首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geomagnetic storm effects at low latitudes   总被引:1,自引:0,他引:1  
The geomagnetic horizontal (H) field from the chain of nine observatories in India are used to study the storm-time and disturbance daily variations. The peak decrease in storm-time variation in H showed significant enhancements at the equatorial electrojet stations over and above the normally expected decrease due to the ring current effects corrected for geomagnetic latitudes. The disturbance daily variation of H at equatorial stations showed a large decrease around midday hours over and above the usual dawn-maximum and dusk-minimum seen at any mid-latitude stations around the world. These slow and persistent additional decreases of H of disturbance daily variation at equatorial latitudes could be the effect of a westward electric field due to the Disturbance Ionospheric dynamo coupled with abnormally large electrical conductivities in the E region over the equator.  相似文献   

2.
A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V × Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.  相似文献   

3.
对流电场、场向电流和极光区电集流是磁层一电离层耦合的主要物理过程.它们的演化发展时间分别为几分钟至半小时的量级.本文用100°E和300°E的两个地磁经度链附近各11个台站的1min均值地磁H和Z分量资料,分析了1994年4月16-17日磁暴期间磁层耦合过程对极光区和中低纬区电离层扰动的地磁特征.强磁暴开始时,台站所处的地方时位置不同,则观测到的电离层和地磁响应也完全不同.这是磁层对流和一、二区场向电流共同作用的结果.一般说,扰时极光区的西向电集流变化更为强烈.随着耦合的发展,极光区范围会向南北扩展,电集流中心带则向低纬侧移动.在中低纬区,二区场向电流的建立能屏蔽一区场向电流所产生的扰动,并引起反向的电流及地磁变化.由此,中低纬区夜间有可能出现短时间的东向电场,又可通过EXB的垂直向上漂移作用抬升F层等离子体,并发生同一经度链附近的多站电离层h'F同时突增现象.另一方面,磁赤道附近的台站则更多地受内磁层赤道环电流和电离层赤道电集流的影响.  相似文献   

4.
Huancayo is the only equatorial electrojet station where the daytime increase of horizontal geomagnetic field (H) is associated with a simultaneous increase of eastward geomagnetic field (Y). It is shown that during the counter electrojet period when H is negative, Y also becomes negative. Thus, the diurnal variation of Y at equatorial latitudes is suggested to be a constituent part of the equatorial electrojet current system. Solar flares are known to increase the H field at an equatorial station during normal electrojet conditions (nej). At Huancayo, situated north of the magnetic equator, the solar flare effect, during nej, consists of positive impulses in H and Y and negative impulse in Z field. During counter electrojet periods (cej), a solar flare produces a negative impulse in H and Y and a positive impulse in Z at Huancayo. It is concluded that both the zonal and meridional components of the equatorial electrojet in American longitudes, as in Indian longitudes, flows in the same, E region of the ionosphere.  相似文献   

5.
The study describes the time and space morphologies of a rather new type of counter electrojet event on the basis of data from the excellent chain of magnetic and ionospheric observatories along the Indo-Russian longitude sector. Abnormally large westward currents are observed during almost the whole of the daytime hours on a series of days. These events do not form any vortices in the current system and do not apparently seem to be associated with tidal effects or any solar magnetosphere events or geomagnetic disturbances. The existence of a westward electric field over the equatorial ionosphere has been confirmed by the absence of an equatorial type of sporadic E in the ionograms at Thumba precisely during the periods when H at Trivandrum minus H at Alibag is negative. The equatorial F region anomaly was also absent on the counter electrojet day. Such counter electrojet events during the northern winter months of low solar activity years are suggested to be the result of the modified wind system in the ionosphere associated with stratospheric warming events.  相似文献   

6.
Between 100 and 120 km height at the Earth's magnetic equator, the equatorial electrojet (EEJ) flows as an enhanced eastward current in the daytime E region ionosphere, which can induce a magnetic perturbation on the ground. Calculating the difference between the horizontal components of magnetic perturbation (H) at magnetometers near the equator and about 6–9° away from the equator, ΔH, provides us with information about the strength of the EEJ. The NCAR Thermosphere–Ionosphere–Electrodynamics General Circulation Model (TIE-GCM) is capable of simulating the EEJ current and its magnetic perturbation on the ground. The simulated diurnal, seasonal (March equinox, June solstice, December solstice), and solar activity (F10.7=80, 140 and 200 units) variations of ΔH in the Peruvian (76°W) and Philippine (121°E) sectors, and the relation of ΔH to the ionospheric vertical drift velocity, are presented in this paper. Results show the diurnal, seasonal and solar activity variations are captured well by the model. Agreements between simulated and observed magnitudes of ΔH and its linear relationship to vertical drift are improved by modifying the standard daytime E region photoionization in the TIE-GCM in order to better simulate observed E region electron densities.  相似文献   

