共查询到20条相似文献,搜索用时 0 毫秒
1.
针对高分辨率遥感影像变化检测存在漏检和检测边界粗糙的问题,提出一种基于UNet++和注意力机制的高分辨率遥感影像变化检测算法.该算法采用UNet++网络作为基础网络提取特征,并在基本卷积单元中引入注意力机制突出重要特征,由此完成遥感影像端到端的变化检测.在高分辨率卫星影像变化检测数据集中进行了验证,相比于经典语义分割网... 相似文献
2.
王晓雯戴晨光张振超季虹良 《测绘与空间地理信息》2023,(5):70-73
针对遥感影像变化检测问题,提出了一种孪生高分辨率卷积神经网络模型。该模型首先基于孪生网络模型提取不同时相遥感影像的特征,然后将特征拼接后输入到嵌套U形网络中输出变化检测区域。为了提升变化检测效果,进一步设计了高分辨率卷积神经网络用于提取不同时相遥感影像的特征,以充分利用不同分辨率的特征来提升变化检测效果。在LEVIR-CD变化检测数据集上的大量实验表明,所提出方法能够比对比方法获得更高的变化检测精度。 相似文献
3.
针对高分辨率遥感影像变化检测中存在的变化像素与未变化像素边界难以准确区分以及变化小、目标检测中容易出现漏检等问题,本文提出一种联合密集连接与注意力的孪生网络(CDASNet)。该网络采用孪生网络的输入方式,并在编码阶段利用残差连接单元以及密集连接的方式增强对原始影像底层特征的提取,同时在解码阶段引入注意力模块为不同层次的特征图赋予新权重来关注变化信息,进一步利用跳跃连接将编码阶段的浅层特征和解码阶段的深层特征进行融合,最终经过上采样恢复原始影像分辨率得到变化检测结果。将本文方法应用在LEVIR-CD数据集和CDD数据集中进行实验,结果表明,本文提出的方法在精度和召回率上都优于FC-Siam-conv、FC-Siam-diff、DSAMNet、SUN-CD 4种方法。 相似文献
4.
高分辨率遥感影像的深度学习变化检测方法 总被引:2,自引:0,他引:2
为提升高分辨率遥感影像的变化检测精度,提出一种利用深度学习的变化检测方法。在预处理的基础上,利用顾及邻域信息的改进变化矢量分析算法和灰度共生矩阵算法获取影像间光谱和纹理变化,并通过设置自适应采样区间提取最可能的变化和未变化区域样本。构建并训练包含标签层的高斯伯努利深度限制玻尔兹曼机模型,以提取变化和未变化区域深层特征,从而有效辨别变化区域。通过WorldView-3与Pléiades-1影像的试验表明本文方法在变化检测精度方面优于对比方法。 相似文献
5.
6.
建筑物变化检测在城市环境监测、土地规划管理和违章违规建筑识别等应用中具有重要作用。针对传统孪生神经网络在影像变化检测中存在的检测边界与实际边界吻合度低的问题,本文结合面向对象图像分析技术,提出一种基于面向对象孪生神经网络(Obj-SiamNet)的高分辨率遥感影像变化检测方法,利用模糊集理论自动融合多尺度变化检测结果,并通过生成对抗网络实现训练样本迁移。该方法应用在高分二号和高分七号高分辨率卫星影像中,并与基于时空自注意力的变化检测模型(STANet)、视觉变化检测网络(ChangeNet)和孪生UNet神经网络模型(Siam-NestedUNet)进行比较。结果表明:(1)融合面向对象多尺度分割的检测结果较单一尺度分割的检测结果,召回率最高提升32%,F1指数最高提升25%,全局总体误差(GTC)最高降低7%;(2)在样本数量有限的情况下,通过生成对抗网络进行样本迁移,与未使用样本迁移前的检测结果相比,召回率最高提升16%,F1指数最高提升14%,GTC降低了9%;(3) Obj-SiamNet方法较其他变化检测方法,整体检测精度得到提升,F1指数最高提升23%,GTC最高降低9%。... 相似文献
7.
