首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method of computing the vertical flux of zonal momentum (associated with equatorial waves) from the zonal and vertical components of the winds measured by the Indian MST radar at Gadanki (13.5°N, 79.2°E) is presented. The application of the method to the radar data gives flux values of 16×10−3, 8.0×10−3 and 5.5×10−3 m2 s−2 for slow Kelvin (12-day period), fast Kelvin (5.33-day period) and Rossby-gravity (RG) (3.43-day period) waves, respectively, in the upper troposphere. These flux values compare quite well with the values 4×10−3 m2 s−2 and 1×10−3 m2 s−2 obtained from radiosonde zonal wind and temperature data by Wallace and Kousky, 1968for slow Kelvin and RG waves, respectively. An estimate of the error in the fluxes gives a value of ∼ 1.2×10−3 m2 s−2.  相似文献   

2.
3.
Semidiurnal tidal features have been examined in the Mesosphere and Lower Thermosphere (MLT) from the long-term (2002–2007) meteor wind data over Maui (20.75°N, 156.43°W). Amplitude and phase obtained from the harmonic analysis exhibit large day to day variability. Mean amplitude obtained from the monthly mean data over the observation period is found to vary within ~8–28 m/s and 10–32 m/s for the zonal and meridional winds, respectively. The amplitude has revealed clear semiannual oscillation (SAO) pattern with maxima during solstices and altitudinal growth in both wind components. Significant resemblance in its variability with other observations carried out from the low latitude sites all over the globe is obtained. Vertical wavelength estimated from the phase gradients exposes large values (>90 km) in all seasons. Contribution of the semidiurnal tide to the total tidal variability in the MLT is found to vary over wide range throughout the year with generally higher influence during winter season over diurnal and terdiurnal components.  相似文献   

4.
Observations of wave-driven fluctuations in emissions from the OH Meinel (OHM) and O2 Atmospheric band were made with a narrow-band airglow imager located at Adelaide, Australia (35S, 138E) during the period April 1995 to January 1996. Simultaneous wind measurements in the 80–100 km region were made with a co-located MF radar. The directionality of quasi-monochromatic (QM) waves in the mesopause region is found to be highly anisotropic, especially during the solstices. During the summer, small-scale QM waves in the airglow are predominately poleward propagating, while during winter they are predominately equatorward. The directionality inferred from a Stokes analysis applied to the radar data also indicates a strong N–S anisotropy in summer and winter, but whether propagation is from the north or south cannot be determined from the analysis. The directionality of the total wave field (which contains incoherent as well as coherent features) derived from a spectral analysis of the images shows a strong E–W component, whereas, an E–W component is essentially absent for QM waves. The prevalence of QM waves is also strongly seasonally dependent. The prevalence is greatest in the summer and the least in winter and correlates with the height of the mesopause; whether it is above or below the airglow layers. The height of the mesopause is significant because for nominal thermal structures it is associated with a steep gradient in the Brunt-Väisälä frequency that causes the base of a lower thermospheric thermal duct to be located in the vicinity of the mesopause. We interpret the QM waves as waves trapped in the lower thermosphere thermal duct or between the ground and the layer of evanescence above the duct. Zonal winds can deplete the thermal duct by limiting access to the duct or by negating the thermal trapping. Radar measurements of the prevailing zonal wind are consistent with depletion of zonally propagating waves. During winter, meridional winds in the upper mesophere and lower thermosphere are weak and have no significant effect on meridionally propagating waves. However, during summer the winds in the duct region can significantly enhance ducting of southward propagating waves. The observed directionality of the waves can be explained in terms of the prevailing wind at mesopause altitudes and the seasonal variation of distant sources.  相似文献   

5.
6.
The climatology of mean wind, diurnal and semidiurnal tide during the first year (1996–1997) of simultaneous wind observations at Wakkanai (45.4°N, 141.7°E) and Yamagawa (31.2°N, 130.6°E) is presented. The locations of the radars allow us to describe the latitudinal dependence of the tides. Tidal amplitude and phase profiles are compared with those of the global scale wave model (GSWM). While the observed amplitude profiles of the diurnal tide agree well with the GSWM values, the observed phase profiles often indicate longer vertical wavelengths than the GSWM phase profiles. In contrast to the GSWM simulation, the observations show a strong bimodal structure of the diurnal tide, with the phase advancing about 6 hours from summer to winter.  相似文献   

