首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper corrects and completes a previous study of the shape of the extinction curve in the visible and the value of RV. A continuous visible/infrared extinction law proportional to 1/λp with p close to 1 (± 0.4) is indistinguishable from a perfectly linear law (p = 1) in the visible within observational precision, but the shape of the curve in the infrared can be substantially modified. Values of p slightly larger than 1 would account for the increase of extinction (compared to the p = 1 law) reported for λ > 1 μ m and deeply affect the value of RV. In the absence of gray extinction RV must be 4.04 if p = 1. It becomes 3.14 for p = 1.25, 3.00 for p = 1.30, and 2.76 for p = 1.40. Values of p near 1.3 are also attributed to extinction by atmospheric aerosols, which indicates that both phenomena may be governed by similar particle size distributions. A power extinction law may harmonize visible and infrared data into a single, continuous, and universal interstellar extinction law (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
3.
A statistical study of global galaxy parameters can help to improve our understanding of galaxy formation processes. In this paper we present the analysis of global galaxy parameters based on optical and near-infrared observations of a large sample of edge-on disc galaxies. We found a correlation between the ratio of the radial to vertical scale parameter and galaxy type: galaxies become systematically thinner when going from type S0 to type Sc, whereas the distribution seems to level off for later types. The observed scalelength ratios (and thus the radial colour gradients) largely represent the dust content of the galaxies. On average, the colour gradients indicated by the scalelength ratios increase from type Sa to at least type Sc. For galaxy types later than Sc, the average colour gradient seems to decrease again. The distribution of K -band (edge-on) disc central surface brightnesses is rather flat, although with a large scatter. However, the latest-type sample galaxies ( T  > 6) show an indication that their average disc central surface brightnesses may be fainter than those of the earlier types. This effect is probably not the result of dust extinction.  相似文献   

4.
5.
6.
We report results concerning the distribution and properties of galactic extinction at high galactic latitudes derived from stellar statistics using the Sloan Digital Sky Survey (SDSS). We use the classical Wolf diagram method to identify regions with extinction, and derive the extinction and the extinction law of the dust using all five SDSS spectral bands. We estimate the distance to the extinguishing medium using simple assumptions about the stellar populations in the line of sight.
We report the identification of three extinguishing clouds, each a few tens of pc wide, producing 0.2–0.4 mag of g '-band extinction, located 1–2 kpc away or 0.5–1 kpc above the Galactic plane. All clouds exhibit grey extinction, i.e. almost wavelength independent in the limited spectral range of the SDSS. We discuss the implication of this finding on general astrophysical questions.  相似文献   

7.
Traditionally, it has been believed that extinction effects due to dust within the interstellar medium of external galaxies are rather small and can largely be ignored. Over the last 10 years, however, considerable doubt has been cast over the evidence to support this comfortable idea, and it has become clear that a more detailed analysis is required. Here, a new technique for mapping the extinction in disc galaxies with high resolution is presented.
This technique has been applied to the Sc galaxy NGC 6946. The results show that dust extinction significantly affects both the overall brightness and appearance of the galaxy. The total extinction is found to be AB =0.45 – somewhat larger than the value of AB =0.2 usually quoted for an Sc galaxy. When corrected for dust the morphology more closely resembles that of an Sb galaxy rather than an Sc galaxy.
The most surprising result of this work is finding interarm regions that suffer high extinction. It appears that these regions appear faint because of the high extinction and not as a result of low stellar density. There are also interarm regions that suffer little extinction; these are therefore truly regions of low stellar density.  相似文献   

8.
We investigate the influence of scattering and geometry on the attenuation curve in disc galaxies. We investigate both qualitatively and quantitatively which errors are made by either neglecting or approximating scattering, and which uncertainties are introduced as a result of a simplification of the star–dust geometry. We find that the magnitude of these errors depends on the inclination of the galaxy and, in particular, that, for face-on galaxies, the errors due to improper treatment of scattering dominate those due to imprecise star–dust geometry. Therefore we argue that, in all methods aimed at determining the opacity of disc galaxies, scattering should be taken into account in a proper way.  相似文献   

