首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The Herbig Ae/Be stars are intermediate mass pre‐main sequence stars that bridge the gap between the low mass T Tauri stars and the Massive Young Stellar Objects. In this mass range, the acting star forming mechanism switches from magnetically controlled accretion to an as yet unknown mechanism, but which is likely to be direct disk accretion onto the star. We observed a large sample of Herbig Ae/Be stars with X‐shooter to address this issue from a multi‐wavelength perspective. It is the largest such study to date, not only because of the number of objects involved, but also because of the large wavelength coverage from the blue to the near‐infrared. This allows many accretion diagnostics to be studied simultaneously. By correlating the various properties with mass, temperature and age, we aim to determine where and whether the magnetically controlled mass accretion mechanism halts and the proposed direct disk accretion takes over. Here, we will give an overview of the background, present some observations and discuss our initial results. We will introduce a new accretion diagnostic for the research of Herbig Ae/Be stars, the HeI 1.083 μm line (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
In our previous search for magnetic fields in Herbig Ae stars, we pointed out that HD 101412 possesses the strongest magnetic field among the Herbig Ae stars and hence is of special interest for follow‐up studies of magnetism among young pre‐main‐sequence stars. We obtained high‐resolution, high signal‐to‐noise UVES and a few lower quality HARPS spectra revealing the presence of resolved magnetically split lines. HD 101412 is the first Herbig Ae star for which the rotational Doppler effect was found to be small in comparison to the magnetic splitting and several spectral lines observed in unpolarized light at high dispersion are resolved into magnetically split components. The measured mean magnetic field modulus varies from 2.5 to 3.5kG, while the mean quadratic field was found to vary in the range of 3.5 to 4.8 kG. To determine the period of variations, we used radial velocity, equivalent width, line width, and line asymmetry measurements of variable spectral lines of several elements, as well as magnetic field measurements. The period determination was done using the Lomb‐Scargle method. The most pronounced variability was detected for spectral lines of He I and the iron peak elements, whereas the spectral lines of CNO elements are only slightly variable. From spectral variations and magnetic field measurements we derived a potential rotation period Prot = 13.86 d, which has to be proven in future studies with a larger number of observations. It is the first time that the presence of element spots is detected on the surface of a Herbig Ae/Be star. Our previous study of Herbig Ae stars revealed a trend towards stronger magnetic fields for younger Herbig Ae stars, confirmed by statistical tests. This is in contrast to a few other (non‐statistical) studies claiming that magnetic Herbig Ae stars are progenitors of the magnetic Ap stars. New developments in MHD theory show that the measured magnetic field strengths are compatible with a current‐driven instability of toroidal fields generated by differential rotation in the stellar interior. This explanation for magnetic intermediate‐mass stars could be an alternative to a frozen‐in fossil field (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We present Hα spectropolarimetry observations of a sample of 23 Herbig Ae/Be stars. A change in the linear polarization across Hα is detected in a large fraction of the objects, which indicates that the regions around Herbig stars are flattened (disc-like) on small scales. A second outcome of our study is that the spectropolarimetric signatures for the Ae stars differ from those of the Herbig Be stars, with characteristics changing from depolarization across Hα in the Herbig Be stars, to line polarizations in the Ae group. The frequency of depolarizations detected in the Herbig Be stars (seven out of 12) is particularly interesting as, by analogy with classical Be stars, it may be the best evidence to date that the higher-mass Herbig stars are surrounded by flattened structures. For the Herbig Ae stars, nine out of 11 show a line polarization effect that can be understood in terms of a compact Hα emission that is itself polarized by a rotating disc-like circumstellar medium. The spectropolarimetric difference between the Herbig Be and Ae stars may be the first indication that there is a transition in the Hertzsprung–Russell diagram from magnetic accretion at spectral type A to disc accretion at spectral type B. Alternatively, the interior polarized line emission apparent in the Ae stars may be masked in the Herbig Be stars owing to their higher levels of Hα emission.  相似文献   

