首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
As a recent trend, the continuous increase of new technologies for space observations of new missions to Mars, Venus, and Titan, has stimulated vigorous experimental and theoretical studies on the collision process induced by interactions between plasma and planetary atmosphere. In order to facilitate the comprehension of these processes, this brief paper chose a collection of cross section data not always easily accessible. With the purpose of making a useful collection of such data we have collected both experimental and theoretical estimate for most of the expected collisions processes.  相似文献   

2.
The desorption of molecular species from ice mantles back into the gas phase in molecular clouds results from a variety of very poorly understood processes. We have investigated three mechanisms: desorption resulting from H2 formation on grains, direct cosmic ray heating and cosmic ray-induced photodesorption. Whilst qualitative differences exist between these processes (essentially deriving from the assumptions concerning the species selectivity of the desorption and the assumed threshold adsorption energies, E t), all the three processes are found to be potentially very significant in dark cloud conditions. It is therefore important that all three mechanisms should be considered in studies of molecular clouds in which freeze-out and desorption are believed to be important.
Employing a chemical model of a typical static molecular core and using likely estimates for the quantum yields of the three processes, we find that desorption by H2 formation probably dominates over the other two mechanisms. However, the physics of the desorption processes and the nature of the dust grains and ice mantles are very poorly constrained. We therefore conclude that the best approach is to set empirical constraints on the desorption, based on observed molecular depletions – rather than try to establish the desorption efficiencies from purely theoretical considerations. Applying this method to one such object (L16 89B) yields upper limits to the desorption efficiencies that are consistent with our understanding of these mechanisms.  相似文献   

3.
A physical model based on the open‐source toolkit Geant4 for production rates of cosmogenic nuclei on the lunar surface is proposed and calibrated. The fluxes of proton and neutron beneath the lunar surface are obtained by simulating the physical processes between the cosmic‐ray particles and the lunar surface material. By combining the experimental proton cross sections and the a posteriori neutron cross sections, we calculate the production rate depth profiles of long‐lived nuclei (10Be, 14C, 26Al, 36Cl, and 53Mn). Through comparing experimental and theoretical data for these nuclei, we find that for all the selected nuclei, experimental and theoretical production rate depth profiles agree well with each other by introducing a single normalization factor. It means that the physical model based on Geant4 can also reproduce the depth profiles of cosmogenic nuclei, and that this model can be used by everyone worldwide. In addition, we predict the production rates of three stable nuclei (21Ne, 22Ne, and 38Ar).  相似文献   

4.
The intensity patterns of some Rydberg line series in the X‐ray spectra of foil‐excited fast ion beams bear a resemblance to patterns seen with SN remnants or after charge exchange (CX). Closer scrutiny of the ion‐foil interaction process reveals why this is no more than a chance resemblance, because the underlying processes are very different. However, electron beam ion traps are suitable for CX observations (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The main aim of this work is to estimate the total contribution of the processes of     molecular ion photodissociation and     collisional absorption charge exchange to the opacity of DB white dwarf atmospheres, and compare this with the contribution of     and other relevant radiative absorption processes included in standard models.
The method for the calculations of the molecular ion     photodissociation cross-sections is based on the dipole approximation and quantum-mechanical treatment of the internuclear motion, while the quasi-classical method for describing absorption processes in     collisions is based on the quasi-static approximation.
Absorption coefficients are calculated in the region  50 nm ≤λ≤ 850 nm  and compared with the corresponding coefficients of other relevant absorption processes; the calculations of the optical depth of the atmosphere layers considered are performed in the far-UV and VUV regions; the contribution of the relevant absorption processes to the opacity of DB white dwarf atmospheres is examined.
We examined the spectral ranges in which the total     and     absorption processes dominate in particular layers of DB white dwarf atmospheres. In addition, we show that in the region of  λ≲ 70 nm  the process of     atom photoionization is also important, in spite of the fact that the ratio of hydrogen and helium abundances in the DB white dwarf atmosphere considered is  1:105  .  相似文献   