9.
10.
11.
12.
While galactic bulges may contain no significant dust of their own, the dust within galaxy discs can strongly attenuate the light from their embedded bulges. Furthermore, such dust inhibits the ability of observationally determined inclination corrections to recover intrinsic (i.e. dust-free) galaxy parameters. Using the sophisticated 3D radiative transfer model of Popescu et al. and Tuffs et al., together with the recent determination of the average face-on opacity by Driver et al. in nearby disc galaxies, we provide simple equations to correct (observed) disc central surface brightness and scalelengths for the effects of both inclination and dust in the B , V , I , J and K passbands. We then collate and homogenize various literature data sets and determine the typical intrinsic scalelengths, central surface brightness and magnitudes of galaxy discs as a function of morphological type. All galaxies have been carefully modelled in their respective papers with a Sérsic   R 1/ n   bulge plus an exponential disc. Using the bulge magnitude corrections from Driver et al., we additionally derive the average, dust-corrected, bulge-to-disc flux ratio as a function of galaxy type. With values typically less than 1/3, this places somewhat uncomfortable constraints on some current semi-analytic simulations. Typical bulge sizes, profile shapes, surface brightness and deprojected densities are provided. Finally, given the two-component nature of disc galaxies, we present luminosity–size and (surface brightness)–size diagrams for discs and bulges. We also show that the distribution of elliptical galaxies in the luminosity–size diagram is not linear but strongly curved.  相似文献   

13.
14.
The faint regions of galaxies, groups and clusters hold important clues about how these objects formed, and surface photometry at optical and near-infrared wavelengths represents a powerful tool for studying such structures. Here, we identify a hitherto unrecognized problem with this technique, related to how the night sky flux is typically measured and subtracted from astronomical images. While most of the sky flux comes from regions between the observer and the target object, a small fraction – the extragalactic background light (EBL) – comes from behind. We argue that since this part of the sky flux can be subjected to extinction by dust present in the galaxy/group/cluster studied, standard reduction procedures may lead to a systematic oversubtraction of the EBL. Even very small amounts of extinction can lead to spurious features in radial surface brightness profiles and colour maps of extended objects. We assess the likely impact of this effect on a number of topics in extragalactic astronomy where very deep surface photometry is currently attempted, including studies of stellar haloes, starburst host galaxies, disc truncations and diffuse intragroup/intracluster light. We argue that EBL extinction may provide at least a partial explanation for the anomalously red colours reported for the haloes of disc galaxies and for the hosts of local starburst galaxies. EBL extinction effects also mimic truncations in discs with unusually high dust opacities, but are unlikely to be the cause of such features in general. Failure to account for EBL extinction can also give rise to a non-negligible underestimate of intragroup and intracluster light at the faintest surface brightness levels currently probed. Finally, we discuss how EBL extinction effects may be exploited to provide an independent constraint on the surface brightness of the EBL, using a combination of surface photometry and direct star counts.  相似文献   