4.
Our knowledge of the presence and the strength of magnetic fields in intermediate‐mass pre‐main‐sequence stars remains very poor. We present new magnetic field measurements in six Herbig Ae/Be stars observed with HARPS in spectropolarimetric mode. We downloaded from the European Southern Observatory (ESO) archive the publically available HARPS spectra for six Herbig Ae/Be stars. Wavelength shifts between right‐ and left‐hand side circularly polarised spectra were interpreted in terms of a longitudinal magnetic field 〈Bz〉, using the moment technique introduced by Mathys. The application of the moment technique to the HARPS spectra allowed us in addition to study the presence of the crossover effect and quadratic magnetic fields. Our search for longitudinal magnetic fields resulted in first detections of weak magnetic fields in the Herbig Ae/Be stars HD 58647 and HD 98922. Further, we confirm the previous tentative detection of a weak magnetic field in HD 104237 by Donati et al. and confirm the previous detection of a magnetic field in the Herbig Ae star HD 190073. Surprisingly, the measured longitudinal magnetic field of HD 190073, 〈Bz〉 = 91 ± 18 G at a significance level of 5σ is not in agreement with the measurement results of Alecian et al. (2013), 〈Bz〉 = –10 ± 20 G, who applied the LSD method to exactly the same data. No crossover effect was detected for any star in the sample. Only for HD 98922 the crossover effect was found tobe close to 3σ with a measured value of –4228 ± 1443 km s–1 G. A quadratic magnetic field of the order of 10 kG was detected in HD 98922, and of ∼3.5 kG in HD 104237. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
This article summarizes the processes of high‐energy emission in young stellar objects. Stars of spectral type A and B are called Herbig Ae/Be (HAeBe) stars in this stage, all later spectral types are termed classical T Tauri stars (CTTS). Both types are studied by high‐resolution X‐ray and UV spectroscopy and modeling. Three mechanisms contribute to the highenergy emission from CTTS: 1) CTTS have active coronae similar to main‐sequence stars, 2) the accreted material passes through an accretion shock at the stellar surface, which heats it to a few MK, and 3) some CTTS drive powerful outflows. Shocks within these jets can heat the plasma to X‐ray emitting temperatures. Coronae are already well characterized in the literature; for the latter two scenarios models are shown. The magnetic field suppresses motion perpendicular to the field lines in the accretion shock, thus justifying a 1D geometry. The radiative loss is calculated as optically thin emission. A mixture of shocked and coronal gas is fitted to X‐ray observations of accreting CTTS. Specifically, the model explains the peculiar line‐ratios in the He‐like triplets of Ne IX and O VII. All stars require only small mass accretion rates to power the X‐ray emission. In contrast, the HAeBe HD 163296 has line ratios similar to coronal sources, indicating that neither a high density nor a strong UV‐field is present in the region of the X‐ray emission. This could be caused by a shock in its jet. Similar emission is found in the deeply absorbed CTTS DG Tau. Shock velocities between 400 and 500 km s–1 are required to explain the observed spectrum (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
I review various phenomena associated with mass‐accreting white dwarfs (WDs) in the view of supersoft X‐ray sources. When the mass‐accretion rate is low (acc < a few × 10–7 M⊙yr–1), hydrogen nuclear burning is unstable and nova outbursts occur. A nova is a transient supersoft X‐ray source (SSS) in its later phase which timescale depends strongly on the WD mass. The X‐ray turn on/off time is a good indicator of the WD mass. At an intermediate mass‐accretion rate an accreting WD becomes a persistent SSS with steady hydrogen burning. For a higher mass‐accretion rate, the WD undergoes “accretion wind evolution” in which the WD accretes matter from the equatorial plane and loses mass by optically thick winds from the other directions. Two SSS, namely RX J0513‐6951 and V Sge, are corresponding objects to this accretion wind evolution. We can specify mass increasing WDs from light‐curve analysis based on the optically thick wind theory using multiwavelength observational data including optical, IR, and supersoft X‐rays. Mass estimates of individual objects give important information for the binary evolution scenario of type Ia supernovae (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We present optical spectra of four intermediate-mass candidate young stellar objects that have often been classified as Herbig Ae/Be stars. Typical Herbig Ae/Be emission features are not present in the spectra of these stars. Three of them, HD 36917, HD 36982 and HD 37062, are members of the young Orion nebula cluster (ONC). This association constrains their ages to be ≲1 Myr. The lack of appreciable near-infrared excess in them suggests the absence of hot dust close to the central star. However, they do possess significant amounts of cold and extended dust as revealed by the large excess emission observed at far-infrared wavelengths. The fractional infrared luminosities  ( L ir/ L )  and the dust masses computed from IRAS fluxes are systematically lower than those found for Herbig Ae/Be stars but higher than those for Vega-like stars. These stars may thus represent the youngest examples of the Vega phenomenon known so far. In contrast, the other star in our sample, HD 58647, is more likely to be a classical Be star, as is evident from the low   L ir/ L   , the scarcity of circumstellar dust, the low polarization, the presence of H α emission and near-infrared excess, and the far-infrared spectral energy distribution consistent with free–free emission similar to other well-known classical Be stars.  相似文献   