7.
Based on the horizontal winds measured using SKiYMET meteor wind radar during the period of June 2004–May 2007, the seasonal and interannual variability of the diurnal and semidiurnal amplitudes and phases in the mesospheric and lower thermospheric (MLT) region over a low-latitude station Trivandrum (8.5°N) are investigated. The monthly values of amplitudes and phases are calculated using a composite day analysis. The zonal and meridional diurnal tidal amplitudes exhibit both annual and semiannual oscillations. The zonal and meridional components of semidiurnal tide show a significant annual oscillation. The phase values of both diurnal and semidiurnal tides exhibit annual oscillation above 90 km. The effect of background wind in the lower atmosphere on the strength of diurnal tidal amplitudes in the MLT region is studied. The effect of diurnal tides on the background wind in the lower thermosphere is also discussed.  相似文献   

8.
9.
We compare meteor radar measurements of the MLT region winds at Santa Maria, Brazil (29.7°S, 53.8°W) with the Horizontal Neutral Wind Model (HWM-93) and the Global Scale Wave Model (GSWM-00). The observed annual variation of the prevailing zonal wind disagrees in some respects with the HWM-93 model. Also, the zonal diurnal tide amplitude shows an annual variation, whereas that of the GSWM-00 is semiannual, and its vertical wavelength is smaller than that suggested by the model. The observed semidiurnal tide shows seasonal and inter-annual variations and the phase is evanescent during almost the whole year.  相似文献   

10.
11.
Continuous measurements of 3-dimensional winds, spectral parameters, and tropopause height for ~114 h during the passage of a tropical depression using mesosphere–stratosphere–troposphere (MST) radar at Gadanki (13.5°N, 79.2°E) are discussed. The spectral analysis of zonal and meridional winds shows the presence of inertia-gravity wave (IGW) with the dominant periodicity of 56 h and intrinsic period of 27 h in the upper troposphere and lower stratosphere (UTLS). The strengthening of easterly jet and associated wind shears during the passage of the depression is one of the causative mechanisms for exciting the IGW. A well-established radar method is used to identify the tropopause and to study its response to the propagating atmospheric disturbances. The significance of the present study lies in showing the response of tropopause height to the IGW during tropical depression for the first time, which will have implications in stratosphere–troposphere exchange processes.  相似文献   

12.
Data about the variations of mesopause temperature (~87 km) obtained from ground-based spectrographic measurements of the OH emission (834.0 nm, band (6-2)) at Irkutsk and Zvenigorod observatories were compared with satellite data on vertical temperature distribution in the atmosphere from Aura MLS v3.3. We analyzed MLS data for two geopotential height levels: 0.005 hPa (~84 km) and 0.002 hPa (~88 km) as the closest to OH height (~87 km). We revealed that Aura MLS temperature data have lower values than ground-based (cold bias). In summer periods, that difference increases. Aura cold biases compared with OH(6-2) at Irkutsk and Zvenigorod were calculated. For the 0.002 hPa height level, the biases are 10.1 and 9.4 K, and for 0.005 hPa they are 10.5 and 10.2 K at Irkutsk and Zvenigorod, respectively. When the bias is accounted for, an agreement between Aura MLS and OH(6-2) data obtained at both Irkutsk and Zvenigorod is remarkable.  相似文献   

13.
Rayleigh lidar observations at Gadanki (13.5°N, 79.2°E) show an enhancement of the nightly mean temperature by 10–15 K at altitudes 70–80 km and of gravity wave potential energy at 60–70 km during the 2009 major stratospheric warming event. An enhanced quasi-16-day wave activity is observed at 50–70 km in the wavelet spectrum of TIMED–SABER temperatures, possibly due to the absence of a critical level in the low-latitude stratosphere because of less westward winds caused by this warming event. The observed low-latitude mesospheric warming could be due to wave breaking, as waves are damped at 80 km.  相似文献   

14.
We report on the comparison of winds measured by a medium frequency (MF) radar near Christchurch, New Zealand, and by the high resolution doppler imager (HRDI). Previous comparisons have demonstrated that there can be significant differences in the winds obtained by the two techniques, and our results are no different. However, these data show relatively good agreement in the meridional direction, but large differences in the zonal direction, where the radar is regularly measuring the zonal wind as too easterly. To do the comparison, overpasses from the satellite must be obtained when it is close to the radar site. The radar data are averaged in time around the overpass because we know the radars sample phenomena which have spatial and temporal scales which make them invisible to HRDI. There are a limited number of overpass comparisons which limit our confidence in these results, but a detailed analysis of these data show that the proximity of the overpass is often an important factor in the differences obtained. Other factors examined include the influence of the local time of the overpass, and the amount of radar data averaged around the overpass time.  相似文献   