15.
16.
17.
The 2200 Å bump is a major figure of interstellar extinction. However, extinction curves with no bump exist and are, with no exception, linear from the near‐infrared down to 2500 Å at least, often over all the visible‐UV spectrum. The duality linear versus bump‐like extinction curves can be used to re‐investigate the relationship between the bump and the continuum of interstellar extinction, and answer questions as why do we observe two different kinds of extinction (linear or with a bump) in interstellar clouds? How are they related? How does the existence of two different extinction laws fits with the requirement that extinction curves depend exclusively on the reddening E (BV) and on a single additional parameter? What is this free parameter? It will be found that (1) interstellar dust models, which suppose the existence of three different types of particles, each contributing to the extinction in a specific wavelength range, fail to account for the observations; (2) the 2200 Å bump is very unlikely to be absorption by some yet unidentified molecule; (3) the true law of interstellar extinction must be linear from the visible to the far‐UV, and is the same for all directions including other galaxies (as the Magellanic Clouds). In extinction curves with a bump the excess of starlight (or the lack of extinction) observed at wavelengths less than λ = 4000 Å arises from a large contribution of light scattered by hydrogen on the line of sight. Although counter‐intuitive this contribution is predicted by theory. The free parameter of interstellar extinction is related to distances between the observer, the cloud on the line of sight, and the star behind it (the parameter is likely to be the ratio of the distances from the cloud to the star and to the observer). The continuum of the extinction curve and the bump contain no information on the chemical composition of interstellar clouds. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We have constructed a numerical model of a galaxy that consists of a stellar, gas and dust disc imbedded within a dark halo. We have used this model to assess the radiation, gravitational and viscous forces on dust grains and to trace their motion through the interstellar medium over a period of 109 yr. We conclude that the disc opacity is a crucial factor in understanding the motion of the grains. Large grains (≈0.1 μm) with low disc opacity will lead to dust expulsion from the stellar disc, while high opacity leads to dust retention. Reasonable disc opacities lead to the recycling of the larger grains from the outer to the inner regions of the galaxy. The larger grains travel at higher velocities than small grains (0.01−0.001 μm), and so the smaller grains remain relatively close to their formation sites. Dust can 'leak' out over the entire surface of the disc because of the imbalance of radiation and gravitational forces. The dust is dynamically coupled to the gas and so although the gas lags behind the dust it is carried along with it. This explains the close correlation between the far-infrared emission from dust and the gas column density. We use a simple analytical model to show how the dust mass of a galaxy may evolve with time and how a significant fraction (90 per cent) of the total dust mass produced may have been expelled into the intergalactic medium.  相似文献   

19.
We estimate the evolution of the contribution of galaxies to the cosmic background flux at 912 Å by means of a semi-analytic model of galaxy formation and evolution. Such modelling has been quite successful in reproducing the optical properties of galaxies. We assume that high-redshift damped Lyman α systems are the progenitors of present-day galaxies, and we design a series of models that are consistent with the evolution of cosmic comoving emissivities in the available near-infrared, optical, ultraviolet and far-infrared bands along with the evolution of the neutral hydrogen content and average metallicity of damped Lyman α systems. We use these models to compute the galactic contribution to the Lyman-limit emissivity and background flux for 0 ≃  z  ≤ 4. We take into account the absorption of Lyman-limit photons by H  I and dust in the interstellar medium of the galaxies. We find that the background Lyman-limit flux due to galaxies might dominate (or be comparable to) the contribution from quasars at almost all redshifts if the absorption by H  I in the interstellar medium is neglected. Such H  I absorption would result in a severe diminishing of this flux — by almost three orders of magnitude at high redshifts and by one to two orders at z  ≃ 0. Though the resulting galaxy flux is completely negligible at high redshifts, it is comparable to the quasar flux at z  ≃ 0.  相似文献   

20.
We have studied the poor southern cluster of galaxies S639. Based on new Strömgren photometry of stars in the direction of the cluster, we confirm that the Galactic extinction affecting the cluster is large. We find the extinction in Johnson B to be AB =0.75±0.03. We have obtained new photometry in Gunn r for E and S0 galaxies in the cluster. If the Fundamental Plane is used for determination of the relative distance and the peculiar velocity of the cluster, we find a distance, in velocity units, of (5706±350) km s−1, and a substantial peculiar velocity, (839±350) km s−1. However, the colours and the absorption line indices of the E and S0 galaxies indicate that the stellar populations in these galaxies are different from those in similar galaxies in the two rich clusters Coma and Hydra I. This difference may severely affect the distance determination and the derived peculiar velocity. The data are consistent with a non-significant peculiar velocity for S639 and the galaxies in the cluster being on average 0.2 dex younger than similar galaxies in Coma and Hydra I. The results for S639 caution that some large peculiar velocities may be spurious and caused by unusual stellar populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号