本文采用2013年QuickBird和2017年GF-1卫星遥感影像,以黑龙江省五常市为研究区,利用遥感影像的光谱特征提取纯净森林像元,构建整合森林指数(Integrated Forest Z-Score,IFZ)对影像的森林和非森林区域进行区分,叠加对比分析两期影像提取结果,得到研究区内林地的变化区域.再将自动提取结果与人工判读图斑进行精度验证,面积误差为4.2%,图斑重叠率为85%.从精度结果可知,高分辨遥感影像可以准确地监测林地变化,对研究环境变化和森林经营管理具有决策性作用. 相似文献
8.
9.
遥感影像变化检测作为遥感领域的热点问题一直以来备受关注,面向对象变化检测技术对高分辨率遥感影像具有良好的分析处理能力,因此,越来越受到人们的青睐.对面向对象变化检测技术进行归纳、总结,根据面向对象变化检测技术流程,从数据预处理、影像分割、特征提取、变化检测、精度评价五个方面分别阐述了面向对象变化检测的研究进展,并指出了... 相似文献
10.
为充分发挥遥感影像中光谱、形状、纹理等特征的优势,本文提出一种特征组合优化的高分辨率遥感影像变化检测方法。首先利用e Cognition软件对两时期影像进行多尺度分割并计算分割像斑的特征值;其次对比不同地物的特征值分布;然后分析不同特征对地物分类的影响;最后得到最优的特征组合。本文以乌鲁木齐西山高铁新区2014和2015年的IKONOS影像为基础进行实验,实验表明,上述方法可以充分利用多特征的优势,提高变化检测的精度。 相似文献
11.
针对目前高空间分辨率光学遥感影像地表变化检测面临的挑战,该文提出一种孪生差分特征融合网络方法,一方面增强了对深层变化特征的提取能力,通过差分特征能更好地引导网络学习;另一方面在网络末端引入深监督策略,有效融合多尺度信息,充分利用不同语义层次特征,从而生成高精度的变化检测结果。此外,还设计了顾及样本不均衡问题的损失函数,降低正负样本极度不平衡对模型训练的负面影响。为了评估该文提出方法的有效性和优势,在两个公开变化检测数据集上将其与5种具有代表性的变化检测方法进行对比实验,结果证明该方法能有效提升变化检测的精度,并且对尺度差异明显的地物有较强的检测能力,在轮廓细化上具有显著优势。 相似文献
12.
为利用高分辨率遥感影像实现高精度的飞机目标变化检测,提出了一种自适应的多特征融合变化检测与深度学习相结合的方法。首先,通过加权迭代的多元变化检测法获取变化强度图,并结合自适应的直方图统计法自动获取显著的变化与不变化样本;然后,提取多时相影像的光谱、边缘和纹理特征,完成多特征融合的变化检测,并通过形态学处理得到变化图斑;最后,利用训练的NIN(Network in Network)结构的卷积神经网络飞机识别模型,完成变化图斑的类型判别,实现变化飞机的检测。实验结果表明,本文方法在两组数据的正确率分别达到100%和91.89%,均优于对比方法,能实现准确可靠的飞机目标变化检测。 相似文献
13.
14.
为了克服高分辨率遥感影像配准与变化检测作为单独环节处理的局限,该文提出了一种基于变分理论的配准与变化检测一体化处理方法。该方法将配准误差作为一种光谱变化决策因子,变化信息以权值的方式迭代反馈给变分配准模型的解算过程。为了更准确地检测建筑物这个特定目标的真实变化,该文采用多尺度最大形态学轮廓建筑物检测指数的差异作为另外一个决策因子。最后将配准误差反映的变化和建筑物检测指数的差异这两个决策因子在D-S证据理论框架下建立概率模型进行融合处理,进而得到建筑物的变化检测结果。该文选取WorldView-2数据进行实验,实验结果表明,一体化处理思路可以有效地解决单独处理的局限,从根本上解决配准误差对变化检测结果的影响以及由于变化而使配准精度降低的问题,进而提高配准和变化检测的质量。 相似文献
15.