7.
本文利用我国琼中、广州、泉州三站1982-1983年地磁Z分量资料,对磁暴主相发展及恢复相初期的赤道电急流变化进行了研究。形态分析、周期叠加和相关分析均表明,不论在何地方时,对应环电流的发展有△Z的负扰(附加东向电急流);而Dst开始回升则有△Z的正扰(附加西向电急流)。该变化之大小可能受地方时的调制。方差分析、x2-分析等统计检验也认证了上述变化。文中还对△Z正、负扰与极区电急流及极尖区位置的高、低纬向移动进行了讨论。本文结果表明,分析扰日赤道电急流变化应区分磁暴的不同阶段,即区分电动耦合和动力耦合效应。今后应采用大范围台站网资料,进一步得出有关电流系的图象。  相似文献   

8.
Geomagnetic storm-time variations often occur coherently at high latitude and the day-side dip equator where they affect the normal eastward Sq field. This paper presents an analysis of ground magnetic field and ionospheric electrodynamic data related to the geomagnetic storm which occured on 27 May 1993 during the International Equatorial Electrojet Year (IEEY) experiment. This storm-signature analysis on the auroral, mid-latitude and equatorial ground field and ionospheric electrodynamic data leads to the identification of a sensitive response of the equatorial electrojet (EEJ) to large-scale auroral return current: this response consists in a change of the eastward electric field during the pre-sunrise hours (0400–0600 UT) coherently to the high-, mid-, and equatorial-latitude H decrease and the disappearance of the EEJ irregularities between the time-interval 0800–0950 UT. Subsequent to the change in hF during pre-sunrise hours, the observed foF2 increase revealed an enhancement of the equatorial ionization anomaly (EIA) caused by the high-latitude penetrating electric field. The strengthening of these irregularities attested by the Doppler frequency increase tracks the H component at the equator which undergoes a rapid increase around 0800 UT. The H variations observed at the equator are the sum of the following components: SR, DP, DR, DCF and DT.  相似文献   

9.
In the framework of the French-Ivorian participation to the IEEY, a network of 10 electromagnetic stations were installed at African longitudes. The aim of this experiment was twofold: firstly, to study the magnetic signature of the equatorial electrojet on the one hand, and secondly, to characterize the induced electric field variations on the other hand. The first results of the magnetic field investigations were presented by Doumouya and coworkers. Those of the electric field experiment will be discussed in this study. The electromagnetic experiment will be described. The analysis of the electromagnetic transient variations was conducted in accordance with the classical distinction between quiet and disturbed magnetic situations. A morphological analysis of the recordings is given, taking into consideration successively quiet and disturbed magnetic situations, with the results interpreted in terms of the characterization of external and internal sources. Particular attention was paid to the effects of the source characteristics on the induced field of internal origin, and to the bias they may consequently cause to the results of electromagnetic probing of the Earth; the source effect in electromagnetic induction studies. During quiet magnetic situations, our results demonstrated the existence of two different sources. One of these, the SRE source, was responsible for most of the magnetic diurnal variation and corresponded to the well-known magnetic signature of the equatorial electrojet. The other source (the SR*E source) was responsible for most of the electric diurnal variation, and was also likely to be an ionospheric source. Electric and magnetic diurnal variations are therefore related to different ionospheric sources, and interpreting the electric diurnal variation as induced by the magnetic field diurnal variation is not relevant. Furthermore, the magnetotelluric probing of the upper mantle at dip equator latitudes with the electromagnetic diurnal variation is consequently impossible to perform. In the case of irregular variations, the source effect related to the equatorial electrojet is also discussed. A Gaussian model of equatorial electrojet was considered, and apparent resistivities were computed for two models of stratified Earth corresponding to the average resistive structure of the two tectonic provinces crossed by the profile: a sedimentary basin and a cratonic shield. The apparent resistivity curves were found to depend significantly on both the model used and the distance to the center of the electrojet. These numerical results confirm the existence of a daytime source effect related to the equatorial electrojet. Furthermore, we show that the results account for the observed differences between daytime and night-time apparent resistivity curves. In particular, it was shown that electromagnetic probing of the Earth using the classical Cagniard-Tikhonov magnetotelluric method is impossible with daytime recordings made at dip latitude stations.  相似文献   

