首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

极光电激流是极区电流系的重要组成部分.本文利用CHAMP卫星10年的高精度标量磁场数据研究了极光电激流的地方时和季节变化特征,并对卫星与地面台站观测到的极光电激流进行了对比分析.结果表明,日侧极光电激流主要受太阳辐射的影响,而夜侧极光电激流主要受亚暴的影响.极光电激流具有明显的年、半年变化特征.夏季东向电激流和日侧西向电激流强于冬季,而夜间西向电激流冬季强于夏季.东向电激流和日侧的西向电激流在两至点增强,夜侧的西向电激流则在两分点增强.西向电激流与AL、SML指数有较好的相关性,东向电激流与SMU指数有较好的相关性,而与AU指数有一定差异,这与地磁台站的有效探测范围有关.

  相似文献   

2.
Summary The effects of the solar proton flare product on ionospheric circumpolar currents (Auroral Electrojet Index) for the interval 1978–1986 (solar cycle No 21) are investigated. A significant increase of the AE two days after the zero-day of appearance of the proton flare was displayed.  相似文献   

3.
Summary The effects of solar proton flares and enhanced solar activity, indicated by intensive radio bursts in the decimetre range, on the Auroral Electrojet (AE) Index at the time these events occurred, are investigated. A significant increase in the level of the AE index was observed after the occurrence of these events.  相似文献   

4.
Magnetic storms and substorms are principalprocesses of energy transition from the solar wind intothe magnetosphere-ionosphere system and dissipationin the system. They are also important events whichthe space physics study and space weather predictionhave been focused on. Magnetic storms are describedby means of the magnetic index Dst, which is calcu-lated using the magnetic disturbances of horizontalcomponent recorded at 5 low-latitudinal stations, rep-resenting approximately the symmetric r…  相似文献   

5.
亚暴期间极光电集流带的变化   总被引:3,自引:1,他引:2       下载免费PDF全文
极光活动加剧和极光电集流增强是磁层-电离层能量耦合的两种重要表现形式,它们同为磁层带电粒子向电离层沉降的结果,但是变化规律却非常不同.本文用地基磁场资料,反演极区等效电流体系,研究地磁平静期和扰动期极光电集流带的运动特点.研究表明,Harang间断把极光电集流带分为两段:下午—黄昏段的东向电集流带较弱,而晨侧和子夜—凌晨段的西向电集流带较强.在亚暴膨胀相,随着AE指数增大,整个极光卵向赤道扩展,而极光电集流带却表现出分段差异的特点:下午—黄昏东向电集流带向低纬移动,晨侧西向电集流带也向赤道移动,而子夜—凌晨西向电集流带则向极移动.电动力学分析表明,在不同地方时段,控制电流的主要因素不同,因而,电流及其磁扰有不同的特点:下午—黄昏东向电集流和晨侧西向电集流组成了DP2电流体系,主要受控于磁层对流电场,反映了“驱动过程”的行为;而子夜—凌晨西向电集流是DP1电流体系的基本部分,主要受控于电导率,反映了“卸载过程”的特点.  相似文献   

6.
Studia Geophysica et Geodaetica - Ground and space-based geomagnetic data were used in the investigation of the longitudinal, seasonal and lunar phase dependence of the equatorial counter...  相似文献   

7.
电离层对流和极光区电集流的地磁链观测   总被引:2,自引:0,他引:2       下载免费PDF全文
本文采用31个高纬地磁台站资料考察1997年5月15日一次中等磁暴期间极光区电集流和电离层对流的空间分布和时间变化;其中20站处于纬度60°N~80°N之间的西半球,而另11站是偶极磁经度约为120°E的欧洲IMAGE地磁站链.对此纬度链和经度链上各站1-min精度地磁资料的综合分析结果表明,极光区电集流中心的相对强度及其纬度位置是随世界时和地方时区不断变化的.电集流中心所处位置的变化可能是其中心的南北移动造成的,也可能是中心带与磁纬圈间的相互倾斜所致.另一方面,电离层对流形态和晨昏对流圈的经向跨度及其两端的位置是基本不变的.有关结论得到同期的非相干散射雷达EISCAT观测的证实和补充.  相似文献   