针对同一地区不同时期的全色高分辨遥感影像,提出一种基于影像融合的变化检测算法。首先采用基于匹配点的三角网校正方法对两景影像进行几何校正,然后选用基于迭代多元变化检测(IR-MAD)的相对辐射校正方法进行辐射一致性处理,接着对经几何一致性处理、辐射一致性处理后两张影像进行显著性融合,采用Mean-Shift分割算法对融合影像进行分割,选用方向梯度直方图(HOG)特征获取影像纹理强度图,最后通过比较分割块纹理变化获得变化检测结果。以Toposys激光雷达系统搭载相机拍摄的全色影像对该算法进行了检验,并使用单一时期影像为分割对象进行对比实验结果。实验结果表明,以融合影像为分割对象的结果远优于以单一时期影像为分割对象的变化检测结果,极大地减少了误检和漏检,在城市、郊区等地区人工地物变化监测中有一定的应用价值。 相似文献
16.
高分辨率遥感影像数据在带来丰富地物信息的同时,也对变化检测提出了新的问题和挑战。本文从高分辨率遥感影像数据的空间结构特征和光谱分布信息入手,针对多光谱数据交叉融合的变化检测方法展开研究。采用基于GSA(Gram-Schmidt Adaptive Pansharpening Algorithm)法对全色和多光谱影像数据处理,生成四幅交叉融合影像;将迭代加权多元变化检测(Iteratively Regularized Multivariate Alteration Detection,IR-MAD)算法应用于高分辨率融合影像,提取变化信息。结果表明,本研究方法能够有效提取变化信息,并降低数据配准不一致所造成的误检测。 相似文献
17.
基于高分辨率遥感影像的海岛礁地理信息变化检测可用于普查海岛礁地理信息变化,从而为海岛礁开发利用、海洋资源保护、海洋经济发展及国防建设等提供参考。本文提出一种基于马尔科夫随机场的海岛礁地理信息自动变化检测方法,通过典型相关分析和马尔科夫随机场模型相结合的方法,提取变化区域。并以西沙赵述岛为实验区域进行方法验证。实验证明这一方法可以有效地提取海岛礁地理信息发生变化的区域。 相似文献
18.
多尺度分割的高分辨率遥感影像变化检测 总被引:3,自引:1,他引:3
针对高空间分辨率的遥感影像,提出了一种基于多尺度分割的变化检测算法。采用Mean-Shift分割算法对影像进行多尺度分割,构建了不同尺度上的地理对象,以不同尺度上的地理对象灰度均值构建了变化检测的多尺度特征向量,采用变化矢量分析法获得最后的变化检测结果。以城镇区和农田区的Quick Bird影像对本文算法进行了检验,从精度评价的效果来看,无论城镇区还是农田区,采用面向对象的变化检测方法精度都高于基于单像素的检测方法,且当尺度层数固定时,多尺度组合的变化检测结果优于单一尺度的变化检测结果,对城镇、农田区域的变化检测的精度分别达到87.57%和81.55%。本文算法既可以顾及大面积同质区域变化,又可以反映小的地物目标及边缘部分的变化,能够很好地满足城镇、农田等不同环境背景下的变化检测需求,在国土资源监测中具有一定的应用价值。 相似文献
19.
高分辨率遥感影像土地利用变化检测方法研究 总被引:3,自引:0,他引:3
提出一种利用高分辨率遥感影像进行土地利用变化检测的方法。以土地利用图为辅助数据,通过土地利用图和遥感影像的配准套合,获取影像像斑;同时,对遥感影像进行基于像素的监督分类,获取概略的类别图;再根据像斑内像素的类别编码完成子像斑的划分。以子像斑为影像分析的基本单位提取特征,以相关系数为相似性测度衡量不同时期子像斑的特征相似性,用ROC曲线(接受者操作特性曲线)代替经验选取的方法自动获取变化阈值,确定像斑是否发生变化。以武汉市区局部QuickBird 2002年和2005年多光谱影像、相同地区2002年1∶10 000土地利用图为实验数据进行了算法的实验,结果显示绝大部分的变化区域都可以被提取出来,实验方法可行。 相似文献
20.
基于深度学习的高分辨率遥感影像目标检测 总被引:1,自引:0,他引:1
传统的目标检测识别方法难以适应海量高分辨率遥感影像数据,需要寻求一种能够自动从海量影像数据中学习最有效特征的方法,充分复挖掘数据之间的关联。本文针对海量高分辨率遥感影像数据下典型目标的检测识别,提出一种分层的深度学习模型,通过设定特定意义的分层方法建立目标语义表征及上下文约束表征,以实现高精度目标检测。通过对高分遥感影像目标检测的试验,证明了该方法的有效性。 相似文献