首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article discusses the interstellar extinction curve in the visible and the value of the ratio of absolute to selective extinction RV = AV/E (BV). It is concluded that the visible extinction curve is likely to be linear in the visible and that indirect estimates of RV from tentative determinations of AV or from infrared and UV observations are questionable. There is currently no evidence of any variation of RV with direction. If RV is close to 3, as it has been inferred from mid‐infrared data, starlight in the visible is extinguished by a factor F /F0 = (2.5 e–2μm/λ)E (BV). But if the visible wavelength range alone is considered, 4 appears as its most natural and probable value and F /F0 = e–2E (BV)/λ (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The 2200 Å bump is a major figure of interstellar extinction. However, extinction curves with no bump exist and are, with no exception, linear from the near‐infrared down to 2500 Å at least, often over all the visible‐UV spectrum. The duality linear versus bump‐like extinction curves can be used to re‐investigate the relationship between the bump and the continuum of interstellar extinction, and answer questions as why do we observe two different kinds of extinction (linear or with a bump) in interstellar clouds? How are they related? How does the existence of two different extinction laws fits with the requirement that extinction curves depend exclusively on the reddening E (BV) and on a single additional parameter? What is this free parameter? It will be found that (1) interstellar dust models, which suppose the existence of three different types of particles, each contributing to the extinction in a specific wavelength range, fail to account for the observations; (2) the 2200 Å bump is very unlikely to be absorption by some yet unidentified molecule; (3) the true law of interstellar extinction must be linear from the visible to the far‐UV, and is the same for all directions including other galaxies (as the Magellanic Clouds). In extinction curves with a bump the excess of starlight (or the lack of extinction) observed at wavelengths less than λ = 4000 Å arises from a large contribution of light scattered by hydrogen on the line of sight. Although counter‐intuitive this contribution is predicted by theory. The free parameter of interstellar extinction is related to distances between the observer, the cloud on the line of sight, and the star behind it (the parameter is likely to be the ratio of the distances from the cloud to the star and to the observer). The continuum of the extinction curve and the bump contain no information on the chemical composition of interstellar clouds. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We have mapped 16 molecular clouds toward a new OB association in the Pup-CMa region to derive their physical properties. The observations were carried out in the 12CO (J = 1 – 0) line with the Southern millimetre-wave Telescope at Cerro Tololo, Chile. Distances have been determined kinematically using the rotation curve of Brand with R = 8.5 kpc and V = 220 km/s. Masses have been derived adopting a CO luminosity to H2 conversion factor X = 3.8 . 1020 molecules cm-2 (K km/s)-1. The observed mean radial velocity of the clouds is comparable with the mean radial velocity of stars composing an OB association in Pup-CMa; it is in favor of the close connection of clouds with these stars. __________ Published in Astrofizika, Vol. 48, No. 4, pp. 491–501 (October–December, 2005).  相似文献   