6.
A plane‐shear flow in a fluid with forced turbulence is considered. If the fluid is electrically‐conducting then a mean electromotive force (EMF) results even without basic rotation and the magnetic diffusivity becomes a highly anisotropic tensor. It is checked whether in this case self‐excitation of a large‐scale magnetic field is possible (so‐called × ‐dynamo) and the answer is NO. The calculations reveal the cross‐stream components of the EMF perpendicular to the mean current having the wrong signs, at least for small magnetic Prandtl numbers. After our results numerical simulations with magnetic Prandtl number of about unity have only a restricted meaning as the Prandtl number dependence of the diffusivity tensor is rather strong. If, on the other hand, the turbulence field is strati.ed in the vertical direction then a dynamo‐active α ‐effect is produced. The critical magnetic Reynolds number for such a self‐excitation in a simple shear flow is slightly above 10 like for the other – but much more complicated – flow patterns used in existing dynamo experiments with liquid sodium or gallium. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Denis Lacelle  David Fisher 《Icarus》2008,197(2):458-469
In this study, various approaches that can potentially distinguish between vapor- and liquid-derived ground ice in the martian regolith (petrography, geochemistry, stable OH isotopes, CO2O2N2Ar gas composition) are examined using terrestrial ground ice examples. Although the stable OH isotope composition ratios can distinguish between vapor- and liquid-derived terrestrial ground ice, there might be to much mixing between the various water reservoirs on Mars to effectively use it, and, like on Earth, petrographic and geochemical approaches need to be complemented with additional supporting evidences. Of the different approaches currently being employed to determine the origin of terrestrial massive ground ice and icy sediments, it is the concentration of CO2 and the O2/Ar, N2/Ar and N2/O2 ratios of air entrapped in the ice that has proven to be the less ambiguous and most discriminatory. This is because the molar ratios of atmospheric gases change during their dissolution in water due to differences in their relative solubilities, thus providing distinctive ratios for the dissolved gases. The gas composition of air entrapped in the ice not only distinguishes between vapor- and liquid-derived ground ice, but any deviation from the theoretical dissolved values can provide insights into potential physical and biological processes operating in the subsurface, a key component for astrobiology.  相似文献   

8.
Stars form within molecular clouds but our understanding of this fundamental process remains hampered by the complexity of the physics that drives their evolution. We review our observational and theoretical knowledge of molecular clouds trying to confront the two approaches wherever possible. After a broad presentation of the cold interstellar medium and molecular clouds, we emphasize the dynamical processes with special focus to turbulence and its impact on cloud evolution. We then review our knowledge of the velocity, density and magnetic fields. We end by openings towards new chemistry models and the links between molecular cloud structure and star-formation rates.  相似文献   

9.
Charge exchange (CX), both onto ions in the solar wind and potentially in other astrophysical contexts, can create X‐ray emission lines largely indistinguishable from those created in collisional or photoionized plasmas. The prime distinguishing characteristic is in the distinctly different line ratios generated by the CX process. A complete astrophysical model of the process would require a vast number of atomic calculations; we describe here an approximate approach that will allow astronomers to evaluate the likely contribution of CX to an observed spectrum. The method relies upon an approximate calculation of the CX cross section paired with detailed atomic structure calculations used to determine the emission lines. Simulated spectra based on observed solar wind CX data are shown for both current (Suzaku) and near‐term (Astro‐H) missions (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The Bethe approximation is used with measured and theoretical values of ionization cross sections and measured values of differential oscillator strengths to derive the initial energy spectrum of auroral secondary electrons. The differential flux of the auroral secondaries is then calculated, using the approximation of continuous energy loss. The calculations are applied to a particular aurora for which rocket data have been published. There is substantial disagreement between theoretical and measured electron spectra. The theoretical spectra show structure at energies less than 20 eV, associated primarily with vibrational and electronic excitation of molecular nitrogen. This structure is largely absent in the measured spectrum. Substantially more high energy electrons were measured than theory predicts. In addition, there are disagreements in the altitude profiles of the total number of non-thermal secondary electrons.

Calculated values of OI green line photon emission rates which result from excitation by secondary electrons and dissociative recombination of O2+ fall short of the measured values. The effect on the excitation rate of varying several parameters is investigated, and it is found that the results are particularly sensitive to competing inelastic processes in N2.  相似文献   