8.
Seasonal variations in the auroral E-region neutral wind for different solar activity periods are studied. This work is based on neutral wind data obtained over 56 days between 95–119 km altitude under geomagnetic quiet conditions (Ap<16) during one solar cycle by the European Incoherent Scatter radar located in northern Scandinavia. In general, the meridional mean wind shifts northward, and the zonal mean wind increases in eastward amplitude from winter to summer. The zonal mean wind blows eastward in the middle and lower E-region for each season and for each solar condition except for the equinox, where the zonal mean wind blows westward at and below 104 km. Solar activity dependence of the mean wind exists during the winter and equinox seasons, while in summer it is less prominent. Under high solar activity conditions, the altitude profiles of the horizontal mean winds in winter and the equinoxes tend to resemble those in summer. The horizontal diurnal tide is less sensitive to solar activity except during summer when the meridional amplitude increases by ∼10 m s−1 and the corresponding phase shifts to a later time period (1–2 h) during high solar activity. Seasonal dependence of the semidiurnal tide is complex, but is found to vary with solar activity. Under low solar activity conditions the horizontal semidiurnal amplitude shows seasonal dependence except at upper E-region heights, while under high solar activity conditions it becomes less sensitive to seasonal effects (except for the meridional component above 107 km). Comparisons of mean winds with LF and UARS observations are made, and the driving forces for the horizontal mean winds are discussed for various conditions.  相似文献   

9.
The data of the DMSP F7 spacecraft are used for studying the influence of the geomagnetic dipole tilt angle on the latitudinal position of auroral precipitation boundaries in the nighttime (2100–2400 MLT) and daytime (0900–1200 MLT) sectors. It is shown that, in the nighttime sector, the high-latitude zone of soft diffuse precipitation (SDP) and the boundary of the polar cap (PC) at all levels of geomagnetic activity are located at higher and lower latitudes relative to the equinox period in winter and summer, respectively. The position of boundaries of the diffuse auroral precipitation zone (DAZ) located equatorward from the auroral oval does not depend on the season. In the daytime sector, the inverse picture is observed: the SDP precipitation zone takes the most low-latitude and high-latitude positions in the winter and summer periods, respectively. The total value of the displacements from winter to summer of both the nighttime and daytime boundaries of the PC is ∼2.5°. A diurnal wave in the latitudinal position of the nighttime precipitation boundaries is detected. The wave is most pronounced in the periods of the winter and fall seasons, is much weaker in the spring period, and is almost absent in summer. The diurnal variations of the position of the boundaries are quasi-sinusoidal oscillations with the latitude maximum and minimum at 0300–0500 and 1700–2100 UT, respectively. The total value of the diurnal displacement of the boundaries is ∼2.5° of latitude. The results obtained show that, undergoing seasonal and diurnal variations, the polar cap is shifted as a whole in the direction opposite to the changes in the tilt angle of the geomagnetic dipole. The seasonal displacements of the polar cap and its diurnal variations in the winter period occur without any substantial changes in its area.  相似文献   

10.
Daily variations in the intensities of atmospherics at 600 Hz and 6 kHz detected at the Lovozero observatory from June to December 2012 were studied. Under quiet geomagnetic conditions, daily variations of atmospherics are shown to be determined by both the waveguide parameters of the Earth’s ionosphere and the activity of storm centers. In summer, a broad daytime maximum of atmospherics flow N hr (the number of atmospherics per hour) is detected most likely due to the lightning activity in mid-latitude regions that are nearer to the observatory than the global storm centers. The daily variations in atmospherics mean amplitudes per hour A hr differ appreciably from the daily variations N hr, reflecting largely the changes in lighting conditions along signal propagation paths. The distribution function of the levels of atmospherics can be approximated by the following formula taken from publications: P(X) = [1 + (X/X 50) k ]?1, where k is a parameter that changes from 2.2 to 3.2 at f = 600 Hz and from 1.5 to 2 at f = 6 kHz under quiet geomagnetic conditions.  相似文献   