4.
The spectral energy distributions between λ 3700 Å and λ 8100 Å of the binary systems COU1289 and COU1291 have been measured with the Carl‐Zeiss‐Jena 1 m telescope of the Special Astrophysical Observatory. Their B, V, R magnitudes and BV colour indices were computed and compared with earlier investigations. Model atmospheres of both systems were constructed using a grid of Kurucz blanketed models, their spectral energy distributions in the continuous spectrum were computed and compared with the observational ones. The model atmosphere parameters for the components of COU1289 were derived as: T aeff = 7100 K, T beff = 6300 K, log g a = 4.22, log g b = 4.22, R a = 1.50 R, R b = 1.40 R, and for the components of COU1291 as: T aeff = 6400 K, T beff = 6100 K, log g a = 4.20, log g b = 4.35, R a = 1.47 R, R b = 1.12 R. The spectral types of both components of the system COU1289 were concluded as F1 and F7, and of the system COU1291 as F6 and F9. Finally the formation and evolution of the systems were discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The kinematics and distribution of classical Cepheids within ∼3 kpc from the Sun suggest the existence of the outer ring R1R2 in the Galaxy. The optimum value of the solar position angle with respect to the major axis of the bar, θb, providing the best agreement between the distribution of Cepheids and model particles, is θb = 37° ±13°. The kinematical features obtained for Cepheids with negative galactocentric radial velocity VR are consistent with the solar location near the descending segment of the outer ring R2. The sharp rise of extinction toward of the Galactic center can be explained by the presence of the outer ring R1 near the Sun. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We present the results based on multiwavelength imaging observations of the prominent dust lane starburst galaxy NGC 1482 aimed to investigate the extinction properties of dust existing in the extreme environment. (B-V) colour-index map derived for the starburst galaxy NGC 1482 confirms two prominent dust lanes running along its optical major axis and are found to extend up to ∼11 kpc. In addition to the main lanes, several filamentary structures of dust originating from the central starburst are also evident. Though, the dust is surrounded by exotic environment, the average extinction curve derived for this target galaxy is compatible with the Galactic curve, with RV = 3.05, and imply that the dust grains responsible for the optical extinction in the target galaxy are not really different than the canonical grains in the Milky Way. Our estimate of total dust content of NGC 1482 assuming screening effect of dust is ∼2.7 × 105 M, and provide lower limit due to the fact that our method is not sensitive to the intermix component of dust. Comparison of the observed dust in the galaxy with that supplied by the SNe to the ISM, imply that this supply is not sufficient to account for the observed dust and hence point towards the origin of dust in this galaxy through a merger like event.Our multiband imaging analysis reveals a qualitative physical correspondence between the morphologies of the dust and Hα emission lines as well as diffuse X-ray emission in this galaxy. Spatially resolved spectral analysis of the hot gas along outflows exhibit a gradient in the temperature. Similar gradient was also noticed in the measured values of metallicity, indicating that the gas in the halo is not yet enriched. High resolution, 2-8 keV Chandra image reveals a pair of point sources in the nuclear region with their luminosities equal to 2.27 × 1039 erg s−1 and 9.34 × 1039 erg s−1, and are in excess of the Eddington-limit of 1.5 M accreting source. Spectral analysis of these sources exhibit an absorbed-power law with the hydrogen column density higher than that derived from the optical measurements.  相似文献   

7.
《New Astronomy》2002,7(3):117-123
For directions of sufficient reddening (E(BV)>∼0.25), there is a simple relation between the slope of the extinction curve in the far-UV and E(BV). Regardless of direction, the far-UV extinction curve is proportional to 1/λn e−2E(BV)/λ (λ in μm, n=4), in accordance with the idea that reddened stars spectra are contaminated by scattered light (Zagury, 2001b).This relation is not compatible with the standard theory of extinction which states that far-UV and visible extinctions are due to different classes of particle. In that model the two (far-UV and visible) extinctions vary thus independently according to the proportion of each type of particle.In preceding papers I have shown that the standard theory cannot explain UV observations of nebulae, and is contradicted by the UV spectra of stars with very low reddening: for how long shall the standard theory be considered as the interpretation of the extinction curve?  相似文献   

8.
Photoelectric Vilnius photometry of the B-type stars HD 29 647 and HDE 283 809 in the direction of the Taurus molecular cloud indicates their brightness and energy distribution to be constant within 1–2%. The interstellar extinction law is determined for the star HDE 283 809 from the photometry data in the Vilnius andUBVRJHKL systems, which yield the ratioR=A V/EB-V=3.5 and grain sizes exceeding the average by approximately 10%. The interstellar extinction law for the two stars is found to be the same in the infrared, however, it is very different in the near ultraviolet. The new spectra of HDE 283 809 confirm the earlier classification and indicate an absence of emission in the hydrogen lines. The interstellar band at 443 nm is observed but its intensity is a half of what is expected forE B-V=1.61. The observed peculiarities of the energy distribution in the spectrum of HDE 283 809 apparently originate in interstellar or circumstellar dust, not in the star itself.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

