM–Newton (∼260 ks) and Suzaku (∼100 ks) observations of the iron K band in the nearby, bright type 1 Seyfert galaxy Mrk 509. The source shows a resolved neutral Fe K line, most probably produced in the outer part of the accretion disc. Moreover, the source shows further emission bluewards of the 6.4 keV line due to ionized material. This emission is well reproduced by a broad line produced in the accretion disc, while it cannot be easily described by scattering or emission from photoionized gas at rest. The summed spectrum of all XMM–Newton observations shows the presence of a narrow absorption line at 7.3 keV produced by highly ionized outflowing material. A spectral variability study of the XMM–Newton data shows an indication for an excess of variability at 6.6–6.7 keV. These variations may be produced in the red wing of the broad ionized line or by variation of a further absorption structure. The Suzaku data indicate that the neutral Fe K α line intensity is consistent with being constant on long time-scales (of a few years), and they also confirm as most likely the interpretation of the excess blueshifted emission in terms of a broad ionized Fe line. The average Suzaku spectrum differs from the XMM–Newton one in the disappearance of the 7.3 keV absorption line and around 6.7 keV, where the XMM–Newton data alone suggested variability.  相似文献   

11.
We present preliminary results from a 150 ks Suzaku observation of the Seyfert 1 galaxy NGC 3516. Suzaku 's wide bandpass has enabled us to deconvolve the broadband emitting and absorbing components in this object, breaking model degeneracies inherent in previous, smaller‐bandpass spectra. The primary power‐law continuum is absorbed by an ionized absorber as well as a partial‐covering absorber; the column density of the ionized absorber has increased by a factor of ∼3 since XMM‐Newton observations in 2001. We detect a soft power‐law component which may be scattered emission. We confirm the presence of the broad Fe line, finding a eV equivalent width line that indicates emission extending down to a few Schwarzschild radii. Models which exclude either the broad line or the partial‐covering absorber are rejected. Suzaku 's high effective area and low background near 6 keV also allow us to resolve the narrow Fe K emission line; we find a FWHM velocity width near 4000 km s–1, commensurate with Broad Line Region velocities. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
On 2001 March 31 a coronal mass ejection pushed the subsolar magnetopause to the vicinity of geosynchronous orbit at 6.6 RE. The NASA/GSFC Community Coordinated Modeling Center (CCMC) employed a global magnetohydrodynamic (MHD) model to simulate the solar wind‐magnetosphere interaction during the peak of this geomagnetic storm. Robertson et al. then modeled the expected soft X‐ray emission due to solar wind charge exchange with geocoronal neutrals in the dayside cusp and magnetosheath. The locations of the bow shock, magnetopause and cusps were clearly evident in their simulations. Another geomagnetic storm took place on 2000 July 14 (Bastille Day). We again modeled X‐ray emission due to solar wind charge exchange, but this time as observed from a moving spacecraft. This paper discusses the impact of spacecraft location on observed X‐ray emission and the degree to which the locations of the bow shock and magnetopause can be detected in images (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We present a spatial analysis of the soft X‐ray and Hα emissions from the outflow of the starburst galaxy M82. We find that the two emissions are tightly correlated on various scales. The O VII triplet of M82, as resolved by X‐ray grating observations of XMM‐Newton, is dominated by the forbidden line, inconsistent with the thermal prediction. The O VII triplet also shows some spatial variations. We discuss three possible explanations for the observed O VII triplet, including the charge exchange at interfaces between the hot outflow and neutral cool gas, a collisional non‐equilibrium‐ionization recombining plasma, and resonance scattering (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
《Planetary and Space Science》2007,55(11):1614-1621
Many ground-based observations of Na in Mercury's surface-bounded exosphere have been made and continued to be made in an effort to understand the sources, sinks, and distribution of Na around Mercury. These time consuming and costly efforts are made to better understand the physical processes on and around Mercury. A big step would be to discover an actual source of the Na from Mercury's crust because it is already known that meteorites and comets provide Na to the exosphere through impact. We provide ground-based CCD imagery obtained with small ground-based telescopes that show bright albedo features at locations coincident with enhanced Na emissions in Mercury's exosphere. We suggest these locations are sources for Na. We also provide a mechanism to test this hypothesis using in situ observations by instruments on the MESSENGER spacecraft during the three fly bys of Mercury that will occur in 2008 and 2009, and during the orbital mission which begins in 2011. It is necessary to prove that Na is delivered to the exosphere from one or more crustal source regions before exospheric Na can be used as a measure of the volatile content of Mercury used to infer formation and evolution from the primitive solar nebula. The same applies to other elements such as K which is known to be in Mercury's exosphere and S which is postulated to be present. We expound on the impact that the discovery of one or more source regions from Mercury's crust would have on our ability to discern between the three leading models of Mercury's formation and crustal evolution.  相似文献   