8.
We present X‐shooter observations of two brown dwarf candidates. We focus on the determination of stellar parameters and their errors. The targets, an accreting class II and a non‐accreting class III objects, are members of the σ Orionis star‐forming region. We derive the spectroscopic spectral types from the VIS spectrum and the stellar parameters. We find that the uncertainties on the stellar parameters have a minor effect on the determination of the mass accretion rate for the accreting star, thus confirming that the discrepancies between the mass accretion rate estimates found with different (simultaneous) tracers are probably due to different physical conditions where the accretion/wind indicators are produced (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We have detected 1.1 mm continuum emission from 24 of 53 Herbig Ae/Be stars surveyed with the JCMT. Survival analysis shows that 1.1 mm luminosity is correlated with bolometric luminosity and with IRAS 25µm luminosity. For those stars that were also detected at 0.45 or 0.8 mm we find a typical flux dependence of the form S #x03BD; 3, which is steeper than that of most classical T Tauri stars.  相似文献   

10.
O. V. Kozlova 《Astrophysics》2004,47(3):287-299
The results of high-resolution long-term spectral monitoring of Herbig Ae star HD 179218 in the region of emission H line and the sodium resonance doublet Na I D are presented. The received data show the existence of short-term variability (about 10 days) and long-term wave-like variability of equivalent width EW, intensity of circumstellar (CS) emission I and parameters of H emission profile. The analysis of these data allows us to suppose the existence of the global variability of parameters of accretion disk.  相似文献   

11.
The results of photoelectric observations of the Herbig Ae/Be star MWC 1080 in the Strömgren system are given. It was found that MWC 1080 undergoes rapid rises and falls in brightness with an amplitude of up to 0 m .25, occurring in a time interval of from several minutes to several hours. It is shown that MWC 1080 is similar to MWC 342 and MWC 419. It is suggested that there is a fundamental difference between the mechanisms of brightness variation of these three objects and of Herbig Ae/Be stars.  相似文献   

12.
Due to the knowledge of the rotation period and the presence of a rather strong surface magnetic field, the sharp‐lined young Herbig Ae star HD 101412 with a rotation period of 42 d has become one of the most well‐studied targets among the Herbig Ae stars. High‐resolution HARPS polarimetric spectra of HD 101412 were recently obtained on seven different epochs. Our study of the spectral variability over the part of the rotation cycle covered by HARPS observations reveals that the line profiles of the elements Mg, Si, Ca, Ti, Cr, Mn, Fe, and Sr are clearly variable while He exhibits variability that is opposite to the behaviour of the other elements studied. Since classical Ap stars usually show a relationship between the magnetic field geometry and the distribution of element spots, we used in our magnetic field measurements different line samples belonging to the three elements with the most numerous spectral lines, Ti, Cr, and Fe. Over the time interval covered by the available spectra, the longitudinal magnetic field changes sign from negative to positive polarity. The distribution of field values obtained using Ti, Cr, and Fe lines is, however, completely different compared to the magnetic field values determined in previous low‐resolution FORS 2 measurements, where hydrogen Balmer lines are the main contributors to the magnetic field measurements, indicating the presence of concentration of the studied iron‐peak elements in the region of the magnetic equator. Further, we discuss the potential role of contamination by the surrounding warm circumstellar matter in the appearance of Zeeman features obtained using Ti lines. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We present first results of Hipparcos observations of nearby low-mass pre-main-sequence (PMS) stars (T Tauri and Herbig Ae/Be stars). The data obtained by Hipparcos allow us to derive weighted mean parallaxes for three major nearby star-forming regions (SFRs), Lupus, Chamaeleon I and Taurus–Auriga. Furthermore, results on the isolated objects AB Dor and TW Hya are presented. Finally, we discuss the evolutionary status of Herbig Ae/Be (HAEBE) stars on the basis of Hipparcos results.  相似文献   