9.
We present a new survey for Hα emission objects in the Circinus cloud complex and introduce an efficient photometric method for detecting Hα emission via observations in a narrow‐band filter. The observed flux is compared to a blackbody fit of the continuum. Our search strategy reveals 20 stars with strong Hα emission (EW > 10 Å), eight of them being new detections. All Hα stars display infrared excess corroborating their youth. On the other hand, the region contains a number of infrared excess objects that do not show Hα emission. Our results support the picture that accretion – as witnessed by Hα emission – is a highly variable phenomenon. Therefore, Hα surveys can only trace the temporarily active objects. In contrast, infrared excess is a more robust tracer that reveals most of the population of young stellar objects in a star forming region. Our analysis of the general stellar content of the region yields a reliable distance of 450 pc for the Circinus cloud. Moreover, we find a ratio of total‐to‐selective extinction of RV = 2.8 suggesting that smaller‐than‐normal dust grains may be present. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
New methods are applied to samples of classical cepheids in the galaxy, the Large Magellanic Cloud, and the Small Magellanic Cloud to determine the interstellar extinction law for the classical cepheids, R B:R V:R I:R J:R H:R K= 4.190:3.190:1.884:0.851:0.501:0.303, the color excesses for classical cepheids in the galaxy, E(B-V)=-0.382-0.168logP+0.766(V-I), and the color excesses for classical cepheids in the LMC and SMC, E(B-V)=-0.374-0.166logP+0.766(V-I). The dependence of the intrinsic color (B-V)0 on the metallicity of classical cepheids is discussed. The intrinsic color (V-I)0 is found to be absolutely independent of the metallicity of classical cepheids. A high precision formula is obtained for calculating the intrinsic colors of classical cepheids in the galaxy: (<B>-<V>)0=0.365(±0.011)+0.328(±0.012)logP.  相似文献   

11.
Gas to Dust Ratio (GDR) indicates the mass ratio of interstellar gas to dust. It is widely adopted that the GDR in our Galaxy is 100~150. We choose three typical star forming regions to study the GDR: the Orion molecular cloud — a massive star forming region, the Taurus molecular cloud — a low-mass star forming region, and the Polaris molecular cloud — a region with no or very few star formation activities. The mass of gas only takes account of the neutral gas, i.e. only the atomic and molecular hydrogen, because the amount of ionized gas is very small in a molecular cloud. The column density of atomic hydrogen is taken from the high-resolution and high-sensitivity all-sky survey EBHIS (Effelsberg-Bonn HI Survey). The CO J = 1 →0 line is used to trace the molecular hydrogen, since the spectral lines of molecular hydrogen which can be detected are rare. The intensity of CO J = 1 →0 line is taken from the Planck all-sky survey. The mass of dust is traced by the interstellar extinction based on the 2MASS (Two Micron All Sky Survey) photometric database in the direction of anti-Galactic center. Adopting a constant conversion coefficient from the integrated intensity of the CO line to the column density of molecular hydrogen, XCO = 2.0 × 1020 cm?2 · (K · km/s)?1, the gas to dust ratio N(H)/AV is calculated, which is 25, 38, and 55 (in units of 1020 cm?2 · mag?1) for the Orion, Taurus, and Polaris molecular clouds, respectively. These values are significantly higher than the previously obtained average value of the Galaxy. Adopting the WD01 interstellar dust model (when the V-band selective extinction ratio is RV = 3.1), the derived GDRs are 160, 243, and 354 for the Orion, Taurus, and Polaris molecular clouds, respectively, which are apparently higher than 100~150, the commonly accepted GDR of the diffuse interstellar medium. The high N(H)/AV values in the star forming regions may be explained by the growth of dust in the molecular clouds because of either the particle collision or accretion, which can lead to the reduction of extinction efficiency per unit mass in the V band, rather than the increase of the GDR itself.  相似文献   