15.
Comet C/1860 M1 (Great Comet of 1860) is one of a large number of comets with parabolic orbits. Given that there are sufficient observations of the comet, 261 in right ascension and 251 in declination, it proves possible to calculate a better orbit. The comet's orbit is hyperbolic, and statistically different from a parabola. The comet, therefore, cannot be considered to be a Near Earth Oject. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We present the results of soft X‐ray studies of the classical nova V2491 Cygni using the Suzaku observatory. On day 29 after outburst, a soft X‐ray component with a peak at ∼0.5 keV has appeared, which is tantalising evidence for the beginning of the super‐soft X‐ray emission phase. We show that an absorbed blackbody model can describe the observed spectra, yielding a temperature of 57 eV, neutral hydrogen column density of 2 × 1021 cm–2, and a bolometric luminosity of ∼1036 erg s–1. However, at the same time, we also found a good fit with an absorbed thin‐thermal plasma model, yielding a temperature of 0.1 keV, neutral hydrogen column density of 4 × 1021 cm–2, and a volume emission measure of ∼1058 cm–3. Owing to low spectral resolution and low signal‐to‐noise ratio below 0.6 keV, the statistical parameter uncertainties are large, but the ambiguity of the two very different models demonstrates that the systematic errors are the main point of concern. The thin‐thermal plasma model implies that the soft emission originates from optically thin ejecta, while the blackbody model suggests that we are seeing optically thick emission from the white dwarf (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We determine abundances from the absorption spectrum of the magnetic Herbig Ae star HD 190073 (V1295 Aql). The observations are primarily from HARPS spectra obtained at a single epoch. We accept arguments that the presence of numerous emission lines does not vitiate a classical abundance analysis, though it likely reduces the achievable accuracy. Most abundances are closely solar, but several elements show departures of a factor of two to three, as an earlier study has also shown. We present quantitative measurements of more than 60 emission lines, peak intensities, equivalent widths, and FWHM's. The latter range from over 200 km s–1(Hα, He D3) down to 10–20 km s–1(forbidden lines). Metallic emission lines have intermediate widths. We eschew modeling, and content ourselves with a presentation of the observations a successful model must explain. Low‐excitation features such as the Na I D‐lines and [O I] appear with He I D3, suggesting proximate regions with widely differing Te and Ne as found in the solar chromosphere. The [O I] and [Ca II] lines show sharp, violet‐shifted features. Additionally, [Fe II] lines appear tobe weakly present in emission (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Suzaku observations of Markarian 335: evidence for a distributed reflector   总被引:1,自引:0,他引:1  
We report on a 151-ks net exposure Suzaku observation of the narrow-line Seyfert 1 galaxy Mrk 335. The 0.5–40 keV spectrum contains a broad Fe line, a strong soft excess below about 2 keV and a Compton hump around 20–30 keV. We find that a model consisting of a power law and two reflectors provides the best fit to the time-averaged spectrum. In this model, an ionized, heavily blurred, inner reflector produces most of the soft excess, while an almost neutral outer reflector (outside ∼ 40 r g) produces most of the Fe line emission. The spectral variability of the observation is characterized by spectral hardening at very low count rates. In terms of our power-law + two-reflector model it seems like this hardening is mainly caused by pivoting of the power law. The rms spectrum of the entire observation has the curved shape commonly observed in active galactic nuclei, although the shape is significantly flatter when an interval which does not contain any deep dip in the light curve is considered. We also examine a previous 133-ks XMM–Newton observation of Mrk 335. We find that the XMM–Newton spectrum can be fitted with a similar two-reflector model as the Suzaku data and we confirm that the rms spectrum of the observation is flat. The flat rms spectra, as well as the high-energy data from the Suzaku PIN detector, disfavour an absorption origin for the soft excess in Mrk 335.  相似文献   

19.
We report on a 90 ks Suzaku observation of the radio-loud quasar 4C+74.26. The source was observed in its highest flux state to date, and we find that it brightened by about 20 per cent during the observation. We see evidence of spectral hardening as the count rate increases and also find that the rms variability increases with energy up to about 4 keV. We clearly detect a broadened Fe line but conclude that it does not require any emission from inside about 50 r g, although a much smaller inner radius cannot be ruled out. The large inner radius of our best fit implies that the inner disc is either missing or not strongly illuminated. We suggest that the latter scenario may occur if the power-law source is located high above the disc, or if the emission is beamed away from the disc.  相似文献   

20.
Charge‐transfer is the main process linking neutrals and charged particles in the interaction regions of neutral (or partly ionized) gas with a plasma. In this paper we illustrate the importance of charge‐transfer with respect to the dynamics and the structure of neutral gas‐plasma interfaces. We consider the following phenomena: (1) the heliospheric interface ‐ region where the solar wind plasma interacts with the partly‐ionized local interstellar medium (LISM) and (2) neutral interstellar clouds embedded in a hot, tenuous plasma such as the million degree gas that fills the so‐called “Local Bubble”. In (1), we discuss several effects in the outer heliosphere caused by charge exchange of interstellar neutral atoms and plasma protons. In (2) we describe the role of charge exchange in the formation of a transition region between the cloud and the surrounding plasma based on a two‐component model of the cloud‐plasma interaction. In the model the cloud consists of relatively cold and dense atomic hydrogen gas, surrounded by hot, low density, fully ionized plasma. We discuss the structure of the cloud‐plasma interface and the effect of charge exchange on the lifetime of interstellar clouds. Charge transfer between neutral atoms and minor ions in the plasma produces X‐ray emission. Assuming standard abundances of minor ions in the hot gas surrounding the cold interstellar cloud, we estimate the X‐ray emissivity consecutive to the charge transfer reactions. Our model shows that the charge‐transfer X‐ray emission from the neutral cloud‐plasma interface may be comparable to the diffuse thermal X‐ray emission from the million degree gas cavity itself (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号