14.
Asteroseismology of pre-main-sequence δ Scuti stars has the potential not only to provide unprecedented constraints on models of these stars, but also to allow for the possibility of detecting evolutionary period changes, thus providing a direct measure of the pre-main-sequence evolutionary time-scale. In the last two years, the published number of such stars known has doubled from four to eight. Searches are now being conducted amongst the Herbig Ae stars, which are considered to be excellent candidates. We announce the discovery of δ Scuti pulsation in one Herbig Ae star, HD 142666, which lies within Marconi & Palla's theoretically predicted instability strip for pre-main-sequence stars, making this the ninth known pre-main-sequence δ Scuti star. We also demonstrate a lack of δ Scuti pulsation in another such star, HD 142527.  相似文献   

15.
This paper is based on 2MASS photometry (J H Ks magnitudes) of 1172 Be stars. The observed mean intrinsic colours have been derived with aid of two‐colour diagrams for Be stars of luminosity classes Ie‐IIe, IIIe and IVe‐Ve. The obtained results are the first determinations of their intrinsic colours in the astronomical literature. The smoothed infrared colours are compared with those obtained for “normal” B stars. Several two‐colour diagrams and plots of observed and smoothed intrinsic colour versus spectral type of luminosity classes Ie‐IIe, IIIe and IVe‐Ve are presented. Generally the determined infrared intrinsic colours of Be stars (VJ)0, (VH)0, and (VKs)o differ substantially from those of “normal” B stars. It is found that the intrinsic colours of B stars are generally bluer than Be stars of corresponding spectral type and luminosity class. The mean absolute visual magnitude Mv of 528 Be stars for luminosity classes Iae, Ibe‐Iabe, IIe, IIIe and IVe‐Ve is derived from HIPPARCOS parallaxes. The Mv calibration is compared with the existing ones. The Be stars are generally brighter than “normal” B stars of corresponding spectral types. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We consider the problem of dust grain survival in the disk winds from T Tauri and Herbig Ae stars. For our analysis, we have chosen a disk wind model in which the gas component of the wind is heated through ambipolar diffusion to a temperature of ~104 K. We show that the heating of dust grains through their collisions with gas atoms is inefficient compared to their heating by stellar radiation and, hence, the grains survive even in the hot wind component. As a result, the disk wind can be opaque to the ultraviolet and optical stellar radiation and is capable of absorbing an appreciable fraction of it. Calculations show that the fraction of the wind-absorbed radiation for T Tauri stars can be from 20 to 40% of the total stellar luminosity at an accretion rate ? a = 10?8-10?6 M yr?1. This means that the disk winds from T Tauri stars can play the same role as the puffed-up inner rim in current accretion disk models. In Herbig Ae stars, the inner layers of the disk wind (r ≤ 0.5 AU) are dust-free, since the dust in this region sublimates under the effect of stellar radiation. Therefore, the fraction of the radiation absorbed by the disk wind in this case is considerably smaller and can be comparable to the effect from the puffed-up inner rim only at an accretion rate of the order of or higher than 10?6 M yr?1. Since the disk wind is structurally inhomogeneous, its optical depth toward the observer can be variable, which should be reflected in the photometric activity of young stars. For the same reason, moving shadows from gas and dust streams with a spiral-like shape can be observed in high-angular-resolution circumstellar disk images.  相似文献   