12.
The spectra of the host galaxies of gamma‐ray bursts at low redshift generally show strong hydrogen lines of the Balmer, Paschen and Brackett series, in addition to strong nebular metal lines. In special cases the hosts can be resolved in separate star forming regions, and spatially resolved spectroscopy can be obtained. Generally, the three strongest Balmer lines are used to derive the reddening experienced by the emission lines of the host gas, assuming a Milky Way extinction curve, case B recombination and a fixed electron temperature. We demonstrate how the wide wavelength range of X‐shooter, in combination with a rigorous calibration strategy, can be used to fit explicitly for RV, Te, and AV simultaneously using a large number of H and He I recombination lines, explicitly corrected for stellar atmosphere absorption. This increases our understanding of extinction and absorption in starforming regions in GRB hosts. We use two GRB hosts as examples of the methods, outlining the advantages of using X‐shooter over other instruments (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Several previous studies in and around the Great Carina nebula (NGC 3372) have strongly indicated an abnormal interstellar extinction law with a high ratio of total to selective absorptionR. In the present study, newUBV photometric data and accurate MK spectral-types of stars in the region of the Carina OB2 association are used to show that (1) Car OB2 is a genuine stellar association located at a distance of 3.2 kpc, and (2) the interstellar extinction law seems to be normal throughout most of the region. A representative value ofR = A v/E(B – V) = 3.0 is derived for Car OB2 from the variable extinction method.Visiting Astronomer, Cerro Tololo Inter-American Observatory, operated by AURA, Inc. under contract with the National Science Foundation.  相似文献   

14.
The inner disk rotation of NGC 6946 and the Milky Way is dominated by gravity but magnetism is not negligible at radii where the rotation curve becomes flat, and indeed could become dominant at very large radii. Values of the order of 1 μG, or even less, produce a centripetal force when the absolute value of the slope of the curve [B φ , R ] (azimuthal field strength versus radius) is less than the slope of a B φ ‐profile proportional to R –1. The ∝ R –1‐profile is here called the critical profile. From the hypothesis of magnetically driven rotation curves, the following is to be expected: at large radii, a “subcritical” profile (slope flatter than R –1); at still larger radii a B φ ‐profile becoming asymptotically critical as the density becomes asymptotically vanishing. Recent observations of magnetic fields in NGC 6946 and the Milky Way are in very good agreement with these predictions. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Interstellar extinction curves obtained from the ‘extinction without standard’ method were used to constrain the dust characteristics in the mean ISM (R V = 3.1), along the lines of sight through a high latitude diffuse molecular cloud towards HD 210121 (R V = 2.1) and in a dense interstellar environment towards the cluster NGC 1977 (R V = 6.42). We have used three-component dust models comprising silicate, graphite and very small carbonaceous grains (polycyclic aromatic hydrocarbons) following the grain size distributions introduced by Li & Draine in 2001. It is shown that oxygen, carbon and silicon abundances derived from our models are closer with the available elemental abundances for the dust grains in the ISM if F & G type stars atmospheric abundances are taken for the ISM than the solar. The importance of very small grains in modelling the variation of interstellar extinction curves has been investigated. Grain size distributions and elemental abundances locked up in dust are studied and compared at different interstellar environments using these three extinction curves. We present the albedo and the scattering asymmetry parameter evaluated from optical to extreme-UV wavelengths for the proposed dust models.  相似文献   