10.
This study presents the results of the comparison of B0, B1 and hmF2 with ΔH. B0 and B1 are parameters used in the international reference ionosphere model for the calculation of the F region bottom side profiles. The parameter ΔH obtained from the magnetic data recorded during the International Equatorial Electrojet Year (IEEY) in West Africa is used to describe the strength of the equatorial electrojet. This work covers the years 1993 and 1994, two years of low and moderate solar activity. The result shows that the electric field (E), which drives the equatorial electrojet, plays a major role in the variation of the thickness and the height of the F2 layer. However, the variation of the shape of the bottomside F2 is not sensitive to the electric field.  相似文献   

11.
The relationship between the ground-based inferred vertical E × B drifts, Vz, and the magnetic equatorial electrojet current during the year of solar minima was presented. Both the diurnal and seasonal Vz variations are positively directed during the daytime and negative at nighttime. The evening time pre-reversal enhancement occurs around 19:00 LT. The fairly strong linear relationship between the electrojet current strength and Vz exhibited higher correlations during the daytime (06:00–16:00 LT). The maximum morning time proxy parameter described by E = [dH ILR)/dt]max in the morning hours, indicating the east-west electric field in the EEJ, corresponds reasonably well with the E × B drift and, hence, can be used as a proxy parameter for representing Vz in the morning hours. The daytime EEJ magnitude seasonal changes are connected with a change in conductivity emerging from the action of turbulence and divergence of momentum flux. These waves above the dynamo region are suggested to lead to partial counter electrojet during the equinoctial months.  相似文献   

12.
Three-dimensional structures of the ionospheric dynamo currents are examined using the neutral winds in a general circulation model of the middle atmosphere at Kyushu University. A quasi-three-dimensional ionospheric dynamo model is constructed assuming an infinite parallel conductivity in the ionosphere. This model is able to simulate both the equatorial electrojet and the global Sq current system successfully. The simulated results reveal that the equatorial electrojet is confined in quite narrow latitudes around the equator accompanied with meridional current circulations and satisfies a non-divergent structure mainly within the E region. A vertically stratified double layered structure is seen in the east–west current density near the focus latitude of the global Sq current system. It is shown that the stratified structure mainly consists of the east–west Hall current associated with the eastward wind of zonal wavenumbers 1 and 2 in the lower altitudes and the westward wind of zonal wavenumber 2 in the upper altitudes. The day-to-day variation of the neutral winds can significantly vary the induced ionospheric dynamo current system, which is recognized as changes of the focus latitude and/or the maximum value of the equatorial electrojet.  相似文献   

13.
The equatorial ionosphere responses over Brazil to two intense magnetic storms that occurred during 2001 are investigated. The equatorial ionization anomaly (EIA) and variations in the zonal electric field and meridional winds at different storms phases are studied using data collected by digisondes and GPS receivers. The difference between the F layer peak density (foF2) at an equatorial and a low latitude sites was used to quantify the EIA; while the difference between the true heights (hF) at the equatorial and an off-equatorial site was used to calculate the magnetic meridional winds. The vertical drift was calculated as dhF/dt. The results show prompt penetration electric fields causing unusual early morning development of the EIA, and disturbed dynamo electric field producing significant modification in the F region parameters. Variations to different degrees in the vertical drift, the thermospheric meridional winds and the EIA developments were observed depending on the storm phases.  相似文献   

14.
The work describes an intensive study of storm sudden commencement (SSC) impulses in horizontal (H), eastward (Y) and vertical (Z) fields at four Indian geomagnetic observatories between 1958–1992. The midday maximum of δH has been shown to exist even at the low-latitude station Alibag which is outside the equatorial electrojet belt, suggesting that SSC is associated with an eastward electric field at equatorial and low latitudes. The impulses in Y field are shown to be linearly and inversely related to δH at Annamalainagar and Alibag. The average SC disturbance vector is shown to be about 10–20°W of the geomagnetic meridian. The local time variation of the angle is more westerly during dusk hours in summer and around dawn in the winter months. This clearly suggests an effect of the orientation of shock front plane of the solar plasma with respect to the geomagnetic meridian. The δZ at δC have a positive impulse as in δH. The ratio of δZ/δH are abnormally large exceeding 1.0 in most of the cases at Trivandrum. The latitudinal variation of δZ shows a tendency towards a minimum over the equator during the nighttime hours. These effects are explained as (1) resulting from the electromagnetic induction effects due to the equatorial electrojet current in the subsurface conducting layers between India and Sri Lanka, due to channelling of ocean currents through the Palk Strait and (2) due to the concentration of induced currents over extended latitude zones towards the conducting graben between India and Sri Lanka just south of Trivandrum.  相似文献   