15.
The observations of the upper mesosphere region (∼95 km altitude) in the period of 27–30 March 2006 using mesopause oxygen rotational temperature imager (MORTI) at Almaty (43.03°N, 76.58°E) are presented in this report to illustrate the mesosphere response to the solar eclipse (SE) event, which occurred on 29 March 2006. The nighttime volume emission rates and rotational temperatures, obtained from MORTI measurements, show appreciable differences in the pattern of wave-like oscillations observed during the period of interest. These oscillations are possibly due to the SE. Using a periodogram method the spectra of the observed wave-like oscillations, observed in the mesosphere, are examined. A physical mechanism is proposed to interpret the effects observed in terms of the mesosphere response to the total SE.  相似文献   

16.
Averaged seasonal variations of wind perturbation intensities and vertical flux of horizontal momentum produced by internal gravity waves (IGWs) with periods 0.2/1 h and 1/6 h are studied at the altitudes 65/80 km using the MU radar measurement data from the middle and upper atmosphere during 1986/1997 at Shigaraki, Japan (35°N, 136°E). IGW intensity has maxima in winter and summer, winter values having substantial interannual variations. Mean wave momentum flux is directed to the west in winter and to the east in summer, opposite to the mean wind in the middle atmosphere. Major IGW momentum fluxes come to the mesosphere over Shigaraki from the Pacific direction in winter and continental Asia in summer.  相似文献   

17.
18.
We present a first detailed climatological study of individual quasi-monochromatic mesospheric, short-period gravity-wave events observed over Antarctica. The measurements were made using an all-sky airglow imager located at Halley Station (76°S, 27°W) and encompass the 2000 and 2001 austral winter seasons. Distributions of wave parameters were found to be similar to findings at other latitudes. The wave headings exhibited unusually strong anisotropy with a dominant preference for motion towards the Antarctic continent and a rotation from westward during fall, to poleward in mid-winter, to eastward in spring. This rotation was accompanied by a systematic increase of ~50% in the magnitudes of the horizontal wavelengths and observed phase speeds. It is postulated that the observed wave anisotropy was due to a succession of wave sources of different characteristics lying equatorward of Halley, or a dominant source mechanism evolving with time during the winter months.  相似文献   

19.
Wind and temperature profiles measured routinely by rockets at Ryori (Japan) since 1970 are analysed to quantify interannual changes that occur in the upper stratosphere. The analysis involved using a least square fitting of the data with a multiparametric adaptative model composed of a linear combination of some functions that represent the main expected climate forcing responses of the stratosphere. These functions are seasonal cycles, solar activity changes, stratospheric optical depth induced by volcanic aerosols, equatorial wind oscillations and a possible linear trend. Step functions are also included in the analyses to take into account instrumental changes. Results reveal a small change for wind data series above 45 km when new corrections were introduced to take into account instrumental changes. However, no significant change of the mean is noted for temperature even after sondes were improved. While wind series reveal no significant trends, a significant cooling of 2.0 to 2.5 K/decade is observed in the mid upper stratosphere using this analysis method. This cooling is more than double the cooling predicted by models by a factor of more than two. In winter, it may be noted that the amplitude of the atmospheric response is enhanced. This is probably caused by the larger ozone depletion and/or by some dynamical feedback effects. In winter, cooling tends to be smaller around 40–45 km (in fact a warming trend is observed in December) as already observed in other data sets and simulated by models. Although the winter response to volcanic aerosols is in good agreement with numerical simulations, the solar signature is of the opposite sign to that expected. This is not understood, but it has already been observed with other data sets.  相似文献   

20.
本文利用中国廊坊站(39.4°N,116.7°E)流星雷达在2012年4月1日至2013年3月31日期间的水平风场观测数据,分析了廊坊上空中间层和低热层(MLT,80~100 km)大气纬向风、经向风潮汐的季节变化特征.研究表明:廊坊MLT区域周日潮汐和半日潮汐波动比较显著,有明显的季节变化特征.周日潮汐振幅在88 km以下为半年变化,极大值位于2-3月和10月,极小值位于冬、夏季;在88 km以上为周年变化,振幅冬末春初最强,夏季最弱.周日潮汐相位在秋、冬季比春、夏季提前.半日潮汐主要呈现半年变化,在5月和9月最强,冬、夏季最弱.半日潮汐相位在春、夏季比秋、冬季提前.此外,廊坊风场潮汐的观测结果与WACCM4模式模拟结果进行比较,结果表明两者的主要特征相似,在细节上有显著区别.与40°N附近其他站点风场潮汐观测结果的比较结果表明中纬度MLT风场潮汐有显著的随经度变化特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号