11.
为研究极光电集流地磁纬度分布特征,利用北半球SME台站提供的极光电集流指数,通过时序叠加的方法,分析98-07年极光电集流中心地磁纬度随季节和世界时的分布特征.通过对磁扰程度的分级,分析极光电集流地磁纬度随地磁扰动程度的变化特征.结果表明:1)由于SME台站覆盖范围更广,更多地记录到最大的极光电集流强度,有利于研究极光电集流的变化特征;2)西向板光电集流纬度分布存在与强度相反的季节性变化特征,在春秋出现最低值,冬季、夏季出现最高值;3)在| SML|<2000 nT时,西向极光电集流地磁纬度随着极光电集流强度的增强,近似以线性关系向低纬迁移.随后伴随SML的进一步增强,西向极光极光电集流中心地磁纬度仍有向低纬迁移的趋势,但主要是在磁纬62°N-63°N之间波动.  相似文献   

12.
As a rule, bright auroral arcs evolve near the poleward boundary of the auroral oval at the growth phase of a substorm, a phenomenon that is known to occur near the poleward edge of the auroral oval. The closeness of these arcs to the projection of the magnetic separatrix on the night side suggests that their generation is related to magnetic reconnection in the magnetospheric tail in a particular way. In this study this suggestion is confirmed by the fact that integral brightness of the auroral oval at the poleward edge correlates with magnetic field structures in the solar wind that are observed by ACE and Wind satellites at distances of 50–300 RE upstream and are shifted towards the magnetospheric tail with time delays of ~ 10–80 min, consistent with measurements of the solar wind velocity. About 50 examples of this correlation have been found. The possible physical mechanisms of the effect observed are discussed.  相似文献   

13.
A statistical analysis of F-region and topside auroral ion upflow events is presented. The study is based on observations from EISCAT Common Programmes (CP) 1 and 2 made between 1984 and 1996, and Common Programme 7 observations taken between 1990 and 1995. The occurrence frequency of ion upflow events (IUEs) is examined over the altitude range 200 to 500 km, using field-aligned observations from CP-1 and CP-2. The study is extended in altitude with vertical measurements from CP-7. Ion upflow events were identified by consideration of both velocity and flux, with threshold values of 100 m s–1 and 1013 m–2 s–1, respectively. The frequency of occurrence of IUEs is seen to increase with increasing altitude. Further analysis of the field-aligned observations reveals that the number and nature of ion upflow events vary diurnally and with season and solar activity. In particular, the diurnal distribution of upflows is strongly dependent on solar cycle. Furthermore, events identified by the velocity selection criterion dominate at solar minimum, whilst events identified by the upward field-aligned flux criterion dominated at solar maximum. The study also provides a quantitative estimate of the proportion of upflows that are associated with enhanced plasma temperature. Between 50 and 60% of upflows are simultaneous with enhanced ion temperature, and approximately 80% of events are associated with either increased F-region ion or electron temperatures.  相似文献   

14.
地磁太阳黑子周变化起源的讨论   总被引:1,自引:1,他引:1  
为了避开60年代末和70年代末Jerk(H)、Jerk(Z)的影响,分析了1979~1998年西欧4个台和1979~1999年亚洲东部6个台的H、Z资料,结果表明各台间H(或X)分量的太阳黑子周变化一致性较好.但Z分量的太阳黑子周变化显示出非常特别的现象,Z变化的相位随台站经度变化而变化,东亚地区的Z变化几乎与西欧地区的变化反向.因此,东亚地区的Z变化与H变化的关系不符合P01模式的假设,外源场之说似乎不能解释.  相似文献   