15.
Analysis of two strong sun-aligned arcs over the Canadian Eureka Observatory (89° CGM) near the north magnetic pole and accompanying related ground magnetometer measurements has identified an electrojet current of ∼1×104 A flowing within the arcs in a sunward direction. The electrojet current was carried by low energy electrons created by impacting precipitation drifting at E×B/B2 velocity within the arcs, where E is the dawn-to-dusk electric field. One of the arcs moved rapidly in a dawn to dusk direction. The measured arc velocity was 365 m/s. This agrees well with the velocity of 380 m/s inferred from the magnetic field signature of the electrojet current. This study suggests that such an electrojet is present whenever a polar arc is set up. However, a few conditions are required to observe clear ground magnetic signatures of the electrojet: (1) quiet local magnetic conditions; (2) a single sun aligned arc near or moving across zenith; and (3) arc excitation by ≥1 keV electrons.  相似文献   

16.
Results from coordinated measurements of OI 630.0 nm dayglow intensities (centered on ∼220 km altitude), along with VHF (50 MHz) coherent backscatter returns from Thiruvananthapuram, a dip equatorial station in India, revealed that the temporal variability at short periods (<4 h) of the Doppler frequency of the coherently backscattered 50 MHz radar signal in the electrojet region (∼101 km altitude) preceded the dayglow variations. The time delay was found to be inversely related to the electric field magnitude inferred from the Doppler frequency and also with the independently estimated electrojet strength inferred from the ground magnetic data. These results are presented as direct evidence for the prevailing electrodynamic coupling between the E- and F-region of the ionosphere over the dip equator.  相似文献   

17.
During five intense geomagnetic storms with main phases occurring around local dusk sector, equatorial ionosonde and electrojet data, VHF/UHF scintillation data of Calcutta, and several solar wind parameters are investigated to ascertain the polarity of prompt penetration electric field (PPEF). Abrupt increases in AE, ASY-H and/or sharp decreases in Dst/SYM-H with strong southward IMF Bz may symbolize eastward PPEF to equatorial latitude leading to evolution of density irregularities if the period is associated with arrival and sustenance of large magnetospheric shock compression. On the contrary, westward PPEF is more feasible if the shock reduces suddenly or fluctuates with small values.  相似文献   

18.
A 54.95-MHz coherent backscatter radar, an ionosonde and the magnetometer located at Trivandrum in India (8.5○N, 77○E, 0.5○N dip angle) recorded large-amplitude ionospheric fluctuations and magnetic field fluctuations associated with a Pc5 micropulsation event, which occurred during an intense magnetic storm on 24 March 1991 (Ap=161). Simultaneous 100-nT-level fluctuations are also observed in the H-component at Brorfelde, Denmark (55.6○N gm) and at Narsarsuaq, Greenland (70.6○N gm). Our study of the above observations shows that the E-W electric field fluctuations in the E- and F-regions and the magnetic field fluctuations at Thumba are dominated by a near-sinusoidal oscillation of 10 min during 1730–1900 IST (1200-1330 UT), the amplitude of the electric field oscillation in the equatorial electrojet (EEJ) is 0.1-0.25 mV m−1 and it increases with height, while it is about 1.0 mV m−1 in the F-region, the ground-level H-component oscillation can be accounted for by the ionospheric current oscillation generated by the observed electric field oscillation in the EEJ and the H-component oscillations at Trivandrum and Brorfelde are in phase with each other. The observations are interpreted in terms of a compressional cavity mode resonance in the inner magnetosphere and the associated ionospheric electric field penetrating from high latitudes to the magnetic equator.  相似文献   

19.
Magnetic storms and substorms are principalprocesses of energy transition from the solar wind intothe magnetosphere-ionosphere system and dissipationin the system. They are also important events whichthe space physics study and space weather predictionhave been focused on. Magnetic storms are describedby means of the magnetic index Dst, which is calcu-lated using the magnetic disturbances of horizontalcomponent recorded at 5 low-latitudinal stations, rep-resenting approximately the symmetric r…  相似文献   

20.
We performed an analysis of mean daily variations in the ΔEz atmospheric electric field at the Hornsund (located near the polar cap boundary) and Kakioka (located at near-equatorial latitudes) observatories under magnetically quiet and weakly disturbed conditions. At both observatories, the mean daily variations in ΔEz were found to be mainly controlled by the location of the observation point with respect to the focuses of the convective vortices of the DP 0 system. The substorm evolution in the nightside of the magnetosphere (a sharp burst in the AE index) was shown to lead to negative variations in ΔEz in the dayside sector at polar latitudes (the Hornsund observatory) and positive deviations in ΔEz at premidnight time at equatorial latitudes (the Kakioka observatory). It is concluded that variations in ΔEz at the Kakioka observatory are largely controlled by the equatorial electrojet, which is maximal during day-time hours, and at the Hornsund observatory these variations are controlled by the auroral electrojet, which is maximal at night-time and early morning hours of local time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号