17.
Emission-line stars in young open clusters are identified to study their properties, as a function of age, spectral type and evolutionary state. 207 open star clusters were observed using the slitless spectroscopy method and 157 emission stars were identified in 42 clusters. We have found 54 new emission-line stars in 24 open clusters, out of which 19 clusters are found to house emission stars for the first time. About 20 per cent clusters harbour emission stars. The fraction of clusters housing emission stars is maximum in both the 0–10 and 20–30 Myr age bin (∼40 per cent each). Most of the emission stars in our survey belong to Classical Be class (∼92 per cent) while a few are Herbig Be stars (∼6 per cent) and Herbig Ae stars (∼2 per cent). The youngest clusters to have Classical Be stars are IC 1590, NGC 637 and 1624 (all 4 Myr old) while NGC 6756 (125–150 Myr) is the oldest cluster to have Classical Be stars. The Classical Be stars are located all along the main sequence (MS) in the optical colour–magnitude diagrams (CMDs) of clusters of all ages, which indicates that the Be phenomenon is unlikely due to core contraction near the turn-off. The distribution of Classical Be stars as a function of spectral type shows peaks at B1–B2 and B6–B7 spectral types. The Be star fraction [N(Be)/N(B+Be)] is found to be less than 10 per cent for most of the clusters and NGC 2345 is found to have the largest fraction (∼26 per cent). Our results indicate there could be two mechanisms responsible for the Classical Be phenomenon. Some are born Classical Be stars (fast rotators), as indicated by their presence in clusters younger than 10 Myr. Some stars evolve to Classical Be stars, within the MS lifetime, as indicated by the enhancement in the fraction of clusters with Classical Be stars in the 20–30 Myr age bin.  相似文献   

18.
We present preliminary results of our X‐shooter survey in star forming regions. In this contribution we focus on subsamples of young stellar and sub‐stellar objects (YSOs) in the Lupus star forming region and in the TW Hya association. We show that the X‐shooter spectra are suitable for conducting several parallel studies such as YSO + disk fundamental parameters, accretion and outflow activity in the very low‐mass (VLM) and sub‐stellar regimes, as well as magnetic activity in young VLM YSOs, and Li abundance determinations. The capabilities of X‐shooter in terms of wide spectral coverage, resolution and limiting magnitudes, allow us to assess simultaneously the accretion/outflow, magnetic activity, and disk diagnostics, from the UV and optical to the near‐IR, avoiding ambiguities due to possible YSO variability (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We look for high‐amplitude variable young stars in the open clusters and associations of the Orion Belt. We use public data from the ASAS‐3 Photometric V ‐band Catalogue of the All Sky Automated Survey, infrared photometry from the 2MASS and IRAS catalogues, proper motions, and the Aladin sky atlas to obtain a list of the most variable stars in a survey area of side 5° centred on the bright star Alnilam (ε Ori) in the centre of the Orion Belt. We identify 32 highly variable stars, of which 16 had not been reported to vary before. They are mostly variable young stars and candidates (16) and background giants (8), but there are also field cataclysmic variables, contact binaries, and eclipsing binary candidates. Of the young stars, which typically are active Herbig Ae/Be and T Tauri stars with Hα emission and infrared flux excess, we discover four new variables and confirm the variability status of another two. Some of them belong to the well known σ Orionis cluster. Besides, six of the eight giants are new variables, and three are new periodic variables (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We present Hα spectropolarimetry observations of a sample of 10 bright T Tauri stars, supplemented with new Herbig Ae/Be star data. A change in the linear polarization across Hα is detected in most of the T Tauri (9/10) and Herbig Ae (9/11) objects, which we interpret in terms of a compact source of line photons that is scattered off a rotating accretion disc. We find consistency between the position angle (PA) of the polarization and those of imaged disc PAs from infrared and millimetre imaging and interferometry studies, probing much larger scales. For the Herbig Ae stars AB Aur, MWC 480 and CQ Tau, we find the polarization PA to be perpendicular to the imaged disc, which is expected for single scattering. On the other hand, the polarization PA aligns with the outer disc PA for the T Tauri stars DR Tau and SU Aur and FU Ori, conforming to the case of multiple scattering. This difference can be explained if the inner discs of Herbig Ae stars are optically thin, whilst those around our T Tauri stars and FU Ori are optically thick. Furthermore, we develop a novel technique that combines known inclination angles and our recent Monte Carlo models to constrain the inner rim sizes of SU Aur, GW Ori, AB Aur and CQ Tau. Finally, we consider the connection of the inner disc structure with the orientation of the magnetic field in the foreground interstellar medium: for FU Ori and DR Tau, we infer an alignment of the stellar axis and the larger magnetic field direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号