11.
We made a detailed geomorphologic map of the Menrva region of Titan, using Cassini RADAR data as our map base. Using similar techniques and approaches that were applied to mapping Magellan radar images of Venus, and earlier, more generalized Titan maps, we were able to define and characterize 10 radar morphologic units, along with inferred dunes and fluvial channels, from the RADAR data. Structural features, such as scarps, ridges, and lineaments were also identified. Using principles of superposition, cross-cutting, and embayment relations we created a sequence of map units for this region. We interpret Menrva to be a 440 km wide degraded impact basin, in agreement with earlier studies by Elachi et al. (Elachi, C. et al. [2006]. Nature 441, 709-713) and Wood et al. (Wood, C.A., Lorenz, R., Kirk, R., Lopes, R., Mitchell, K., Stofan, E., and the Cassini RADAR Team [2010]. Icarus 206, 334-344), and identify it as the oldest feature in the map region. Exogenic processes including hydrocarbon fluid channelization forming the Elivagar Flumina channel network and dune fields resulting from aeolian activity are the current geologic processes dominating our map area, and these processes have contributed to the erosion of the crater’s ejecta field. There is evidence of multiple episodes of channel formation, erosion and burial by aeolian deposits, as observed elsewhere on Titan by e.g., Barnes et al. (Barnes, J.W. et al. [2005]. Icarus 195, 400-414). Channel outflow regions have morphologies suggestive of streams formed by flash floods, and dune fields are small and restricted rather than forming large dune seas, consistent with a desert-like environment for this region with low supply of hydrocarbon particles, also consistent with other studies by e.g., Lorenz et al. (Lorenz, R.D. et al. [2008a]. Planet. Space Sci. 56, 1132-1144). There is no evidence of cryovolcanism or non-impact-related tectonic activity in the Menrva region, although this region is too small to infer anything about the roles of these processes elsewhere on Titan. This work suggests detailed geomorphologic mapping can confidently be applied to Cassini RADAR data, and we suggest that more extensive mapping should be done using RADAR, ISS, and VIMS data geographically distributed across Titan to assess its usefulness for a future combined RADAR-ISS-VIMS-based global geologic map.  相似文献   

12.
Molecular processes play both active and passive/diagnostic rôles in the process of star formation. Various molecular behaviours can be identified in star-forming regions with the result that different molecular species can be used to constain different aspects of the infall process, such as the density structures, the kinematics and the evolutionary history of star-forming cores. The main limitations in the chemical analysis of infall sources arise from poorly constrained boundary conditions; in particular the chemical and physical initial conditions are usually very uncertain. The most promising application of astrochemical modelling is probably in the analysis of the infall dynamics through combined chemical/radiative transfer modelling of molecular emission line profiles.  相似文献   

13.
What are the origins of the soft X‐ray line emission from non‐AGN galaxies? XMM‐Newton RGS spectra of nearby non‐AGN galaxies (including starforming ones: M82, NGC 253, M51, M83, M61, NGC 4631, M94, NGC 2903, and the Antennae galaxies, as well as the inner bulge of M31) have been analyzed. In particular, the Kα triplet of O VII shows that the resonance line is typically weaker than the forbidden and/or inter‐combination lines. This suggests that a substantial fraction of the emission may not arise directly from optically thin thermal plasma, as commonly assumed, and may instead originate at its interface with neutral gas via charge exchange. This latter origin naturally explains the observed spatial correlation of the emission with various tracers of cool gas in some of the galaxies. However, alternative scenarios, such as the resonance scattering by the plasma and the relic photo‐ionization by AGNs in the recent past, cannot be ruled out, at least in some cases, and are being examined. Such X‐ray spectroscopic studies are important to the understanding of the relationship of the emission to various high‐energy feedback processes in galaxies (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Turbulent plane‐shear flow is found to show same basic effects of mean‐fieldMHD as rotating turbulence. In particular, the mean electromotive force (EMF) includes highly anisotropic turbulent diffusion and alpha‐effect. Only magnetic diffusion remains for spatially‐uniform turbulence. The question is addressed whether in this case a self‐excitation of a magnetic field by so‐called sher‐current dynamo is possible and the quasilinear theory provides a negative answer. The streamaligned component of the EMF has the sign opposite to that required for dynamo. If, however, the turbulence is not uniform across the flow direction then a dynamo‐active α ‐effect emerges. The critical magnetic Reynolds number for the alpha‐shear dynamo is estimated to be slightly above ten. Possibilities for cross‐checking theoretical predictions with MHD experiments are discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Shocks propagating in the interstellar medium (ISM) play an important role in the life of molecular clouds. Through a theoretical study of interaction between clouds and shocks we can understand, for example, the density distribution of observed molecular clouds and the first steps of star formation. The only way to study of interaction in detail is via a numerical hydrodynamical simulation. In this paper we present the first results of a hydrocode which is able to follow the processes after the collision between the cloud and shock front.Our main theoretical result is that the chemical processes (e.g. H2 dissociation) can affect the dynamical processes significantly. Global parameters of the cloud are calculated for the comparision of the simulation and the observations.  相似文献   