15.
Summary Results of sunspot cycle influence on solar and lunar ranges at a low latitude station, Alibag, outside the equatorial electrojet belt, show that the sunspot cycle association in solar ranges is three times that of the lunar ranges in thed- andj-seasons. This is in general agreement with the earlier results for non-polar latitude stations. The association with sunspot number of individual lunar amplitudes is greatest for lunar semidiurnal harmonic in thej-season. During this season, the sunspot cycle influence on lunar variations is more than that on solar variations, thereby indicating that the lunar current is situated at a level more favourable for sunspot cycle influence than the level of the current associated with solar variations. With the increase in solar activity a shift appears in the times of maxima of semidiurnal lunar variation towards a later lunar hour ine- andj-seasons and in the year.  相似文献   

16.
The relationships between a number of the main characteristic parameters of the cycle—amplitude, half-width, and growth phase duration—and the approximation parameters, which make it possible to estimate the average behavior of 11-year activity, have been derived based on the obtained analytical representations of the regularities in the solar activity variations during the cycle. Quasibiennial variations proceeding against a background of the cycle are distinctly associated with the solar magnetic field structure and the structure representation variations in the corona and in the flux of the solar neutrino radiation. This makes it possible to state that all these processes are parts of the common physical mechanism of solar variability.  相似文献   

17.
The geomagnetic and auroral response to the variations in the solar wind dynamic pressure (Pd) are investigated in the periods of positive values of the IMF B z component. It is shown that the growth of Pd results in the intensification of luminosity along the auroral oval and in the poleward expansion of the poleward boundary of luminosity (PBL) in the nightside part of the oval by ~7° in latitude at a velocity of ~0.5 km/s and is accompanied by an enhancement of the DP2-type current system. A decrease in Pd, accompanied by an abrupt reversal of the IMF B y polarity from positive to negative, results in an enhancement of the westward electrojet and in a poleward shift of PBL and electrojet center. The conclusion has been made that the available three types of auroral response to Pd variations differ in the azimuthal velocity of the luminosity region or particle precipitation along the auroral oval: V 1 ~ 30–40 km/s, V 2 ~ 10, and V 3 ~ 1 km/s.  相似文献   

18.
从太平洋4台的分析显示,APIA,GUAM和PAMATAI台Z分量的太阳黑子周变化与HONOLULU台的相位相反。可是,CANBERRA台的变化又和HONOLULU台同相。这种表现复杂的地方性差异,更反映出太阳黑子周变化源于外场之说的有问题的。  相似文献   

19.
The seasonal dependences of the response of the hydroxyl ((6–2) band) and molecular oxygen O2(b 1Σ g + ) ((0–1) band) emission intensities, temperature, and density indicator in the region of the hydroxyl emission maximum (87 km) to solar activity have been obtained based on the spectral observations of the mesopause emissions at Zvenigorod observatory during 2000–2007. The ratio of the OH (7–3) and (9–4) band intensities, characterizing the behavior of the vibrational temperature, has been used as an indicator of density. It has been established that the response of the studied mesopause characteristics to solar activity is positive in all seasons. In winter the response is maximal in the intensities and temperature and is minimal in the density indicator. The main mechanisms by which solar activity affects the mesopause characteristics have been considered. The behavior of the internal gravity waves with periods of 0.33–7 h depending on solar activity has been studied. It has been noted that these waves become more active at a minimum of the 11-year solar cycle.  相似文献   

20.
In solar cycles 22–23, all solar indices showed maxima near 1990 and 2000 and minima in 1996. The maximum to minimum variation was only 1–2% in the UV range 240–350 nm. Dobson ozone intensities did not show any clear relationship with solar cycle and ozone variations were less than 10%. The UV-B (295–325 nm) observed at ground by Brewer spectrophotometers at some locations had variations of 50–100% for 295–300 nm, and 20–50% for 305–325 nm. The maxima were in different years at different locations (even with separations of only 300 km), did not match with the solar cycle, and were far too large to be explained on the basis of ozone changes (1% decrease of ozone is expected to cause 2% increase of UV-B). Thus, if the data are not bad, the UV-B changes do not match with solar activity or ozone changes and must be mostly due to other local effects (clouds, etc.?). When data are averaged over wide geographical regions, UV-B variation ranges are smaller (10–20%, probably because localised, highly varying cloud effects get filtered out), and are roughly as expected from ozone variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号