16.
With the 13.7 m millimeter wave telescope of Purple Mountain Observatory at Qinghai Station, the simultaneous mapping observations at the 12CO(J=1-0), 13CO(J=1-0) and C18O(J=1-0) lines were performed towards the 24 Galactic high-mass star-forming cores, which are associated with water masers and have available Spitzer's infrared data. The average mapping range was 8′ × 8′. The C18O line emission was detected in all the cores, in which 11 cores were observed to the half maximum of their C18O integrated intensities and the rather extended (5′ − 8′) C18O maps were obtained, while the others were failed to make such a large scale mapping because of the low SNR or the intrinsically extended morphology of the cores. On the 11 completely mapped dense cores, we analyzed their characteristics and made the statistics and comparisons on the integrated intensity ratios between 12CO and 13CO (R12/13), 13CO and C18O(R13/18), as well as 12CO and C18O(R12/18). We concluded that as a tracer of dense gas, C18O is absolutely optically thin and can be used to detect the detailed structures of the cores, and that in general the 3 ratios increase gradually from the core center to the periphery. We found that the integrated intensity ratio R12/13 ranges from 2 to 6; R13/18 fluctuates between 4 and 20, but in central regions it is concentrated in the range 6–12 with a small fluctuation; and R12/18 occupies a wider range 13–90, but it is concentrated between 13 and 50 in the denser regions of the cores.  相似文献   

17.
Magnetic activity in the photosphere and chromosphere of the M dwarf EY Dra is studied and possible correlations between the two are investigated using photometric observations in the V and R bands and optical and near infrared spectroscopy. The longitudinal spot configuration in the photosphere is obtained from the V band photometry, and the chromospheric structures are investigated using variations in the Hα line profile and observations of the Paschen β line. The shape of the V band light‐curve indicates two active regions on the stellar surface, about 0.4 in phase apart. The spectroscopic observations show enhanced Hα emission observed close to the phases of the photometrically detected starspots. This could indicate chromospheric plages associated with the photospheric starspots. Some indications of prominence structures are also seen. The chromospheric pressure is limited to log mTR < –4 based on the non‐detection of emission in the Paschen β wavelength region. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The Hipparcos Space Astrometry Mission photometric observations of V398 Lac, led to the discovery of its variability, allowing to classify it as an eclipsing binary with an orbital period of about 5.4 days. This prompted us to acquire highresolution échelle spectra with the aim of performing accurate radial velocity measurements and to determine the main physical parameters of the system's components. We present, for the first time, a double‐lined radial velocity curve and determine the orbital and physical parameters of the two components, that can be classified both as late B‐type stars. In particular, we obtained an orbital inclination i ∼ 85°. With this value of the inclination, we deduced masses M1 = 3.83±0.35 M andM2 = 3.29±0.32 M, and radii R1 = 4.89±0.18 R and R2 = 2.45±0.11 R for the more massive and less massive components, respectively. Both components are well inside their own Roche lobes. The mass ratio is M2/M1 ∼ 0.86. We derived also the projected rotational velocities as v1 sin i = 79±2 km s–1 and v2 sin i = 19±2 km s–1. Our measurements indicate that the rotation of the primary star is essentially pseudo‐synchronized with the orbital velocity at the periastron, while the secondary appears to rotate very slowly and has not yet attained synchronization. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Photoelectric UBV observations of the central star of the planetary nebula NGC 2346 obtained during 60 nights between October 1991 and February 1992 are presented (Tables 1 and 2). Four minima have been stated and can be interpreted in terms of occulting dust clouds, probably representing dense condensations of the planetary nebula. We derived R = AV/EB—V = 4.0.  相似文献   

20.
Astrometric Very Long Baseline Interferometry (VLBI) observations of maser sources in the Milky Way are used to map the spiral structure of our galaxy and to determine fundamental parameters such as the rotation velocity (Θ0) and curve and the distance to the Galactic center (R0). Here, we present an update on our first results, implementing a recent change in the knowledge about the Solar motion. It seems unavoidable that the IAU recommended values for R0 and Θ0 need a substantial revision. In particular the combination of 8.5 kpc and 220 km s–1 can be ruled out with high confidence. Combining the maser data with the distance to the Galactic center from stellar orbits and the proper motion of Sgr A* gives best values of R0 = 8.3 ± 0.23 kpc and Θ0 = 239 or 246±7 km s–1, for Solar motions of V = 12.23 and 5.25 km s–1, respectively. Finally, we give an outlook to future observations in the Bar and Spiral Structure Legacy (BeSSeL) survey (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号