16.
While X‐ray astronomy began in 1962 and has made fast progress since then in expanding our knowledge about where in the Universe X‐rays are generated by which processes, it took one generation before the importance of a fundamentally different process was recognized. This happened in our immediate neighborhood, when in 1996 comets were discovered as a new class of X‐ray sources, directing our attention to charge exchange reactions. Charge exchange is fundamentally different from other processes which lead to the generation of X‐rays, because the X‐rays are not produced by hot electrons, but by ions picking up electrons from cold gas. Thus it opens up a new window, making it possible to detect cool gas in X‐rays (like in comets), while all the other processes require extremely high temperatures or otherwise extreme conditions. After having been overlooked for a long time, the astrophysical importance of charge exchange for the generation of X‐rays is now receiving increased general attention. In our solar system, charge exchange induced X‐rays have now been established to originate in comets, in all the planets from Venus to Jupiter, and even in the heliosphere itself. In addition to that, evidence for this X‐ray emission mechanism has been found at various locations across the Universe. Here we summarize the current knowledge about solar system X‐rays resulting from charge exchange processes (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Abstract— The presence of isotopic anomalies is the most unequivocal demonstration that meteoritic material contains circumstellar or interstellar components. In the case of organic compounds in meteorites and interplanetary dust particles (IDPs), the most useful isotopic tracer has been deuterium (D). We discuss four processes that are expected to lead to D enrichment in interstellar materials and describe how their unique characteristics can be used to assess their relative importance for the organics in meteorites. These enrichment processes are low‐temperature gas phase ion‐molecule reactions, low‐temperature gas‐grain reactions, gas phase unimolecular photodissociation, and ultraviolet photolysis in D‐enriched ice mantles. Each of these processes is expected to be associated with distinct regiochemical signatures (D placement on the product molecules, correlation with specific chemical functionalities, etc.), especially in the molecular population of polycyclic aromatic hydrocarbons (PAHs). We describe these differences and discuss how they may be used to delineate the various interstellar processes that may have contributed to meteoritic D enrichments. We also briefly discuss how these processes may affect the isotopic distributions in C, O, and N in the same compounds.  相似文献   

18.
Water (H2O) ice is an important solid constituent of many astrophysical environments. To comprehend the role of such ices in the chemistry and evolution of dense molecular clouds and comets, it is necessary to understand the freeze-out, potential surface reactivity and desorption mechanisms of such molecular systems. Consequently, there is a real need from within the astronomical modelling community for accurate empirical molecular data pertaining to these processes. Here we give the first results of a laboratory programme to provide such data. Measurements of the thermal desorption of H2O ice, under interstellar conditions, are presented. For ice deposited under conditions that realistically mimic those in a dense molecular cloud, the thermal desorption of thin films (≪50 molecular layers) is found to occur with zeroth-order kinetics characterized by a surface binding energy, E des, of 5773 ± 60 K, and a pre-exponential factor, A , of 1030 ± 2 molecules cm−2 s−1. These results imply that, in the dense interstellar medium, thermal desorption of H2O ice will occur at significantly higher temperatures than has previously been assumed.  相似文献   

19.
Using three independent theoretical approaches (CA, HFR + CP, AUTOSTRUCTURE), oscillator strengths have been calculated for a set of Tc  ii transitions of astrophysical interest and the reliability of their absolute scale has been assessed. The examination of the spectra emitted by some Ap stars has allowed the identification of Tc  ii transitions in HD 125248. This Tc  ii detection should however await confirmation from spectral synthesis relying on dedicated model atmospheres. New partition functions are also provided for Tc  i , Tc  ii and Tc  iii for temperatures ranging between 4000 and 13 000 K.  相似文献   

20.
A full understanding of the properties of substellar objects is one of the major challenges facing astrophysics. Since their discovery in 1995, hundreds of brown dwarfs and extrasolar planets have been discovered. While these discoveries have enabled important comparisons with theory, observational progress has been much more rapid than the theoretical understanding of cool atmospheres. The reliable determination of mass, abundances, gravities and temperatures is not yet possible. The key problem is that substellar objects emit their observable radiation in the infrared region of the spectrum where our knowledge of atomic, molecular and line broadening data is poor. Here we report on the status of our PoSSO (Physics of SubStellar Objects) project. In order to understand brown dwarfs and extrasolar planets increasing more like those in our solar system, we are studying a wide range of processes. Here we give an update on the project and sketch an outline of atoms, molecules and processes requiring study. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号